
Metric learning, product quantization,
approximate search

Jan Sedmidubský Masaryk University
sedmidubsky@mail.muni.cz

Jan Sedmidubský | PV056 Machine Learning and Data Mining 1

mailto:sedmidubsky@mail.muni.cz

Outline
• Metric learning

• Vector/Product quantization

• Approximate similarity search (e.g., using FAISS)

Jan Sedmidubský | PV056 Machine Learning and Data Mining 2

Index

(e.g., 64x compression)

Metric learning
• Metric learning goal – representing data objects, such as images, text

or whatever, with numerical vectors
• Vectors = embeddings or embedding vectors

• Function 𝑓 transforms a given object (e.g., image 𝑥) into an n-dimensional
vector 𝑓(𝑥) ∈ ℝ𝑛

• Former approach – individual features of the vector representation had to be
manually specified

• Current approach – the vector representation is learned automatically

Jan Sedmidubský | PV056 Machine Learning and Data Mining 3

Neural network

(0.2, 0.9, …, 0,7)

𝑥
𝑓(𝑥) ∈ ℝ𝑛

Metric learning
• Desired properties:

• Similar data objects → vectors that are close together

• Dissimilar data objects → vectors that are far apart

• Quantification of similarity/closeness:
• Requires a distance measure in the underlying vector space

• Commonly used measure – Euclidean distance function (L2 norm)

• 𝑑𝑖𝑠𝑡 𝑓 𝑥 , 𝑓 𝑦 = 𝑓 𝑥 − 𝑓 𝑦 2

• Metric learning process – pulling together the embeddings for similar
objects and pushing apart those for dissimilar objects

• What exactly is meant by similar and dissimilar objects?

Jan Sedmidubský | PV056 Machine Learning and Data Mining 4

Metric learning
• Examples of similar and dissimilar objects on identity-based similarity:

• Face recognition

• Retail-product recognition

• Object identities (products, persons) lead to supervised clustering of
the learned embeddings → why not just use a classifier?
• Extreme classification – a very large number of classes (e.g., tens of thousands)

with highly unbalanced training data

• Stanford Online Products dataset (scraped from eBay) contains 120 K images
for 23 K product classes
• Output layer of some deep neural network with 23 K nodes and 4 images/class → you will get

an unsatisfactory result

Jan Sedmidubský | PV056 Machine Learning and Data Mining 5

Metric learning
• Embedding vectors are:

• As close together as they can be for the images in each class

• As far as they can be from the embeddings for the other classes

• Example of recognition of facial expressions

• Basic ideas in metric learning revolve around:
• Pairwise contrastive loss

• [Hadsell et al.: Dimensionality Reduction by Learning an Invariant Mapping, CVPR 2006]

• Triplet loss
• [Schroff et al.: FaceNet: A Unified Embedding for Face Recognition and Clustering, CVPR 2015]

Jan Sedmidubský | PV056 Machine Learning and Data Mining 6

[Roy at al.: Contrastive Learning of View-invariant Representations

for Facial Expressions Recognition, ACM TOMM 2023]

Pairwise Contrastive (PC) loss
• Training a neural network in batches

• Goal – extract positive and negative pairs of training samples from a
batch (batch – list of training samples)
• Positive pairs – carry the same class label

• Negative pairs – carry different labels

Jan Sedmidubský | PV056 Machine Learning and Data Mining 7

Positive pair Negative pair

Three classes: x o *

PC loss – idea of calculation
• Loss (cost or objective) function 𝐿 measures the discrepancy between

the predicted output of the model and the actual target values
• Purpose – to give the network feedback on how well it is performing so that it

can adjust its parameters (weights and biases) to improve over time

• During the training process, the loss should gradually decrease (up to 0)

• PC loss calculation:
• A sum of the values calculated separately from positive pairs and negative pairs

• Contribution to the loss by positive pairs (𝐿𝑝) + contribution to the loss by
negative pairs (𝐿𝑛)

