Advanced clustering

Jan Sedmidubský

sedmidubsky@mail.muni.cz

Masaryk University

Jan Sedmidubský | PV056 Machine Learning and Data Mining

Outline

- Basics of clustering
- Clustering algorithms:
 - k-means
 - Agglomerative clustering
 - DBSCAN
 - Chameleon
 - Jarvis-Patrick clustering
 - SNN Density-based Clustering

What is clustering?

- Cluster analysis (clustering, segmentation, quantization, ...)
 - Given a set of data objects, partition them into a set of groups (i.e., clusters) such that the objects are:
 - Similar (or related) to one another within the same group (i.e., cluster) and
 - Dissimilar (or unrelated) to the objects in other groups (i.e., clusters)
 - Unsupervised learning (i.e., no predefined classes), in contrast to classification

- Clustering:
 - Core task of data mining
 - Typical ways to use/apply cluster analysis:
 - As a stand-alone tool to get insight into data distribution
 - As a preprocessing step for other algorithms

Applications

- Generating a compact summary of data for classification, pattern discovery, data indexing, outlier detection, etc.
 - Outliers are objects "far away" from any cluster
- Data compression and reduction
 - Image processing vector quantization
- Analysis of multimedia, biological, or social-network data
 - Clustering images or video/audio clips, gene/protein sequences, etc.
- Collaborative filtering, recommendation systems, customer segment.
 - Find like-minded users or similar products
- Dynamic trend detection
 - Clustering stream data and detecting trends and patterns

Cluster types

 Well-separated – any object in a cluster is closer (more similar) to every other object in the cluster than to any object outside the cluster

- Prototype-based an object in a cluster is closer to the center of the cluster than to the center of any other cluster
 - Center often a centroid (the average of all the objects in the cluster), or a medoid (the most "representative" object of a cluster)

Cluster types

 Contiguous cluster (nearest neighbor) – any object in a cluster is closer to one or more other objects in the cluster than to any object in a different cluster

- Density-based a cluster is a dense region of objects, which is separated by low-density regions, from other regions of high density
 - Used when clusters are irregular or intertwined, and in the presence of noise and outliers

Jan Sedmidubský | PV056 Machine Learning and Data Mining

Properties

- Considerations:
 - Partitioning criteria single level vs. hierarchical partitioning (e.g., grouping topical terms)
 - Separation of clusters exclusive (e.g., one customer belongs to only one region) vs. non-exclusive (e.g., one document may belong to more classes)
 - Similarity measure distance-based (e.g., Euclidean distance) vs. connectivitybased (e.g., density or contiguity)
- Requirements and challenges:
 - Quality abilities to deal with different data types (e.g., numerical, multimedia, text), arbitrary shapes, or noisy data
 - Scalability in terms of dataset size, data dimensionality, incremental/stream clustering, or sensitivity to input order of data objects
 - Constraint-based clustering in terms of user-given preferences or constraints, domain knowledge, user queries

Clustering methodologies

- Distance-based methods
 - Partitioning algorithms k-means, BFR
 - Hierarchical algorithms agglomerative vs. divisive methods
- Density-based and grid-based methods
 - Density-based data space is explored at a high-level of granularity and then post-processed to put together dense regions into an arbitrary shape
 - Grid-based individual data-space regions are formed into a grid-like structure
- Probabilistic and generative models
 - Modeling data from a generative process
 - Assume a specific form of the generative model (e.g., mixture of Gaussians)
 - Model parameters are estimated with the Expectation-Maximization (EM) algorithm (using the available dataset, for a maximum likelihood fit)
 - Then estimate the generative probability of the underlying data points

Quality measure

- Good clustering should produce high quality clusters
 - High intra-class similarity cohesive within clusters
 - Low inter-class similarity distinctive between clusters
- Quality function
 - Measures the "goodness" of a cluster
 - It is hard to define "similar enough" or "good enough" the answer is typically highly subjective
- There are many similarity measures/functions for different applications
 - Overview of measures/functions in course PA128
 - Commonly used, e.g., Euclidean or Manhattan (city block) distances

