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Data science and anomaly detection

« Machine learning techniques — four main categories:
Clustering

Classification
Frequent pattern mining and

« Anomaly detection

“Unlike the first three main tasks, which aim to find patterns that characterize

the majority of the data, the fourth task focuses on identifying patterns that
represent only the minority data."
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Anomaly detection

 “An outlier is an observation which deviates so much from the other
observations as to arouse suspicions that it was generated by a
different mechanism” [Hawkins 1980] v
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I Ny
« Quitlier factor
« = dissimilarity with other instances

* Two needs for outlier detection (OD):
1) Detect, Remove & Run again Oy
2) Detect, Analyze
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Applications of anomaly detection

 Detecting measurement errors

« Data derived from sensors may contain measurement errors. Removing such
errors can be important in other data mining and data analysis tasks

Fraud detection

« Purchasing behavior of a credit card owner usually changes when the card is
stolen

Education: detection of unexpected solutions
* E.g., constructive tasks in logic

Intrusion detection
 Attacks to a network, or to a blog

Plagiarism detection
« A part of text has been written by somebody else
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Applications of anomaly detection

* Language “irregularities™ PT. Ser casado, estar morte

We'll begin with a box, and the plural is boxes; but the plural of ox became oxen not oxes.
One fowl is a goose, but two are called geese, yet the plural of moose should never be meese.
You may find a lone mouse or a nest full of mice; yet the plural of house is houses, not hice.

If the plural of man is always called men, why shouldn't the plural of pan be called pen?

If | spoke of my foot and show you my feet, and | give you a boot, would a pair be called beet?
If one is a tooth and a whole set are teeth, why shouldn’t the plural of booth be called beeth?
We speak of a brother and also of brethren, but though we say mother, we never say methren.

Then the masculine pronouns are he, his and him, but imagine the feminine, she, shis and shim.
* Medicine

« Unusual symptoms/test results may indicate potential health problems

 Whether a particular test result is abnormal may depend on other
characteristics of the patients (e.g., gender, age, ...)
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Anomaly detection and Novelty detection

 What is the difference between novelty detection and anomaly
detection?

 Anomaly detection encompasses two broad practices: outlier
detection and novelty detection

« Qutliers are abnormal or extreme data points that exist only in training
data

* |n contrast, novelties are new or previously unseen instances
compared to the original (training) data
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Types of outliers

* Point outliers
« Cases that either individually or in small groups are very different from the
others
» Contextual outliers
« Cases that can only be regarded as outliers when taking the context where they
occur into account
* Collective outliers

« Cases that individually cannot be considered strange but together with other
associated cases are clearly outliers — \
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Contextual outliers

* |f a data instance is anomalous in a specific context, but not otherwise

Monthly Temp
A

 Solution: find contextual features

* Example: temperature time-series w

1
| |

|
Mar Jun Sept Dec Mar Jun Sept Dec Mar Jun Sept Dec

* |s the temperature 28°C outlier? Time
 If we are in Brno in summer NO
 If we are in Brno in winter YES
— it depends on the location and time — CONTEXT

* Any other solution?

fo-
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Types of anomaly detection methods

* Supervised methods
 Building a predictive model for normal vs. anomaly classes

e Semi-supervised methods
« Training data has labeled instances only for the normal class
« Example: accidents in nuclear power stations

* Unsupervised methods
* No labels, most widely used
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Anomaly detection methods

o Statistical methods

Proximity-based methods

* An object is an outlier if the proximity of the object to its neighbors significantly
deviates from the proximity of most of the other objects to their neighbors in the
same data set

Distance-based detection
« Radius r, k-nearest neighbors

Density-based detection
« Relative density of object counted from density of its neighbors

Clustering-based detection

* Normal data objects belong to large and dense clusters, whereas outliers
belong to small or sparse clusters, or do not belong to any clusters
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High-dimensional outlier detection

« ABOD - angle-based outlier degree

* Object o Is an outlier if most other objects are located in similar
directions

* Object o is no outlier If many other objects are located in varying
directions
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Local and global anomalies/methods

* A global anomaly

* |s an object which has a significantly large distance to its k-th nearest neighbor
(usually greater than a global threshold) whereas

« = can be used for sorting anomalies w.r.t. the outlier factor

« Example: k-NN

* Alocal anomaly

e Has a distance to its k-th neighbor that is large relatively to the average
distance of its neighbors to their own k-th nearest neighbors

« Example: LOF
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Local Outlier Factor (LOF)

* Only one parameter, k, a number of neighbors

reach—dist (A, B)=max(d|( B, A), k— distance| B)}

|
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Local Outlier Factor (LOF)

* dist; (o) — k-distance of an object o — distance from o to its k-th
nearest neighbor