Jan Sedmidubský | PV056 Machine Learning and Data Mining 8

PC loss – positive pairs
• Contribution to the loss by positive pairs

• Positive pair 𝑥1
𝑖 , 𝑥2

𝑖 – pairwise distances as small as possible

• Positive loss – sum over all positive pairs from the batch:

𝐿𝑝 =

𝑖

𝑑𝑖𝑠𝑡 𝑓 𝑥1
𝑖 , 𝑓 𝑥2

𝑖
2

• 𝑖 – indexes all the positive pairs from the batch

• Square of the distance because it is differentiable everywhere

Jan Sedmidubský | PV056 Machine Learning and Data Mining 9

PC loss – negative pairs
• Contribution to the loss by negative pairs

• Negative pair 𝑥1
𝑗
, 𝑥2

𝑗
– pairwise distances as large as possible

• j – indexes all the negative pairs from the batch

• But very dissimilar items amount to wasting the learning effort
• Two well-separated samples in a negative pair should not even participate in learning

• Threshold on maximal dissimilarity quantified by margin 𝑚

• If 𝑑𝑖𝑠𝑡 𝑥1
𝑗
, 𝑥2

𝑗
> 𝑚 then the contribution to the loss should be 0

• If 𝑑𝑖𝑠𝑡 𝑥1
𝑗
, 𝑥2

𝑗
≤ 𝑚: 𝐿𝑛 = 𝑚 − 𝑑𝑖𝑠𝑡 𝑥1

𝑗
, 𝑥2

𝑗

• Negative loss – sum over all negative pairs from the batch:

𝐿𝑛 =

𝑗

max 0,𝑚 − 𝑑𝑖𝑠𝑡 𝑓 𝑥1
𝑗
, 𝑓 𝑥2

𝑗
2

Jan Sedmidubský | PV056 Machine Learning and Data Mining 10

PC loss
• Overall loss for all pairs in batch by combining 𝐿𝑝 and 𝐿𝑛

• Binary variable 𝑦 ∈ 0,1 :
• 𝑦 = 0→ positive pair

• 𝑦 = 1→ negative pair

𝐿 =

𝑖

(1 − 𝑦𝑖) 𝑑𝑖𝑠𝑡 𝑓 𝑥1
𝑖 , 𝑓 𝑥2

𝑖
2
+ 𝑦𝑖 max 0,𝑚 − 𝑑𝑖𝑠𝑡 𝑓 𝑥1

𝑖 , 𝑓 𝑥2
𝑖

2

• 𝑖 – goes over all the pairs from the batch

Jan Sedmidubský | PV056 Machine Learning and Data Mining 11

⋮
positive

𝑦3 = 0

⋮

negative

𝑦78 = 1
⋮

Batch example

Triplet loss
• Creating triplets (Anchor, Positive, Negative) from a batch

• (Anchor, Positive) – carry the same class label

• (Anchor, Negative) – carry different labels

• Different mining strategies with different computational properties:
• Negative-hard mining

• Negative semi-hard mining

Jan Sedmidubský | PV056 Machine Learning and Data Mining 12

Triplet loss – creating triplets
• For every pair having the same class label:

• One selected as Anchor, the other as Positive: (Anchor, Positive)

• For every (Anchor, Positive) pair:
• Negative objects are identified – objects with a different class than Anchor/Positive

• 𝑛1 (hard negative) – must be pushed further out

• 𝑛2 (semi-hard negative)

• 𝑛3 (easy negative)

Jan Sedmidubský | PV056 Machine Learning and Data Mining 13

Triplet loss – determining negatives
• Criteria for dividing a set of negatives:

• Hard-negative mining (𝑛~𝑛1): negatives closer to anchor than positive
• 𝑑𝑖𝑠𝑡 𝑎, 𝑛 < 𝑑𝑖𝑠𝑡(𝑎, 𝑝)

• Semi-hard negative mining (𝑛~𝑛2): negatives fall within margin δ
• 𝑑𝑖𝑠𝑡 𝑎, 𝑝 < 𝑑𝑖𝑠𝑡 𝑎, 𝑛 < 𝑑𝑖𝑠𝑡 𝑎, 𝑝 + δ