Similarity/dissimilarity

- Similarity measure or similarity function
 - A real-valued function that quantifies the similarity between two objects
 - Measure how two data objects are alike: The higher value, the more alike
 - Often falls in the range [0,1]: 0: no similarity; 1: completely similar
- Dissimilarity (or distance) measure
 - Numerical measure of how different two data objects are
 - In some sense, the inverse of similarity: The lower, the more alike
 - Minimum dissimilarity is often 0 (i.e., completely similar)
 - Range [0, 1] or $[0, \infty)$, depending on the definition
- Proximity usually refers to either similarity or dissimilarity
- Selection depends on data characteristics and a target application
 - Data characteristics e.g., dimensionality (sparseness), distribution

Distance-based methods

- Representatives k-means, BFR (Bradley-Fayyad-Reina), CURE
 - Details in other courses, e.g., PA212

• k-means:

- Number of clusters, k, must be specified in advance
- Each cluster is associated with a centroid (center object) centroid/medoid
- · Each object is assigned to the cluster with the closest centroid
- Convergence criterion minimizing the SSE (Sum of Squared Error) function
 - $SSE = \sum_{i=1}^{k} \sum_{x \in C_i} dist^2(m_i, x)$
 - x is a data point in cluster C_i and m_i is the centroid (mean) for cluster C_i
- 1) select k points as initial centroids
- 2) repeat
- 3) form k clusters by assigning each point to its closest centroid
- 4) re-compute the centroids (i.e., mean point) of each cluster
- 5) until convergence criterion is satisfied

k-means example

k-means

- Complexity:
 - $O(t \cdot k \cdot n)$, where n is # of objects, k is # of clusters, and t is # of iterations
 - Typically: $t, k \ll n \rightarrow$ a quite efficient method
- Limitations:
 - Need to specify k in advance
 - Initialization can be important to find high-quality clusters
 - Problems when clusters are of different sizes or densities
 - Not suitable to discover clusters with non-convex shapes
 - Sensitive to noisy data and outliers

k-means – limitations

• Different sizes

Different density

k-means – limitations

• Non-globular shapes

- Produces a set of nested clusters organized as a hierarchical tree
 - Agglomerative approach:
 - Start with the points as individual clusters
 - At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
 - Divisive approach:
 - Start with one, all-inclusive cluster
 - At each step, split a cluster until each cluster contains a single point (or there are k clusters)
- Can be visualized as a dendrogram
 - A tree like diagram that records the sequences of merges/splits/

• 6

- Do not have to assume any particular number of clusters
 - Any desired number of clusters can be obtained by "cutting" the dendrogram at the proper level
- Key operation is the computation of the proximity of two clusters
 - Different approaches to define the distance between clusters
 - MIN
 - MAX
 - Group average
 - Distance between centroids

- Proximity of clusters based on:
 - MIN
 - MAX
 - Group average
 - Distance between centroids

• MIN:

- Strengths can handle non-elliptical shapes
- Limitations sensitive to noise

- Proximity of clusters based on:
 - MIN
 - MAX
 - Group average
 - Distance between centroids

• MAX:

- Strengths less susceptible to noise/outliers
- Limitations tends to break large clusters + biased towards globular clusters

- Proximity of clusters based on:
 - MIN
 - MAX
 - Group average
 - Distance between centroids

- Group average:
 - Strengths less susceptible to noise/outliers
 - Limitations biased towards globular clusters

- Proximity of clusters based on:
 - MIN
 - MAX
 - Group average
 - Distance between centroids

- Distance between centroids:
 - Strengths very fast, useful for compact, spherical clusters
 - Limitations not robust to elongated or non-spherical clusters

Hierarchical clustering – MIN

- MIN:
 - Strengths can handle non-elliptical shapes

• Limitations – sensitive to noise

Hierarchical clustering – MAX

- MAX:
 - Strengths less susceptible to noise

• Limitations – tends to break large clusters + biased towards globular clusters

Jan Sedmidubský | PV056 Machine Learning and Data Mining

Hierarchical clustering – Group average

- Group average:
 - Strengths less susceptible to noise/outliers
 - Limitations biased towards globular clusters
- Comparison:

