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Outline
• Basics of clustering
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• k-means

• Agglomerative clustering

• DBSCAN

• Chameleon

• Jarvis-Patrick clustering

• SNN Density-based Clustering
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What is clustering?
• Cluster analysis (clustering, segmentation, quantization, …)

• Given a set of data objects, partition them into a set of groups (i.e., clusters) 
such that the objects are:
• Similar (or related) to one another within the same group (i.e., cluster) and

• Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)

• Unsupervised learning (i.e., no predefined classes), in contrast to classification

• Clustering:
• Core task of data mining

• Typical ways to use/apply cluster analysis:
• As a stand-alone tool to get insight into data distribution 

• As a preprocessing step for other algorithms
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Applications
• Generating a compact summary of data for classification, pattern 

discovery, data indexing, outlier detection, etc.
• Outliers are objects “far away” from any cluster

• Data compression and reduction
• Image processing – vector quantization

• Analysis of multimedia, biological, or social-network data
• Clustering images or video/audio clips, gene/protein sequences, etc.

• Collaborative filtering, recommendation systems, customer segment.
• Find like-minded users or similar products

• Dynamic trend detection
• Clustering stream data and detecting trends and patterns
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The notion of a cluster is ambiguous

• The usefulness of a clustering depends on the goal of the analysis
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Cluster types
• Well-separated – any object in a cluster is closer (more similar) to 

every other object in the cluster than to any object outside the cluster

• Prototype-based – an object in a cluster is closer to the center of the 
cluster than to the center of any other cluster  
• Center – often a centroid (the average of all the objects in the cluster), or a 

medoid (the most “representative” object of a cluster)
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Cluster types
• Contiguous cluster (nearest neighbor) – any object in a cluster is 

closer to one or more other objects in the cluster than to any object in 
a different cluster

• Density-based – a cluster is a dense region of objects, which is 
separated by low-density regions, from other regions of high density
• Used when clusters are irregular or intertwined, and in the presence of noise 

and outliers
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Clustering methodologies
• Distance-based methods

• Partitioning algorithms – k-means, BFR

• Hierarchical algorithms – agglomerative vs. divisive methods

• Density-based methods
• Data space is explored at a high-level of granularity and then post-processed to 

put together dense regions into an arbitrary shape

• Graph-based methods
• Construct a graph of datapoints and form clusters based on edge connectivity

• Grid-based methods
• Divide data space into a grid-like structure and perform clustering on grid cells

• Probabilistic methods
• Modeling data from a generative process (e.g., mixture of Gaussians) and 

estimating the generative probability of the underlying data points
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Similarity/dissimilarity
• A proximity (similarity, or dissimilarity) measure

• Numerical measure of how similar/different two datapoints are
• Dissimilarity ~ inverse of similarity

• Usually quantified by a distance function → dissimilarity
• Minimum dissimilarity is 0 (i.e., completely similar)

• Range [0, 1] or [0, ∞), i.e., similarity decreases with an increasing distance

• There are many similarity measures for different applications
• Commonly used, e.g., Euclidean, Cosine, or Manhattan (city block) distances

• Selection depends on data characteristics and a target application
• Data characteristics – e.g., dimensionality (sparseness), distribution
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Properties
• Considerations:

• Partitioning criteria – single level vs. hierarchical partitioning (e.g., grouping 
topical terms)

• Separation of clusters – exclusive (e.g., one customer belongs to only one 
region) vs. non-exclusive (e.g., one document may belong to more classes)

• Similarity of clusters – distance-based (e.g., Euclidean distance) vs. 
connectivity-based (e.g., density or contiguity)

• Requirements/challenges of clustering algorithms:
• Abilities to deal with arbitrary shapes of clusters or noisy data

• Scalability – in terms of dataset size, data dimensionality, different data types 
(e.g., numerical, multimedia, text), incremental/stream clustering, or sensitivity 
to input order of data objects

• Constraint-based clustering – in terms of user-given preferences or constraints, 
domain knowledge, user queries 
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Distance-based methods
• Representatives – k-means, BFR (Bradley-Fayyad-Reina), CURE