• Easy negatives (𝑛~𝑛3): negatives that lie beyond the margin
• 𝑑𝑖𝑠𝑡 𝑎, 𝑝 + δ < 𝑑𝑖𝑠𝑡 𝑎, 𝑛

• Suitability of negatives for training:
• Only easy negatives for training – insignificant role in learning, if any at all

• Only hard negatives for training – network:
• Converges to a local minimum at best, or

• Collapses to a state in which all the embeddings are zero

• The most suitable for training are semi-hard negatives

Jan Sedmidubský | PV056 Machine Learning and Data Mining 14

Triplet loss – determining negatives
• Semi-hard negative mining (𝑛2)

• Negatives sufficiently close to anchor

• Margin δ has to be carefully set:
• Appropriate value – network correctly distinguishes between positive/negative samples

• Too large/small value – network optimization process may get stuck in a local minimum

• To properly set the margin, all embeddings are normalized to be of size unity
• Margin typically set to δ = 0.2

Jan Sedmidubský | PV056 Machine Learning and Data Mining 15

Triplet loss – calculation
• List of triplets (𝑥𝑖

𝑎, 𝑥𝑖
𝑝
, 𝑥𝑖

𝑛) of a batch of cardinality 𝑁

𝐿 =

𝑖=1

𝑁

max 0, 𝑑𝑖𝑠𝑡2(𝑓 𝑥𝑖
𝑎 , 𝑓 𝑥𝑖

𝑝
) − 𝑑𝑖𝑠𝑡2(𝑓 𝑥𝑖

𝑎 , 𝑓 𝑥𝑖
𝑛) + δ

• No contributions from the negatives that are outside the margin (max returns 0)

Jan Sedmidubský | PV056 Machine Learning and Data Mining 16

Results on CIFAR-10
• Training on the CIFAR-10 dataset

• Contrastive loss learning: Precision@1 = 74%

• Triplet loss learning: Precision@1 = 84%

Jan Sedmidubský | PV056 Machine Learning and Data Mining 17

Coding issues
• Goal – determine pairs/triplets → calculate pair-wise distances

• Variables:
• Batch of size 𝐵

• Dimensionality of embeddings: 𝑀

• Embeddings-data array 𝑋 of shape 𝐵 ×𝑀

• Labels of embeddings: 𝐵 × 1

• Easy solution – iterative processing (for-loops) to determine distances
• The cost of iterative processing is simply too much great

• GPU solution – matrix multiplications – not a friend with for-loops
• Thousand-fold speedup when you eliminate the loops that you would otherwise

need for estimating

Jan Sedmidubský | PV056 Machine Learning and Data Mining 18

Coding issues
• Easy solution – iterative processing

Jan Sedmidubský | PV056 Machine Learning and Data Mining 19

Coding issues
• GPU solution – matrix multiplications

• Implementation based on tensors

• In case of iterative processing: if batch size is 128, this results in 8,192 fetches
from the GPU memory (1282/2)

• Solution using 1 GPU fetch → >8 K speedup

1) Determining pairs using the structure with labels (of 𝐵 dimensionality):

Jan Sedmidubský | PV056 Machine Learning and Data Mining 20

Coding issues
• GPU solution – matrix multiplications

2) Calculating the distance matrix:
• Euclidean distance between vectors Ԧ𝑥 and Ԧ𝑦 : Ԧ𝑥 − Ԧ𝑦 2 = Ԧ𝑥 2 − 2 Ԧ𝑥 Ԧ𝑦𝑇 + Ԧ𝑦 2

• The square of the norm of each of the vectors

• The value of the dot product between the two vectors

• Calculating a dot product of every pair of embedding vectors in X:
𝑑𝑜𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠 = 𝑋@𝑋. 𝑇

• Vector norms for the embedding vectors are on diagonal
𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑛𝑜𝑟𝑚𝑠_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑣𝑒𝑐𝑠 = 𝑡𝑜𝑟𝑐ℎ. 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙(𝑑𝑜𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠)

• Dot products between pairs of embedding vectors are in the off-diagonal elements

