Metric learning, product quantization, approximate search

Jan Sedmidubský

Masaryk University

sedmidubsky@mail.muni.cz

Jan Sedmidubský | PV056 Machine Learning and Data Mining

Outline

Metric learning

Vector/Product quantization

 $(0.6, 0.5, \ldots, 0.1) \longrightarrow (7, 2, \ldots, 4)$ (e.g., 64x compression)

• Approximate similarity search (e.g., using FAISS)

Jan Sedmidubský | PV056 Machine Learning and Data Mining

- Metric learning goal representing data objects, such as images, text or whatever, with numerical vectors
 - Vectors = embeddings or embedding vectors
 - Function f transforms a given object (e.g., image x) into an n-dimensional vector $f(x) \in \mathbb{R}^n$

- Former approach individual features of the vector representation had to be manually specified
- Current approach the vector representation is learned automatically

- Desired properties:
 - Similar data objects \rightarrow vectors that are close together
 - Dissimilar data objects \rightarrow vectors that are far apart
- Quantification of similarity/closeness:
 - Requires a distance measure in the underlying vector space
 - Commonly used measure Euclidean distance function (L2 norm)
 - $dist(f(x), f(y)) = ||f(x) f(y)||_2$
- Metric learning process pulling together the embeddings for similar objects and pushing apart those for dissimilar objects
- What exactly is meant by similar and dissimilar objects?

- Examples of similar and dissimilar objects on identity-based similarity:
 - Face recognition
 - Retail-product recognition
- Object identities (products, persons) lead to supervised clustering of the learned embeddings → why not just use a classifier?
 - Extreme classification a very large number of classes (e.g., tens of thousands) with highly unbalanced training data
 - Stanford Online Products dataset (scraped from eBay) contains 120 K images for 23 K product classes
 - Output layer of some deep neural network with 23 K nodes and 4 images/class → you will get an unsatisfactory result

- Embedding vectors are:
 - As close together as they can be for the images in each class
 - As far as they can be from the embeddings for the other classes
- Example of recognition of facial expressions

- Basic ideas in metric learning revolve around:
 - Pairwise contrastive loss
 - [Hadsell et al.: Dimensionality Reduction by Learning an Invariant Mapping, CVPR 2006]
 - Triplet loss
 - [Schroff et al.: FaceNet: A Unified Embedding for Face Recognition and Clustering, CVPR 2015]

Pairwise Contrastive (PC) loss

- Training a neural network in batches
- Goal extract positive and negative pairs of training samples from a batch (batch – list of training samples)
 - Positive pairs carry the same class label
 - Negative pairs carry different labels

PC loss – idea of calculation

- Loss (cost or objective) function L measures the discrepancy between the predicted output of the model and the actual target values
 - Purpose to give the network feedback on how well it is performing so that it can adjust its parameters (weights and biases) to improve over time
 - During the training process, the loss should gradually decrease (up to 0)
- PC loss calculation:
 - A sum of the values calculated separately from positive pairs and negative pairs
 - Contribution to the loss by positive pairs (L_p) + contribution to the loss by negative pairs (L_n)

PC loss – positive pairs

- Contribution to the loss by positive pairs
 - Positive pair (x_1^i, x_2^i) pairwise distances as small as possible
 - Positive loss sum over all positive pairs from the batch:

$$L_p = \sum_{i} \left[dist\left(f(x_1^i), f(x_2^i)\right) \right]^2$$

- i indexes all the positive pairs from the batch
- Square of the distance because it is differentiable everywhere

PC loss – negative pairs

- Contribution to the loss by negative pairs
 - Negative pair (x_1^j, x_2^j) pairwise distances as large as possible
 - j indexes all the negative pairs from the batch
 - But very dissimilar items amount to wasting the learning effort
 - Two well-separated samples in a negative pair should not even participate in learning
 - Threshold on maximal dissimilarity quantified by margin m
 - If $dist(x_1^j, x_2^j) > m$ then the contribution to the loss should be 0
 - If $dist(x_1^j, x_2^j) \le m: L_n = m dist(x_1^j, x_2^j)$
 - Negative loss sum over all negative pairs from the batch:

$$L_n = \sum_j \left[\max\left\{0, m - dist\left(f(x_1^j), f(x_2^j)\right)\right\} \right]^2$$