* N, (o) — k-distance neighborhood of o — set of k nearest neighbors of o

* reach—dist, (o,p) = max{dist,(p), dist(o,p)} — reachability-distance of
an object o with respect to another object p

* The local reachabllity-distance Is the inverse of the average
reachabillity-distance of its k-neighborhood

* LOF is the average of the ratio between the local reachability-distance
of o and those of its k-nearest neighbors
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Example of Scikit-learn

 Black — border between inliers and
outliers

* 15% samples generated as random
uniform noise

* 15% Is also a parameter of one class-
SVM and the contamination for other
algorithms
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Deep learning and anomaly detection

e Autoencoders

« Two multilayered perceptrons (MLP) — encoder X - Z + decoder Z - X
« Reconstruction loss = outlier factor

 Variational autoencoders
* Model conditional probabilities Z|X and X|Z, assuming Gaussian distribution

* Generative adversarial networks
* Two adversaries (MLP) — generator + discriminator

« Generator creates samples that resemble the real data, while the discriminator
IS trying to recognize the fake samples from the real ones
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Which OD algorithm is better?

* Hyperparameter settings can be a problem
- [Skvara et al. Are generative deep models for novelty detection truly better? 2018]

kNN IForest AE VAE GAN {fmGAN
test auc | 3.94 5.63 3.47  2.07  3.90 1.99
train auc | 3.13 4.61 3.63  2.834 4.46 2.33
top 5% 2.57 4.07 3.24 273 4.90 3.49
top 1% 2.14 3.53 3.13 293 497 4.30
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Class-based outliers

Class-based outliers. Why do we need a new concept?
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Class-based outliers

« Example: e-shop planning marketing campaign to increase income

 Which clients to be sent with a new offer?
« Monitoring two groups of clients:

« Group PLUS: buying products more or less often

« Group MINUS: browsing list of offers/products more or less often but (almost)
have not bought anything so far

 \WWhich clients to be sent with a new offer?
* Other examples?
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ROBUST-C4.5

* C4.5 Incorporates a pruning scheme that partially addresses the
outlier removal problem

« ROBUST-C4.5 (John 1995)
« Extending the pruning method to fully remove the effect of outliers

HDBUSTC45(TraiﬂiﬂgData)
repeat {
T <= C455ui1dTree(TraiﬂiﬂgData)
T <- C45PruneTree(T)
foreach record in TrainingData
1f T misclassifies Record then
remove Record from TrainingData
} until T correctly classifies all
Records in TrailningData

* This results in a smaller tree without decrease of accuracy (average
and st. dev. on 21 datasets)
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Class-based outlier detection

e Sometimes called “semantic outlier”
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(a) Multi-class Anomaly Detection
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Multi-class outlier detection

 [Han, Data Mining. Principle and Techniques, 3rd edition]

* Learn a model for each normal class
* |f the data point does not fit any of the model, then it is declared an outlier

« Advantage — easy to use
» Disadvantage — some outliers cannot be detected

Cluster
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Semantic outliers (He et al. 2004)

» Solve the problem
* Cluster and then compute

* The probability of the class label of the example with respect to other
members of the cluster

* The similarity between the example and other examples in the class
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How to compute class-based outlier factor
* [He et al., 2004]

« COF = OF w.r.t. own class (+) OF w.r.t. the other classes

* Pros & Cons
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Semantic outliers (cont.)
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CODB (Class Outlier Distance-Based)

» [Hewahi and Saad, 2007]

« Combination of distance-based and density-based approach w.r.t.
class attribute
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CODB

 COF(T) = similarityToKNearestNeighbors +

a - 1/distanceFromOtherElementsOfTheClass +
p - distanceFromTheNearestNeighbors

* COF(T) =k -PCL(T,k) + a-1/Dev(T) + B - dist, (T)
 PCL(T,K) — the probability of the class label of T w.r.t. the k nearest neighbors

* Dev(T) — the sum of distances from all other elements from the same class
 dist, (T) — the distance between T and its k nearest neighbor
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RF-OEX: COD with Random Forests

 Random Forests is an ensemble classification and regression
approach

 Random Forests
« Consists of many classification trees

« 1/3 of all samples are left out — OOB (out of bag) data — for classification error

« Each tree is constructed by a different bootstrap sample from the original data
and with different subset of attributes
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Random forest (Breiman 2000)
* Bootstrapping

« Random tree
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Class QOutlier Detection — Random Forests

» After each tree is built, all of the data are run down the tree, and
proximities are computed for each pair of cases:

If two cases occupy the same terminal node, their proximity Is
Increased by one

At the end of the run, the proximities are normalized by dividing by the
number of trees

Define the average proximity from case n in class j to the rest of the
training data class j as:

P(n) = z prox?(n, k)
cl(k)=j
The raw outlier measure for case n is defined as: nsample/P(n)
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Proximity matrix