• Calculating the Euclidean distance matrix 𝐵 × 𝐵 (𝐵 = 6):
𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒_𝑚𝑎𝑡𝑟𝑖𝑥
= 𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑛𝑜𝑟𝑚𝑠_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑣𝑒𝑐𝑠. 𝑣𝑖𝑒𝑤(1, 6) − 2.0 ∙ 𝑑𝑜𝑡_𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠
+ 𝑠𝑞𝑢𝑎𝑟𝑒𝑑_𝑛𝑜𝑟𝑚𝑠_𝑒𝑚𝑏𝑒𝑑𝑑𝑖𝑛𝑔_𝑣𝑒𝑐𝑠. 𝑣𝑖𝑒𝑤(6, 1)

• Note: operators for tensors are overloaded to add (or subtract) three tensors of different shapes

Jan Sedmidubský | PV056 Machine Learning and Data Mining 21

Image embeddings – what we know
• Training a neural network based on PC/Triplet loss learning

• Transform query and each database image into an embedding
• Mapping function 𝑓() extracting embedding 𝑓 𝑥 for object 𝑥

• Given two images 𝑥 and 𝑦, their closeness can be quantified by the Euclidean
distance: 𝑑𝑖𝑠𝑡 𝑓 𝑥 , 𝑓 𝑦 = 𝑓 𝑥 − 𝑓 𝑦 2

Jan Sedmidubský | PV056 Machine Learning and Data Mining 22

Neural network

(0.2, 0.9, …, 0,7)

𝑥
𝑓 𝑥

Search over image embeddings
• Query image ~ query embedding ~ query

• k-nearest neighbor (k-NN) query
• Finding the k database images that are the most similar to the query image

• Similarity between query and database images based on the Euclidean/cosine
distance between their embeddings

Jan Sedmidubský | PV056 Machine Learning and Data Mining 23

I need some

information…

Image

database

Image

representation
Index

Query
Query

representation
Similarity

Document
Document
Document
Document
DocumentRanked

images

Sort by decreasing

similarity

Search over image embeddings
• Many applications of image search, e.g.:

• Photo organization – grouping images into albums automatically by recognizing
similar faces, locations, or objects

• Fashion and e-commerce – outfit pairing in online stores
• Recommending matching items (e.g., shoes, bags, or accessories) by comparing product

images based on style, color, and texture

• Visual similarity in product search – enabling users to upload an image of a product to find
similar items in the store

• Cultural heritage and art preservation
• Artifact identification – comparing images of newly found artifacts with existing ones to

determine origin or classification

• Style similarity matching – finding paintings with similar styles for study or curation

• Duplicate image detection – removing similar or exact copies of an image in
large databases to ensure unique content

Jan Sedmidubský | PV056 Machine Learning and Data Mining 24

Search over large image databases
• Brute-force approach:

• Comparing the query embedding against each database embedding

• 𝑂(𝑁) complexity (𝑁 is the size of the dataset) – not scalable

• How to search when the database of embeddings is very large?

• Solution – Approximate Nearest Neighbor (ANN) algorithms
• Many algorithms but leading ones are:

• Locality Sensitive Hashing (LSH) – PA212 course

• Product Quantization (PQ)

Jan Sedmidubský | PV056 Machine Learning and Data Mining 25

Product Quantization (PQ)
• PQ – extension of the very old Vector Quantization (VQ) idea

• VQ idea:
• Compressing a high-dimensional image vector (embedding) into a single

codeword, typically an integer value

• Pre-processing phase:
• Create a mapping from all codewords to the original image vectors within a database

• Each codeword points to the list of all the database images with the same codeword

• This mapping structure is referred to as the lookup table or inverted index

• Search phase:
• Transform the query into a single codeword

• Use the lookup table to get the candidate image vectors of the same codeword as the query

• It is also possible to consider candidate vectors having the codeword “relevant” (not strictly the same)

• Compute the distance between the original query vector and all candidate vectors