PC loss

- Overall loss for all pairs in batch by combining L_p and L_n
 - Binary variable $y \in \{0,1\}$:
 - $y = 0 \rightarrow \text{positive pair}$
 - $y = 1 \rightarrow$ negative pair

$$L = \sum_{i} (1 - y_i) \left[dist\left(f(x_1^i), f(x_2^i)\right) \right]^2 + y_i \left[\max\left\{0, m - dist\left(f(x_1^i), f(x_2^i)\right) \right\} \right]^2$$

• i - goes over all the pairs from the batch

Batch example

$$i = y_{3} = 0$$

$$i = 1$$

$$y_{78} = 1$$

$$i = 1$$

$$i = 1$$

Triplet loss

- Creating triplets (Anchor, Positive, Negative) from a batch
 - (Anchor, Positive) carry the same class label
 - (Anchor, Negative) carry different labels
- Different mining strategies with different computational properties:
 - Negative-hard mining
 - Negative semi-hard mining

Triplet loss – creating triplets

- For every pair having the same class label:
 - One selected as Anchor, the other as Positive: (Anchor, Positive)
 - For every (Anchor, Positive) pair:
 - Negative objects are identified objects with a different class than Anchor/Positive
 - n1 (hard negative) must be pushed further out
 - n2 (semi-hard negative)
 - n3 (easy negative)

Triplet loss – determining negatives

- Criteria for dividing a set of negatives:
 - Hard-negative mining $(n \sim n1)$: negatives closer to anchor than positive
 - dist(a,n) < dist(a,p)
 - Semi-hard negative mining $(n \sim n^2)$: negatives fall within margin δ
 - $dist(a, p) < dist(a, n) < dist(a, p) + \delta$
 - Easy negatives $(n \sim n3)$: negatives that lie beyond the margin
 - $dist(a, p) + \delta < dist(a, n)$
- Suitability of negatives for training:
 - Only easy negatives for training insignificant role in learning, if any at all
 - Only hard negatives for training network:
 - Converges to a local minimum at best, or
 - Collapses to a state in which all the embeddings are zero
 - The most suitable for training are semi-hard negatives

n3

Triplet loss – determining negatives

- Semi-hard negative mining (n2)
 - Negatives sufficiently close to anchor
 - Margin δ has to be carefully set:
 - Appropriate value network correctly distinguishes between positive/negative samples
 - Too large/small value network optimization process may get stuck in a local minimum
 - To properly set the margin, all embeddings are normalized to be of size unity

• Margin typically set to $\delta = 0.2$

Triplet loss – calculation

• List of triplets
$$(x_i^a, x_i^p, x_i^n)$$
 of a batch of cardinality N

$$L = \sum_{i=1}^{N} \max\{0, dist^2(f(x_i^a), f(x_i^p)) - dist^2(f(x_i^a), f(x_i^n)) + \delta\}$$

• No contributions from the negatives that are outside the margin (max returns 0)

Results on CIFAR-10

- Training on the CIFAR-10 dataset
 - Contrastive loss learning: Precision@1 = 74%
 - Triplet loss learning: Precision@1 = 84%

- Goal determine pairs/triplets \rightarrow calculate pair-wise distances
- Variables:
 - Batch of size *B*
 - Dimensionality of embeddings: M
 - Embeddings-data array X of shape $B \times M$
 - Labels of embeddings: $B \times 1$
- Easy solution iterative processing (for-loops) to determine distances
 - The cost of iterative processing is simply too much great
- GPU solution matrix multiplications not a friend with for-loops
 - Thousand-fold speedup when you eliminate the loops that you would otherwise need for estimating