• Details in other courses, e.g., PA212

• k-means:
• Number of clusters, k, must be specified in advance

• Each cluster is associated with a centroid (center object) – centroid/medoid

• Each object is assigned to the cluster with the closest centroid

• Convergence criterion – minimizing the SSE (Sum of Squared Error) function 

• 𝑆𝑆𝐸 = σ𝑖=1
𝑘 σ𝑥∈𝐶𝑖

𝑑𝑖𝑠𝑡2(𝑚𝑖 , 𝑥)

• 𝑥 is a data point in cluster 𝐶𝑖 and 𝑚𝑖 is the centroid (mean) for cluster 𝐶𝑖

1) select k points as initial centroids

2) repeat

3) form k clusters by assigning each point to its closest centroid

4) re-compute the centroids (i.e., mean point) of each cluster

5) until convergence criterion is satisfied
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k-means example

Jan Sedmidubský | PV056 Machine Learning and Data Mining 12

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 1

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 2

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 3

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 5

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

0

0.5

1

1.5

2

2.5

3

x

y

Iteration 6



k-means
• Complexity:

• 𝑂(𝑡 ∙ 𝑘 ∙ 𝑛), where 𝑛 is # of objects, 𝑘 is # of clusters, and 𝑡 is # of iterations

• Typically: 𝑡, 𝑘 ≪ 𝑛→ a quite efficient method

• Limitations:
• Need to specify 𝑘 in advance

• Initialization can be important to find high-quality clusters

• Problems when clusters are of different sizes or densities

• Not suitable to discover clusters with non-convex (non-globular) shapes

• Sensitive to noisy data and outliers
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k-means – limitations
• Different sizes

• Different density
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k-means – limitations
• Non-globular shapes
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Hierarchical clustering
• Produces a set of nested clusters organized as a hierarchical tree

• Agglomerative approach:  
• Start with the points as individual clusters

• At each step, merge the closest pair of clusters until only one cluster (or k clusters) left

• Divisive approach:
• Start with one, all-inclusive cluster 

• At each step, split a cluster until each cluster contains a single point (or there are k clusters)

• Can be visualized as a dendrogram
• A tree like diagram that records the sequences of merges/splits
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Hierarchical clustering
• Do not have to assume any particular number of clusters

• Any desired number of clusters can be obtained by “cutting” the dendrogram at 
the proper level

• Key operation is the computation of the proximity of two clusters
• Different approaches to define the distance between clusters

• MIN

• MAX

• Group average

• Distance between centroids

Jan Sedmidubský | PV056 Machine Learning and Data Mining 17



Hierarchical clustering
• Proximity of clusters based on:

• MIN

• MAX

• Group average

• Distance between centroids

• MIN:
• Strengths – can handle non-elliptical shapes

• Limitations – sensitive to noise
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Hierarchical clustering
• Proximity of clusters based on:

• MIN

• MAX

• Group average

• Distance between centroids

• MAX:
• Strengths – less susceptible to noise/outliers

• Limitations – tends to break large clusters + biased towards globular clusters
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Hierarchical clustering
• Proximity of clusters based on:

• MIN

• MAX

• Group average

• Distance between centroids

• Group average:
• Strengths – less susceptible to noise/outliers

• Limitations – biased towards globular clusters
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Hierarchical clustering
• Proximity of clusters based on:

• MIN

• MAX

• Group average

• Distance between centroids

• Distance between centroids:
• Strengths – very fast, useful for compact, spherical clusters

• Limitations – not robust to elongated or non-spherical clusters
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Hierarchical clustering – MIN
• MIN:

• Strengths – can handle non-elliptical shapes

• Limitations – sensitive to noise

Jan Sedmidubský | PV056 Machine Learning and Data Mining 22

Original points 6 clusters

Original points 2 clusters 3 clusters



• MAX:
• Strengths – less susceptible to noise

• Limitations – tends to break large clusters + biased towards globular clusters

Hierarchical clustering – MAX
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Hierarchical clustering – Group average
• Group average:

• Strengths – less susceptible to noise/outliers

• Limitations – biased towards globular clusters

• Comparison:
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Hierarchical clustering
• Complexity:

• Space: 𝑂(𝑛2) ~ proximity matrix, where 𝑛 is # of objects

• Time: 𝑂(𝑛3) in many cases
• 𝑛 steps and at each step the proximity matrix (𝑛2) must be updated