• Return the k-nearest candidate vectors with respect to the query vector

Jan Sedmidubský | PV056 Machine Learning and Data Mining 26

(0.2, 0.9, …, 0,7) 4

1 2 3 4

DB vectors

VQ
• Compression idea:

• Partitioning a vector space into Voronoi cells with respect to a set of points
• Points are typically called the centroids (pivots) of the cells in which they reside

• Voronoi diagram – partitioning the D-dimensional space of embeddings into cells {𝑐1, 𝑐2, … , 𝑐𝑛}
determined by pivots {𝑝1, 𝑝2, … , 𝑝𝑛}; each cell 𝑐𝑖 gets its ID ~ codeword

• All the vectors in cell 𝑐𝑖 are closer to the pivot 𝑝𝑖 than to any other pivot

Jan Sedmidubský | PV056 Machine Learning and Data Mining 27

An example of the Voronoi diagram for the case of

four pivots {𝑝1, 𝑝2, 𝑝3, 𝑝4} in the 2D plane
𝑐2:

𝑐1:
4

1

32

𝑝2

𝑝4

𝑝3𝑝1

VQ
• Pre-processing phase:

• Creating a codebook of 𝑛 = 2𝐵 codewords
• The 𝑛 centroids (~cells) are typically the K centroids generated by applying the K-means

algorithm to the (sample of) database of vectors

• Any vector can be quantized in the underlying vector space to one of the K cluster centers

• Vectors that fall in the same cluster will be mapped to the same codeword

• Clusters can be differently populated based on data distribution

• Each codeword is represented by an integer value → B-bit representation

• Managing a lookup table with 2𝐵 codewords
• Transforming each database image vector into a codeword

• Each codeword in the lookup table is associated with a list of the database images (or paths
to these images) of the same codeword

• Dimensionality of data can be dramatically reduced – example scenario:
• Each image represented by a 512-D embedding vector of floats → 512 ∙ 4 = 2,048 bytes

• 𝐵 = 16→ 512-D vectors quantized to 216 = 65,536 codewords

• Each image then represented by the 16-bit code (2 bytes) → 1,024x compression

Jan Sedmidubský | PV056 Machine Learning and Data Mining 28

• Search phase:
• Before the query is transformed to codeword, the ranking of pivots is created

• The distance between the query vector and each pivot vector must be calculated

• The query gets the codeword corresponding to the nearest (most-ranked) pivot
• Other “query-relevant” codewords can also be considered, e.g., as 2nd or 3rd most-ranked

• The database vectors associated with the same codeword as the query
codeword (or any of “query-relevant” codewords) become candidates

• The distance between the query vector and each candidate is evaluated
• Each candidate vector must be loaded, e.g., from secondary storage

• The k-most similar candidates (with the smallest distance) are returned as the
query result

𝑝1

VQ

Jan Sedmidubský | PV056 Machine Learning and Data Mining 29

4

1

32

𝑝2

𝑝4

𝑝3 Database

vectors

Query vector

Illustration of query evaluation:

• Query vector

• Candidates are database vectors

associated with codeword

4

4

VQ
• Limitations of VQ:

• If the codebook is too large (e.g., 𝐵 = 64→ 264 clusters are needed to be
found), it is impossible for K-means to detect such a huge number of clusters

• Returning the k-most query relevant database vectors requires to load a large
set of candidate vectors and calculate their distance with respect to the query

Jan Sedmidubský | PV056 Machine Learning and Data Mining 30

PQ
• Product quantization (PQ) idea:

• Original database vector split into several segments (sub-vectors)
• Each sub-vector follows the vector quantization independently

• Quantized vector – concatenation of codewords of individual segments

• Pre-processing phase:
• Create a sub-quantizer – a codebook for each of the segments – separately (i.e., #codebooks

= #segments)

• Clustering operation applied to each set of sub-vectors

• Create a mapping from all codewords of each codebook to the original image vectors within a
database

• Search phase:
• Original database vectors need not be loaded (e.g., from secondary storage)

• Distance between the query and a database vector is efficiently approximated

• Based on pre-computed distances between the query segments and centroids in each codebook