Easy solution – iterative processing

```
embeddings = [0.0, 0.0, 0.0],
                                  ## We have 6 embeddings, each of size 3. ## (A)
               [0.1, 0.1, 0.2],
               [0.4, 0.3, 0.1],
              [0.0, 0.0, 0.4],
              [0.3, 0.0, 0.0],
              [0.1, 0.0, 0.7]]
labels = [0, 1, 0, 3, 4, 3]
                                                                               ## (B)
positive_pairs = [ (i,j) for i in range(len(labels))
                        for j in range(len(labels))
                        if j > i and labels[i] == labels[j] ]
                                                                               ## (C)
print( positive_pairs )
                                             \# [(0, 2), (3, 5)]
                                                                               ## (D)
negative_pairs = [ (i,j) for i in range(len(labels))
                        for j in range(len(labels))
                        if j > i and labels[i] != labels[j] ]
                                                                               ## (E)
                                                                               ## (F)
print( negative_pairs )
            [(0, 1), (0, 3), (0, 4), (0, 5), (1, 2), (1, 3), (1, 4),
##
##
                                (1, 5), (2, 3), (2, 4), (2, 5), (3, 4), (4, 5)]
triplets = [ (item, neg) for item in positive_pairs
                        for neg in range(len(labels))
                        if labels[item[0]] != labels[neg] ]
                                                                               ## (G)
print( triplets )
                                                                               ## (H)
```

- GPU solution matrix multiplications
 - Implementation based on tensors
 - In case of iterative processing: if batch size is 128, this results in 8,192 fetches from the GPU memory (128²/2)
 - Solution using 1 GPU fetch \rightarrow >8 K speedup

1) Determining pairs using the structure with labels (of *B* dimensionality):

```
>>> labels = torch.tensor([0, 1, 0, 3, 4, 3])
>>> B = labels.shape[0]  ## B = 6
>>> labels_equal = labels.view(1,B) == labels.view(B,1)
>>> labels_equal
tensor([[ True, False, True, False, False, False],
        [False, True, False, False, False, False],
        [False, True, False, True, False, False, False],
        [False, False, True, False, True, False, True],
        [False, False, False, False, True, False],
        [False, False, False, True, False, True],
        [False, False, False, True, False, True]])
```

GPU solution – matrix multiplications

- 2) Calculating the distance matrix:
- Euclidean distance between vectors \vec{x} and \vec{y} : $\|\vec{x} \vec{y}\|_2 = \|\vec{x}\|_2 2\vec{x}\vec{y}^T + \|\vec{y}\|_2$
 - The square of the norm of each of the vectors
 - The value of the dot product between the two vectors
- Calculating a dot product of every pair of embedding vectors in X: *dot_products* = X@X.T
 - Vector norms for the embedding vectors are on diagonal squared_norms_embedding_vecs = torch.diagonal(dot_products)
 - Dot products between pairs of embedding vectors are in the off-diagonal elements
- Calculating the Euclidean distance matrix $B \times B$ (B = 6):
 - distance_matrix
 - = squared_norms_embedding_vecs.view(1,6) 2.0 · dot_products
 - + squared_norms_embedding_vecs.view(6,1)

• Note: operators for tensors are overloaded to add (or subtract) three tensors of different shapes

Image embeddings – what we know

- Training a neural network based on PC/Triplet loss learning
- Transform query and each database image into an embedding
 - Mapping function f() extracting embedding f(x) for object x

• Given two images x and y, their closeness can be quantified by the Euclidean distance: $dist(f(x), f(y)) = ||f(x) - f(y)||_2$

Search over image embeddings

- Query image ~ query embedding ~ query
- *k*-nearest neighbor (*k*-NN) query
 - Finding the *k* database images that are the most similar to the query image
 - Similarity between query and database images based on the Euclidean/cosine distance between their embeddings

Search over image embeddings

- Many applications of image search, e.g.:
 - Photo organization grouping images into albums automatically by recognizing similar faces, locations, or objects
 - Fashion and e-commerce outfit pairing in online stores
 - Recommending matching items (e.g., shoes, bags, or accessories) by comparing product images based on style, color, and texture
 - Visual similarity in product search enabling users to upload an image of a product to find similar items in the store
 - Cultural heritage and art preservation
 - Artifact identification comparing images of newly found artifacts with existing ones to determine origin or classification
 - Style similarity matching finding paintings with similar styles for study or curation
 - Duplicate image detection removing similar or exact copies of an image in large databases to ensure unique content

Search over large image databases

- Brute-force approach:
 - Comparing the query embedding against each database embedding
 - O(N) complexity (N is the size of the dataset) not scalable
 - How to search when the database of embeddings is very large?
- Solution Approximate Nearest Neighbor (ANN) algorithms
 - Many algorithms but leading ones are:
 - Locality Sensitive Hashing (LSH) PA212 course
 - Product Quantization (PQ)