• Can be reduced to 𝑂(𝑛2 ∙ log(𝑛)) with some cleverness

• Limitations:
• Once a decision is made to combine two clusters, it cannot be undone

• No global objective function is directly minimized

• Different schemes have problems with one or more of the following:
• Sensitivity to noise 

• Difficulty handling clusters of different sizes and non-globular shapes

• Breaking large clusters
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Density based clustering
• Clusters are regions of high density that are separated from one 

another by regions of low density
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DBSCAN
• DBSCAN – a density-based algorithm

• Density – number of points within a specified radius (Eps)

• A point is a core point if it has at least a specified number of points (MinPts) 
within distance Eps
• These are the points inside a cluster (counting the point itself)

• A border point is not a core point, but is in the neighborhood of a core point

• A noise point is any point that is not a core point or a border point
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DBSCAN
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DBSCAN
• Algorithm – form clusters using core points, and assign border points 

to one of its neighboring clusters
1) label all points as core, border, or noise points

2) put an edge between all core points within a distance Eps of each other

3) make each group of connected core points into a separate cluster

4) assign each border point to one of the clusters of its associated core points

5) noise points become outliers
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DBSCAN_fig44_361040063
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DBSCAN
• Strengths:

• Can handle clusters of different shapes and sizes

• Resistant to noise
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DBSCAN
• Does not work well for

• Varying densities

• High-dimensional data
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DBSCAN
• Determining MinPts and Eps:

• MinPts – depends on data complexity (e.g., dimensionality, noise, dataset size)
• Usually set between 4–20

• Eps – depends on data density
• Points in a cluster should have their k-th nearest neighbor at close distance (k = MinPts)

• Noise points should have the k-th nearest neighbor at farther distance

• So, plot sorted distances of every point to its k-th nearest neighbor
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DBSCAN versus k-means
• k-means has a prototype-based notion of a cluster; DBSCAN uses a 

density-based notion

• k-means can find clusters that are not well-separated; DBSCAN will 
merge clusters that touch

• DBSCAN handles clusters of different shapes and sizes; k-means 
prefers globular clusters

• DBSCAN can handle noise and outliers; k-means performs poorly in 
the presence of outliers

• k-means can only be applied to data for which a centroid is 
meaningful; DBSCAN requires a meaningful definition of density

• DBSCAN makes no distribution assumptions; k-means is really 
assuming spherical Gaussian distributions
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DBSCAN versus k-means
• DBSCAN works poorly on high-dimensional data; k-means works well 

for some types of high-dimensional data

• Because of random initialization, the clusters found by k-means can 
vary from one run to another; DBSCAN always produces the same
clusters

• DBSCAN automatically determines the number of clusters; k-means 
does not

• k-means has only one parameter; DBSCAN has two parameters

Jan Sedmidubský | PV056 Machine Learning and Data Mining 34



Graph-based clustering
• Graph-based clustering requires to construct a proximity graph

• Each datapoint is a node

• Each edge between nodes has a weight which is the proximity between points
• Weight between points 𝑝 and 𝑞 based on the inverse of the distance (i.e., 1/𝑑𝑖𝑠𝑡(𝑝, 𝑞))

• Graph-based clustering:
• Advantages (compared to DBSCAN) – can handle varying density of clusters 

and are less sensitive to parameter settings

• Disadvantages – limited scalability – graph construction can be very expensive
• “Sparsification” can drastically improve the scalability by reducing the number of edges in a 

graph while preserving its essential structure
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Chameleon algorithm
• Sparsification of the proximity graph

• A k-nearest neighbors (k-NN) graph:
• Capturing the relationship between a point and its k-nearest neighbors

• Each datapoint is a node

• Each node is connected to its k most similar neighbors forming k edges per node

• A symmetric k-NN graph:
• There is an edge between two nodes if they are among each other’s k-nearest neighbors

• Substantially reduces the number of edges compared to a k-NN graph → preferred variant

• k-NN graphs reduce the number of edges from 𝑂(𝑛2) to 𝑂 𝑛

• Advantages
• Drastically reduces computational cost (99% of entries in the proximity matrix can be elimin.)