Jan Sedmidubský | PV056 Machine Learning and Data Mining 31

2 8 9 16

Vector

Segments

• Pre-processing phase:
• Creating 𝑚 segments → 𝑚 codebooks, each of 𝑛 = 2𝐵 codewords

• Each codeword is again represented by an integer value → 𝐵-bit representation

• Codewords of all segments are concatenated →(𝑚 ∙ 𝐵)-bit representation

• Managing a lookup table with 2𝐵 codewords for each segment (𝑚 lookup tables)

PQ

Jan Sedmidubský | PV056 Machine Learning and Data Mining 32

Example scenario:

• Image as a 512-D vector of floats → 512 ∙ 4 = 2,048 bytes

• 𝑚 = 32→ 32 segments (codebooks)

• 𝐵 = 8→ 16-D sub-vectors quantized to 28 = 256 codewords

• Each image then as (32 ∙ 8)-bit code (32 bytes) → 64x

compression

𝑚 = 4

2 8 9 16

Vector

Segments

12

9

1110

𝑝2

𝑝4

𝑝3𝑝14

1

3

2

8

5

7

6 16
13

15

14

𝑛 = 4 (𝐵 = 2)

• Search phase:
• 1) Precompute the distances between each query sub-vector and each centroid

in the corresponding codebook → 𝑚 ∙ 2𝐵 distances in total
• Distances kept within a query distance matrix 𝑄𝐷𝑀 of size 𝑚 × 2𝐵

• E.g., 32 ∙ 256 = 8,192 distances in the previous example scenario, which is cheap to compute

• Illustration of distance precomputation:

• 𝑄𝐷𝑀 of size 𝑚 × 2𝐵 = 4 × 4

• 𝑚 = 4, 𝐵 = 2

PQ

Jan Sedmidubský | PV056 Machine Learning and Data Mining 33

.4 .2 .6 .3

.6 .4 .4 .1

.2 .4 .6 .7

.4 .3 .2 .1

𝑑𝑖𝑠𝑡(. , .)

2𝐵

𝑚

𝑚 = 4

2 8 9 16

Query vector

Segments

12

9

1110

𝑝2

𝑝4

𝑝3𝑝14

1

3

2

8

5

7

6 16

13

15

14

𝑛 = 4 (𝐵 = 2)

PQ
• Search phase:

• 2) Identify the nearest cluster(s) in the same way as in the VQ approach

• 3) Approximate the distance of each candidate vector in the nearest cluster(s):
• For 𝑖-th segment and associated codeword c𝑖 of the candidate vector, approximate the sub-

distance between 𝑖-th query segment and 𝑖-th candidate segment by the precomputed sub-
distance 𝑄𝐷𝑀[𝑖, 𝑐𝑖]

• Sum the sub-distances for all the segments: σ𝑖=0
𝑚−1𝑄𝐷𝑀[𝑖, 𝑐𝑖]

Illustration of approximating the distance (for query):

• Candidate : σ𝑖=0
3 𝑄𝐷𝑀 𝑖, 𝑐𝑖 = 0.2 + 0.1 + 0.2 + 0.2 = 0.7

• Candidate : 0.2 + 0.1 + 0.7 + 0.2 = 1.2

• Candidate : 0.4 + 0.1 + 0.2 + 0.1 = 0.8

Jan Sedmidubský | PV056 Machine Learning and Data Mining 34

.4 .2 .6 .3

.6 .4 .4 .1

.2 .4 .6 .7

.4 .3 .2 .1

2𝐵

𝑚

2 8 9 15

2 8 9 16

2 8 12 15

1 8 9 16

2 8 9 15

Candidate

PQ
• Summary:

• For distance approximations, the candidate vectors are not accessed
• Accessing candidate vectors can be bottleneck in VQ, especially when vectors are stored

within secondary storage

• ANN search carried out efficiently in high dimensional vector spaces even when a database
has billions of vectors

• Approximated distances need not be perfect

Jan Sedmidubský | PV056 Machine Learning and Data Mining 35

Similarity search using FAISS
• FAISS – Facebook AI Similarity Search

• Library developed by Facebook AI Research for efficient similarity
search and clustering of dense vectors