Jan Sedmidubský | PV056 Machine Learning and Data Mining

Product Quantization (PQ)

- PQ extension of the very old Vector Quantization (VQ) idea
- VQ idea:
 - Compressing a high-dimensional image vector (embedding) into a single codeword, typically an integer value
 _(0.2, 0.9, ..., 0,7) → 4
 - Pre-processing phase:
 - Create a mapping from all codewords to the original image vectors within a database
 - · Each codeword points to the list of all the database images with the same codeword
 - This mapping structure is referred to as the lookup table or inverted index
 - Search phase:
 - Transform the query into a single codeword
 - Use the lookup table to get the candidate image vectors of the same codeword as the query
 - It is also possible to consider candidate vectors having the codeword "relevant" (not strictly the same)
 - Compute the distance between the original query vector and all candidate vectors
 - Return the k-nearest candidate vectors with respect to the query vector

Compression idea:

- Partitioning a vector space into Voronoi cells with respect to a set of points
 - Points are typically called the centroids (pivots) of the cells in which they reside
 - Voronoi diagram partitioning the *D*-dimensional space of embeddings into cells {c₁, c₂, ..., c_n} determined by pivots {p₁, p₂, ..., p_n}; each cell c_i gets its ID ~ codeword
 - All the vectors in cell c_i are closer to the pivot p_i than to any other pivot

 p_4

 $_{\mathbf{x}}p_{3}$

3

An example of the Voronoi diagram for the case of four pivots $\{p_1, p_2, p_3, p_4\}$ in the 2D plane

• Pre-processing phase:

- Creating a codebook of $n = 2^B$ codewords
 - The *n* centroids (~cells) are typically the K centroids generated by applying the K-means algorithm to the (sample of) database of vectors
 - Any vector can be quantized in the underlying vector space to one of the K cluster centers
 - Vectors that fall in the same cluster will be mapped to the same codeword
 - Clusters can be differently populated based on data distribution
 - Each codeword is represented by an integer value \rightarrow *B*-bit representation
- Managing a lookup table with 2^B codewords
 - Transforming each database image vector into a codeword
 - Each codeword in the lookup table is associated with a list of the database images (or paths to these images) of the same codeword
- Dimensionality of data can be dramatically reduced example scenario:
 - Each image represented by a 512-D embedding vector of floats \rightarrow 512 · 4 = 2,048 bytes
 - $B = 16 \rightarrow 512$ -D vectors quantized to $2^{16} = 65,536$ codewords
 - Each image then represented by the 16-bit code (2 bytes) \rightarrow 1,024x compression

• Search phase:

- Before the query is transformed to codeword, the ranking of pivots is created
 - The distance between the query vector and each pivot vector must be calculated
- The query gets the codeword corresponding to the nearest (most-ranked) pivot
 - Other "query-relevant" codewords can also be considered, e.g., as 2nd or 3rd most-ranked
- The database vectors associated with the same codeword as the query codeword (or any of "query-relevant" codewords) become candidates
- The distance between the query vector and each candidate is evaluated
 - Each candidate vector must be loaded, e.g., from secondary storage
- The *k*-most similar candidates (with the smallest distance) are returned as the query result

Illustration of query evaluation:

- Query vector $\longrightarrow 4$
- Candidates are database vectors

 associated with codeword
 4

• Limitations of VQ:

- If the codebook is too large (e.g., $B = 64 \rightarrow 2^{64}$ clusters are needed to be found), it is impossible for K-means to detect such a huge number of clusters
- Returning the *k*-most query relevant database vectors requires to load a large set of candidate vectors and calculate their distance with respect to the query

- Product quantization (PQ) idea:
 - Original database vector split into several segments (sub-vectors)
 - Each sub-vector follows the vector quantization independently
 - Quantized vector concatenation of codewords of individual segments
 - Pre-processing phase:
 - Create a sub-quantizer a codebook for each of the segments separately (i.e., #codebooks = #segments)
 - Clustering operation applied to each set of sub-vectors
 - Create a mapping from all codewords of each codebook to the original image vectors within a
 database
 - Search phase:
 - Original database vectors need not be loaded (e.g., from secondary storage)
 - Distance between the query and a database vector is efficiently approximated
 - Based on pre-computed distances between the query segments and centroids in each codebook

• Pre-processing phase:

- Creating *m* segments $\rightarrow m$ codebooks, each of $n = 2^B$ codewords
 - Each codeword is again represented by an integer value \rightarrow *B*-bit representation
- Codewords of all segments are concatenated $\rightarrow (m \cdot B)$ -bit representation
- Managing a lookup table with 2^B codewords for each segment (*m* lookup tables)

Example scenario:

- Image as a 512-D vector of floats \rightarrow 512 · 4 = 2,048 bytes
- $m = 32 \rightarrow 32$ segments (codebooks)
- $B = 8 \rightarrow 16$ -D sub-vectors quantized to $2^8 = 256$ codewords
- Each image then as (32 · 8)-bit code (32 bytes) → 64x compression

- Search phase:
 - 1) Precompute the distances between each query sub-vector and each centroid in the corresponding codebook $\rightarrow m \cdot 2^B$ distances in total
 - Distances kept within a query distance matrix QDM of size $m \times 2^B$
 - E.g., $32 \cdot 256 = 8,192$ distances in the previous example scenario, which is cheap to compute

• Search phase:

- 2) Identify the nearest cluster(s) in the same way as in the VQ approach
- 3) Approximate the distance of each candidate vector in the nearest cluster(s):
 - For *i*-th segment and associated codeword c_i of the candidate vector, approximate the subdistance between *i*-th query segment and *i*-th candidate segment by the precomputed subdistance QDM[*i*, c_i]
 - Sum the sub-distances for all the segments: $\sum_{i=0}^{m-1} QDM[i, c_i]$

- Candidate 2 8 9 15 : $\sum_{i=0}^{3} QDM[i, c_i] = 0.2 + 0.1 + 0.2 + 0.2 = 0.7$
- Candidate **2 8 12 15** : 0.2 + 0.1 + 0.7 + 0.2 = 1.2
- Candidate 1 8 9 16 : 0.4 + 0.1 + 0.2 + 0.1 = 0.8

• Summary:

- For distance approximations, the candidate vectors are not accessed
 - Accessing candidate vectors can be bottleneck in VQ, especially when vectors are stored within secondary storage
 - ANN search carried out efficiently in high dimensional vector spaces even when a database has billions of vectors
- Approximated distances need not be perfect

Jan Sedmidubský | PV056 Machine Learning and Data Mining

Similarity search using FAISS

- FAISS Facebook AI Similarity Search
- Library developed by Facebook AI Research for efficient similarity search and clustering of dense vectors
- Useful for large-scale similarity search problems, which are common in various machine learning and information retrieval tasks
- Designed to work on either the GPU or CPU and provides significant performance improvements compared to other nearest neighbor search algorithms
- One of the best implementation of the Product Quantization approach to similarity search
- Implemented in C++ with Python bindings

FAISS

- Several techniques to achieve efficient similarity search:
 - Quantization compresses the embeddings which significantly reduces memory usage and accelerates distance computations
 - Supports Product Quantization (PQ)
 - Indexing FAISS provides multiple index types for different use cases and trade-offs between search speed and search quality
 - Flat index brute-force index that computes exact distances between query vectors and indexed vectors
 - IVF (Inverted File) index partitioned index that divides the vector space into Voronoi cells
 - HNSW (Hierarchical Navigable Small World) graph-based index that builds a hierarchical graph structure, enabling efficient nearest neighbor search with logarithmic complexity

FAISS

- Example of IVF (Inverted File) index:
 - nprobes parameter specifies the number of nearest cluster(s) to be visited
 - Clusters ranked by the distance between the cluster centroid and query vector

FAISS

- Useful references
 - Tutorials:
 - <u>https://engineering.fb.com/2017/03/29/data-infrastructure/faiss-a-library-for-efficient-similarity-search/</u>
 - <u>https://github.com/facebookresearch/faiss/wiki/</u>
 - Research papers:
 - Johnson et al.: Billion-scale similarity search with GPUs, 2017: <u>https://arxiv.org/abs/1702.08734</u>
 - Douze et al.: The FAISS library, 2024: https://arxiv.org/abs/2401.08281

Sources

- Avi Kak and Charles Bouman: Metric Learning with Deep Neural Networks. Purdue University, 2024
- <u>https://www.pinecone.io/learn/series/faiss/faiss-tutorial/</u>