• Preserves cluster structure by maintaining strong intra-cluster connectivity while breaking the 
connections to less similar points

• This reduces the impact of noise and outliers and sharpens the distinction between clusters
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Chameleon algorithm
• Preprocessing step:

• Construct a (symmetric) k-NN graph
• To capture the relationship between a point and its k-nearest neighbors (i.e., compute and 

sparsify the proximity matrix)

• Phase 1:
• Partition the sparse k-NN graph into small sub-clusters of well-connected 

vertices (using some multilevel graph partitioning algorithm)
• Each such sub-cluster should contain mostly points from one “true” cluster, i.e., be a sub-

cluster of a “real” cluster

• Phase 2:
• Use hierarchical agglomerative clustering to dynamically merge sub-clusters

• Combine sub-clusters if they maintain strong connectivity and similar densities

• Quantified by two properties: Relative Interconnectivity (𝑅𝐼) and Relative Closeness (𝑅𝐶)

• Select the pair of clusters 𝐶𝑖 and 𝐶𝑗 that maximizes 𝑅𝐼(𝐶𝑖 , 𝐶𝑗) ∙ 𝑅𝐶(𝐶𝑖 , 𝐶𝑗)
𝛼, where 𝛼 is a user-

defined parameter balancing the importance between 𝑅𝐼 and 𝑅𝐶
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Chameleon – merging properties
• Relative Interconnectivity – two clusters are combined if the points in 

the resulting cluster are almost as strongly connected as points in 
each of the original clusters
• Quantified by absolute interconnectivity of two clusters normalized by the 

internal connectivity of the clusters:

𝑅𝐼 =
𝐸𝐶(𝐶𝑖 , 𝐶𝑗)

1
2
(𝐸𝐶 𝐶𝑖 + 𝐸𝐶(𝐶𝑗))

• 𝐸𝐶(𝐶𝑖 , 𝐶𝑗) – sum of edge weights (of k-NN graph) that interconnect clusters 𝐶𝑖 and 𝐶𝑗
• 𝐸𝐶(𝐶𝑖) – minimum sum of the cut edges if we bisect cluster 𝐶𝑖 (i.e., when the graph is divided 

into two roughly equal parts)
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Chameleon – merging properties
• Relative Closeness – two clusters are combined only if the points in 

the resulting cluster are almost as close to each other as in each of 
the original clusters
• Quantified by absolute closeness of two clusters normalized by the internal 

closeness of the clusters:

𝑅𝐶 =
ҧ𝑆𝐸𝐶 (𝐶𝑖 , 𝐶𝑗)

|𝐶𝑖|
𝐶𝑖 + |𝐶𝑗|

ҧ𝑆𝐸𝐶 𝐶𝑖 +
|𝐶𝑗|

𝐶𝑖 + |𝐶𝑗|
ҧ𝑆𝐸𝐶(𝐶𝑗))

• ҧ𝑆𝐸𝐶(𝐶𝑖 , 𝐶𝑗) – average weight of the edges (of k-NN graph) that connect clusters 𝐶𝑖 and 𝐶𝑗
• ҧ𝑆𝐸𝐶(𝐶𝑖) – average weight of the edges if we bisect cluster 𝐶𝑖
• |𝐶𝑖| – size of cluster 𝐶𝑖

Jan Sedmidubský | PV056 Machine Learning and Data Mining 39



Experimental comparison
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Experimental comparison
• Comparison to CURE (Clustering Using REpresentatives) – PA212

• Compared to k-means, CURE is more robust to outliers and able to identify 
clusters having non-spherical shapes and size variances
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Experimental comparison
• Comparison to CURE
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Experimental comparison
• Comparison to CURE
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Experimental comparison
• Comparison to CURE
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Chameleon – properties
• Existing merging schemes in hierarchical clustering algorithms are 

static in nature, e.g.:
• MIN – merges two clusters based on their closeness

• Group average – merges two clusters based on their average connectivity

• Chameleon uses a dynamic model that adapts to the characteristics of 
the data by finding natural clusters (based on 𝑅𝐼 and 𝑅𝐶 properties)
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Shared nearest neighbor graph
• Shared Nearest Neighbor (SNN) graph

• Extension of the k-NN graph

• Given that the vertices are connected, the weight of an edge is the number of 
shared nearest neighbors between vertices
• Idea – if two points are similar to many of the same points, then they are likely similar to one 

another, even if a direct measurement of similarity does not indicate this
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SNN graph illustration
• Sparse graph – link weights are similarities between neighboring 

points

• SNN graph – link weights are numbers of shared nearest neighbors
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SNN graph illustration