• Useful for large-scale similarity search problems, which are common
in various machine learning and information retrieval tasks

• Designed to work on either the GPU or CPU and provides significant
performance improvements compared to other nearest neighbor
search algorithms

• One of the best implementation of the Product Quantization approach
to similarity search

• Implemented in C++ with Python bindings

Jan Sedmidubský | PV056 Machine Learning and Data Mining 36

FAISS
• Several techniques to achieve efficient similarity search:

• Quantization – compresses the embeddings which significantly reduces
memory usage and accelerates distance computations
• Supports Product Quantization (PQ)

• Indexing – FAISS provides multiple index types for different use cases and
trade-offs between search speed and search quality
• Flat index – brute-force index that computes exact distances between query vectors and

indexed vectors

• IVF (Inverted File) index – partitioned index that divides the vector space into Voronoi cells

• HNSW (Hierarchical Navigable Small World) – graph-based index that builds a hierarchical
graph structure, enabling efficient nearest neighbor search with logarithmic complexity

Jan Sedmidubský | PV056 Machine Learning and Data Mining 37

FAISS
• Example of IVF (Inverted File) index:

• nprobes parameter specifies the number of nearest
cluster(s) to be visited

• Clusters ranked by the distance between the cluster
centroid and query vector

Jan Sedmidubský | PV056 Machine Learning and Data Mining 38

In
d
e
x
 s

e
le

c
ti
o
n
 g

u
id

e
lin

e
s

FAISS
• Useful references

• Tutorials:
• https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-

search/

• https://github.com/facebookresearch/faiss/wiki/

• Research papers:
• Johnson et al.: Billion-scale similarity search with GPUs, 2017:

https://arxiv.org/abs/1702.08734

• Douze et al.: The FAISS library, 2024: https://arxiv.org/abs/2401.08281

Jan Sedmidubský | PV056 Machine Learning and Data Mining 39

https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/
https://github.com/facebookresearch/faiss/wiki/
https://arxiv.org/abs/1702.08734
https://arxiv.org/abs/2401.08281

Sources
• Avi Kak and Charles Bouman: Metric Learning with Deep Neural

Networks. Purdue University, 2024

• https://www.pinecone.io/learn/series/faiss/faiss-tutorial/

Jan Sedmidubský | PV056 Machine Learning and Data Mining 40

https://www.pinecone.io/learn/series/faiss/faiss-tutorial/

	Snímek 1: Metric learning, product quantization, approximate search
	Snímek 2: Outline
	Snímek 3: Metric learning
	Snímek 4: Metric learning
	Snímek 5: Metric learning
	Snímek 6: Metric learning
	Snímek 7: Pairwise Contrastive (PC) loss
	Snímek 8: PC loss – idea of calculation
	Snímek 9: PC loss – positive pairs
	Snímek 10: PC loss – negative pairs
	Snímek 11: PC loss
	Snímek 12: Triplet loss
	Snímek 13: Triplet loss – creating triplets
	Snímek 14: Triplet loss – determining negatives
	Snímek 15: Triplet loss – determining negatives
	Snímek 16: Triplet loss – calculation
	Snímek 17: Results on CIFAR-10
	Snímek 18: Coding issues
	Snímek 19: Coding issues
	Snímek 20: Coding issues
	Snímek 21: Coding issues
	Snímek 22: Image embeddings – what we know
	Snímek 23: Search over image embeddings
	Snímek 24: Search over image embeddings
	Snímek 25: Search over large image databases
	Snímek 26: Product Quantization (PQ)
	Snímek 27: VQ
	Snímek 28: VQ
	Snímek 29: VQ
	Snímek 30: VQ
	Snímek 31: PQ
	Snímek 32: PQ
	Snímek 33: PQ
	Snímek 34: PQ
	Snímek 35: PQ
	Snímek 36: Similarity search using FAISS
	Snímek 37: FAISS
	Snímek 38: FAISS
	Snímek 39: FAISS
	Snímek 40: Sources