- Complexity:
 - Space: $O(n^2)$ ~ proximity matrix, where *n* is # of objects
 - Time: $O(n^3)$ in many cases
 - n steps and at each step the proximity matrix (n^2) must be updated
 - Can be reduced to $O(n^2 \cdot \log(n))$ with some cleverness
- Limitations:
 - Once a decision is made to combine two clusters, it cannot be undone
 - No global objective function is directly minimized
 - Different schemes have problems with one or more of the following:
 - Sensitivity to noise
 - Difficulty handling clusters of different sizes and non-globular shapes
 - Breaking large clusters

Density based clustering

 Clusters are regions of high density that are separated from one another by regions on low density

- DBSCAN a density-based algorithm
 - Density number of points within a specified radius (Eps)
 - A point is a core point if it has at least a specified number of points (*MinPts*) within distance *Eps*
 - These are the points inside a cluster (counting the point itself)
 - A border point is not a core point, but is in the neighborhood of a core point
 - A noise point is any point that is not a core point or a border point

Original points

Point types: core, border and noise Eps = 10, MinPts = 4

 Algorithm – form clusters using core points, and assign border points to one of its neighboring clusters

- 1) label all points as core, border, or noise points
- 2) put an edge between all core points within a distance Eps of each other
- 3) make each group of connected core points into a separate cluster
- 4) assign each border point to one of the clusters of its associated core points
- 5) noise points become outliers

Source: https://www.researchgate.net/figure/llustration-of-DBSCAN-clustering-algorithm-Source-42_fig2_351565115

Source: https://www.researchgate.net/figure/llustration-de-la-methode-de-clustering-DBSCAN_fig44_361040063

- Strengths:
 - Can handle clusters of different shapes and sizes
 - Resistant to noise

Original points

Clusters (dark blue points indicate noise)

- Does not work well for
 - Varying densities
 - High-dimensional data

Original points

MinPts=4, *Eps*=9.92

MinPts=4, *Eps*=9.75

- Determining *MinPts* and *Eps*:
 - MinPts depends on data complexity (e.g., dimensionality, noise, dataset size)
 - Usually set between 4–20
 - Eps depends on data density
 - Points in a cluster should have their *k*-th nearest neighbor at close distance (*k* = *MinPts*)
 - Noise points should have the *k*-th nearest neighbor at farther distance
 - So, plot sorted distances of every point to its *k*-th nearest neighbor

DBSCAN versus k-means

- k-means has a prototype-based notion of a cluster; DBSCAN uses a density-based notion
- k-means can find clusters that are not well-separated; DBSCAN will merge clusters that touch
- DBSCAN handles clusters of different shapes and sizes; k-means prefers globular clusters
- DBSCAN can handle noise and outliers; k-means performs poorly in the presence of outliers
- k-means can only be applied to data for which a centroid is meaningful; DBSCAN requires a meaningful definition of density
- DBSCAN works poorly on high-dimensional data; k-means works well for some types of high-dimensional data

DBSCAN versus k-means

- DBSCAN makes no distribution assumptions; k-means is really assuming spherical Gaussian distributions
- Because of random initialization, the clusters found by k-means can vary from one run to another; DBSCAN always produces the same clusters
- DBSCAN automatically determines the number of clusters; k-means does not
- k-means has only one parameter; DBSCAN has two parameters

Graph-based clustering

- Graph-based clustering requires to construct a proximity graph
 - Each data point is a node
 - Each edge between nodes has a weight which is the proximity between points
- Graph-based clustering:
 - Advantages (compared to DBSCAN) can handle varying density of clusters and are less sensitive to parameter settings
 - Disadvantages limited scalability graph construction can be very expensive
 - "Sparsification" can drastically improve the scalability by reducing the number of edges in a graph while preserving its essential structure