• Intra-cluster distances

• Inter-cluster distances
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• Steps:
1) Construct the SNN graph

2) SNN-based clustering
• Initially, each datapoint is its own cluster

• A pair of points 𝑝 and 𝑞 is put in the same cluster if

• 𝑝 and 𝑞 share at least T neighbors (user-defined threshold T), i.e., 𝑆𝑁𝑁𝑠𝑖𝑚𝑘(𝑝, 𝑞) ≥ 𝑇, and

• 𝑝 and 𝑞 are in each others k-nearest neighbor list

• E.g., we might choose a nearest neighbor list of size 𝑘 = 20 and put points in the same cluster if 
they share more than 𝑇 = 10 near neighbors

• If a point does not share enough neighbors with any other point, it is considered an outlier

Clusters   and   merged for 𝑘 = 8 but not for 𝑘 = 6

Jarvis-Patrick algorithm
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Experimental evaluation
• When Jarvis-Patrick works reasonably well
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Experimental evaluation
• When Jarvis-Patrick does not work well

• Jarvis-Patrick clustering is too brittle
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SNN Density-based Clustering
• SNN Density-based Clustering algorithm (SNN-DBSCAN)

• Combines:
• SNN graph (similarity definition based on the number of shared nearest neighbors)

• Density based clustering (DBSCAN-like approach)

• Advantages:
• Improve clustering quality of DBSCAN, especially for arbitrarily shaped clusters and varying 

densities
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SNN Density-based Clustering
• Steps:

1) Construct the SNN graph

2) Compute the SNN density 𝑆𝑁𝑁𝑑𝑒𝑛𝑠𝑘(𝑝, 𝑇) of each point 𝑝
• 𝑆𝑁𝑁𝑑𝑒𝑛𝑠𝑘 𝑝, 𝑇 = | 𝑞 | 𝑆𝑁𝑁𝑠𝑖𝑚𝑘(𝑝, 𝑞) ≥ 𝑇 | ~ # of neighbors with ≥ 𝑇 shared neighbors

3) Find the core points
• A core point is a high-density point 𝑝 such that 𝑆𝑁𝑁𝑑𝑒𝑛𝑠𝑘 𝑝, 𝑇 ≥ 𝑀𝑖𝑛𝑃𝑡𝑠

4) Form clusters from the core points
• Two core points 𝑝 and 𝑞 are connected if 𝑆𝑁𝑁𝑠𝑖𝑚𝑘(𝑝, 𝑞) ≥ 𝑇 (𝑇~𝐸𝑝𝑠)

5) Connect border points to the clusters
• Non-core point 𝑝 is connected to the cluster with core point 𝑞 if 𝑆𝑁𝑁𝑠𝑖𝑚𝑘(𝑝, 𝑞) ≥ 𝑇 (𝑇~𝐸𝑝𝑠)

6) The rest of points (noise points) remain outliers

• Points 2–6 correspond to DBSCAN
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DBSCAN parameters: 𝑀𝑖𝑛𝑃𝑡𝑠 and 𝐸𝑝𝑠



Experimental evaluation
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(a) All points (b) Core points (~high 

SNN density)

(c) Border points 

(~medium SNN density)

(d) Noise points (~low 

SNN density)



Experimental evaluation
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Original points SNN Density-based Clustering



Experimental evaluation
• SNN Density-based Clustering can handle other difficult situations
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SNN Density-based Clustering
• Limitations – complexity is high:

• Time: 𝑂(𝑛2) in the worst case, where 𝑛 is # of objects
• 𝑂(𝑛 ∙ time to find numbers of neighbor within threshold 𝑇~𝐸𝑝𝑠)

• There are more efficient ways to find the nearest neighbors:

• R* Tree or k-d Trees for lower dimensions

• M-Tree, LMI, FAISS for high-dimensional data

• Parameterization is not easy
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Sources
• Introduction to Data Mining, University of Minnesota:

• https://www-users.cse.umn.edu/~kumar001/dmbook/firsted.php

• Machine Learning Bits (Cluster Analysis), University of Dortmund:
• https://dm.cs.tu-dortmund.de/mlbits/cluster-intro/
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