Chameleon algorithm

- Sparsification of the proximity graph
 - A k-nearest neighbors (k-NN) graph capturing the relationship between a point and its k-nearest neighbors
 - Each data point is a node
 - There is an edge between two nodes if they are among each other's *k*-nearest neighbors
 - This reduces the number of edges from $O(n^2)$ to O(n)
 - Advantages
 - Drastically reduces computational cost (99% of entries in the proximity matrix can be eliminated)
 - Preserves cluster structure by maintaining strong intra-cluster connectivity while breaking the connections to less similar points
 - This reduces the impact of noise and outliers and sharpens the distinction between clusters

Chameleon algorithm

Preprocessing step:

- Construct a k-NN graph to capture the relationship between a point and its knearest neighbors
- Phase 1:
 - Partition the sparse k-NN graph into small sub-clusters of well-connected vertices (using some multilevel graph partitioning algorithm)
 - Each such sub-cluster should contain mostly points from one "true" cluster, i.e., be a subcluster of a "real" cluster

• Phase 2:

- Use hierarchical agglomerative clustering to dynamically merge sub-clusters
 - Combine sub-clusters if they maintain strong connectivity and similar densities
 - Quantified by two properties: Relative Interconnectivity (RI) and Relative Closeness (RC)
 - Select the pair of clusters C_i and C_j that maximizes $RI(C_i, C_j) \cdot RC(C_i, C_j)^{\alpha}$, where α is a userdefined parameter balancing the importance between RI and RC

Chameleon – merging properties

- Relative Interconnectivity two clusters are combined if the points in the resulting cluster are almost as strongly connected as points in each of the original clusters
 - Quantified by absolute interconnectivity of two clusters normalized by the internal connectivity of the clusters:

$$RI = \frac{EC(C_i, C_j)}{\frac{1}{2}(EC(C_i) + EC(C_j))}$$

- $EC(C_i, C_j)$ sum of edge weights (of k-NN graph) that interconnect clusters C_i and C_j
- $EC(C_i)$ minimum sum of the cut edges if we bisect cluster C_i (i.e., when the graph is divided into two roughly equal parts)

Chameleon – merging properties

- Relative Closeness two clusters are combined only if the points in the resulting cluster are almost as close to each other as in each of the original clusters
 - Quantified by absolute closeness of two clusters normalized by the internal closeness of the clusters:

$$RC = \frac{\bar{S}_{EC}(C_i, C_j)}{\frac{|C_i|}{|C_i| + |C_j|} \bar{S}_{EC}(C_i) + \frac{|C_j|}{|C_i| + |C_j|} \bar{S}_{EC}(C_j))}$$

- $\bar{S}_{EC}(C_i, C_j)$ average weight of the edges (of k-NN graph) that connect clusters C_i and C_j
- $\overline{S}_{EC}(C_i)$ average weight of the edges if we bisect cluster C_i
- $|C_i|$ size of cluster C_i

- Comparison to CURE (Clustering Using REpresentatives) PA212
 - Compared to k-means, CURE is more robust to outliers and able to identify clusters having non-spherical shapes and size variances

Chameleon

CURE (10 clusters)

Comparison to CURE

Chameleon

CURE (15 clusters)

Comparison to CURE

Chameleon

CURE (9 clusters)

Jan Sedmidubský | PV056 Machine Learning and Data Mining

Comparison to CURE

Chameleon

CURE (15 clusters)

Chameleon – properties

- Existing merging schemes in hierarchical clustering algorithms are static in nature, e.g.:
 - MIN merges two clusters based on their closeness
 - Group average merges two clusters based on their average connectivity
- Chameleon uses a dynamic model that adapts to the characteristics of the data by finding natural clusters (based on *RI* and *RC* properties)

Shared nearest neighbor graph

- Shared Nearest Neighbor (SNN) graph
 - Given that the vertices are connected, the weight of an edge is the number of shared nearest neighbors between vertices
 - Idea if two points are similar to many of the same points, then they are likely similar to one another, even if a direct measurement of similarity does not indicate this

SNN graph illustration

- Sparse graph link weights are similarities between neighboring points
- SNN graph link weights are numbers of shared nearest neighbors

Sparse graph

SNN graph

Jan Sedmidubský | PV056 Machine Learning and Data Mining

Jarvis-Patrick algorithm

Jan Sedmidubský | PV056 Machine Learning and Data Mining

Jarvis-Patrick algorithm

- Steps:
 - 1) Compute the *k*-NN graph
 - The *k*-nearest neighbors of all points are found (~*k*-NN graph)
 - 2) SNN-based clustering
 - Initially, each data point is its own cluster
 - A pair of points p and q is put in the same cluster if
 - p and q share at least T neighbors (user-defined threshold T), i.e., $SNNsim_k(p,q) \ge T$ and
 - p and q are in each others k-nearest neighbor list
 - E.g., we might choose a nearest neighbor list of size k = 20 and put points in the same cluster if they share more than T = 10 near neighbors
 - If a point does not share enough neighbors with any other point, it is considered an outlier


```
SNNsim_{k}(p,q) = |NN(p,k) \cap NN(q,k)|

SNNsim_{6}(p,q) = 4

SNNsim_{6}(p,q) = 0
```

Clusters • and • merged for k = 8 but not for k = 6

When Jarvis-Patrick works reasonably well

Original points

Jarvis-Patrick clustering

6 shared neighbors out of 20

- When Jarvis-Patrick does not work well
 - Jarvis-Patrick clustering is too brittle

Smallest threshold (*T*) that does not merge clusters

Threshold T-1

- SNN Density-based Clustering algorithm (SNN-DBSCAN)
 - Combines:
 - SNN graph (similarity definition based on the number of shared nearest neighbors)
 - Density based clustering (DBSCAN-like approach)
 - Advantages:
 - Improve clustering quality of DBSCAN, especially for arbitrarily shaped clusters and varying densities

• Steps:

DBSCAN parameters: *MinPts* and *Eps*

- 1) Compute the proximity matrix
 - This corresponds to the proximity graph with data points for nodes and edges whose weights are the similarities between data points
- 2) Sparsify the matrix by keeping only the *k*-most similar neighbors
 - This corresponds to only keeping the *k*-strongest links of the similarity graph
- 3) Construct the SNN graph from the sparsified matrix
 - The Jarvis-Patrick approach can be applied
- 4) Compute the SNN density $SNNdens_k(p,T)$ of each point p
 - $SNNdens_k(p,T) = |\{q \mid SNNsim_k(p,q) \ge T\}| \sim # of neighbors with \ge T shared neighbors$
- 5) Find the core points
 - A core point is a high-density point p such that $SNNdens_k(p,T) \ge MinPts$
- 6) Form clusters from the core points
 - Two core points p and q are connected if $SNNsim_k(p,q) \ge T (T \sim Eps)$

• Steps:

- 7) Connect border points to the clusters
 - Non-core point p is connected to the cluster with core point q if $SNNsim_k(p,q) \ge T$ ($T \sim Eps$)
- 8) The rest of points (noise points) remain outliers
- Points 4–8 correspond to DBSCAN

Jan Sedmidubský | PV056 Machine Learning and Data Mining

Original points

SNN Density-based Clustering

SNN Density-based Clustering can handle other difficult situations

- Limitations complexity is high:
 - Time: $O(n^2)$ in the worst case, where n is # of objects
 - $O(n \cdot \text{time to find numbers of neighbor within threshold } T \sim Eps)$
 - There are more efficient ways to find the nearest neighbors:
 - R* Tree or k-d Trees for lower dimensions
 - M-Tree, LMI, FAISS for high-dimensional data
- Parameterization is not easy

Sources

- Introduction to Data Mining, University of Minnesota:
 - https://www-users.cse.umn.edu/~kumar001/dmbook/firsted.php
- Machine Learning Bits (Cluster Analysis), University of Dortmund:
 - <u>https://dm.cs.tu-dortmund.de/mlbits/cluster-intro/</u>