Example 1 | Example 2 | Example 3 | Example 4 | Example 5
Example 1 0 1 1 2
Example 2 0 0 1 1
Example 3 1 0 4 3
Example 4 1 1 4 3
Example 5 2 1 3 3
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Class QOutlier Factor

* Qutlier factor
= sum of three different measures of proximity or outlierness

Proximity to the members of the same class

_|_
Misclassification — proximity to the members of other classes and

+
Ambiguity measure — a percentage of ambiguous classification
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Applications

« ZOO
» E-shop: clients vs. potential clients

Educational data mining:
 Students with standard/non-standard study interval
* Intro to logic: finding anomalous solutions

* IMDDb

Czech Parliament
Data pre-processing
... and more?
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Teaching logic: finding anom. solutions

» Task: Build a resolution proof, 400 students, at least 3 task to solve
Automated evaluation: error detection

Two classes: CORRECT, INCORRECT

If an error appeared, the solution is classified as incorrect

Find solutions that was classified as CORRECT and not, and opposite

We cannot use a common outlier detection methods because data are
labeled as correct and incorrect solutions

Class outlier detection can help
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Finding anom. solutions

 Search/discover students’ solutions which are unusual

* We need data in attribute-value representation
* Frequent pattern mining, frequent subgraphs

* One attribute for each higher-level generalized pattern; values are true
(occurrence of the pattern) and false (non-occurrence of the pattern)

 Class: occurrence or non-occurrence of the error of resolving on two
literals at the same time (we call it E3 error)

* Novel “solutions” found, not recognized with the tool used
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IMDDb: Funny/unusual reviews
Find Movies, TV shows, Celebrities and more.. -ﬂ MO0~ | Hep f W

Movies, TV elebs, Events MNews &

C :
y o - : * . Watcnlist - in wi bool
& Showtimes & Photos Community o L oD

IMOE = The Licn King II: Simba's Pride [1598) (V) * Reviews & Ratings - IMDb

MIREEE FERELRR FUITIOH
%

Reviews & Ratings for

The Lion King II: Simba's Pride () ioezmosros

Write review

Filter:| Best v| Hide Spoilers: [

Page 1 of 16: [1] [2] [3] [4] [3] [6] [7] [B] (9] (10 [11] »
Own the rights? Index 160 reviews in total

Buy it at Amazon

41 put of B8 people found the fallowing review useful:

Why is this Movie Given So Much Crap?
More at IMDb Pro
Author: apeclaw2011 from United States

Discuzs in 7 Octobar 2008

Boards
| don't understand why this movie is regarded to as trash. Of course it is not as good as the first movie but it comes pretty stinkin close! The
Add to Watchist |  animaion is actually equal too the quality of the original movie. | think that it is the mast perfect Disney sequel ever! It is a very interesting story
that shows Simba as a father It is cool because you get to see Simba has now become basically, like his father. Every time | see this movie, |
can fesl that Simba has the same sense of power that Mufasa had. It has a fun and sweet story line and a great ending. When this movie was
Quickiinks being made, the goal was to create a sequel to a movie that everyone loves so that they could spend more time with the characters. | think
prmmmmm - (despite what everyone say's) they creatad an awesome, spectacular Disnzy film!

Update Data

IEViEWS v
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Finding anom. solutions

« Search/discover reviews that do not correspond to positive or
negative star evaluation

« Large Movie Review Dataset

« Each review represented as a list of word appearance
* Only 68 most frequent words in the dataset used

» Class negative *... ****
* Class positive ******* ***
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Finding anom. solutions

Branca de Neve (2000)
User Reviews

2
'@nm a . . .
: 9'6_" € Review this title

'FIL.'H

9 Reviews
Hide Spoilers Filter by Rating: Show All j Sort by: Helpfulness j ¢

YW 6/10

one of the most interesting movies of the past couple of years, but

perhaps for all the wrong reasons.
Z_cm 1 October 2004

Jodo César Monteiro was known for his excruciatingly lengthy movies and awkward
humour, but nothing could prepare both the audiences and the critics for his outrageous
'Branca de Neve'l A huge debate followed its debut, it has been labeled everything, from
a masterpiece to a fraud and four years later it still angers and baffles a great deal of
people. The first shocker is the movie itself. All of us have heard of and may recall with
fondness the silent movie era, but 'Branca de Neve' introduces us to the 'radiophonic
movie' concept, that is, a movie that has no image at all! Most of the movie leaves the
viewer staring at a monotonous black canvas, interrupted only by a few occasional and
might I add, very brief still shots. The story itself is an adaptation of Robert Walser's
'Schneewittchen' and the dialog between the characters happens in complete darkness,
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Appendix: ILP

« Given E+ positive and E- negative examples and the background

knowledge B, learn concept C and dual Concept C' (swap positive and
negative examples)

* Look for examples that if removed from the learning set do not change
the description (logic program) of C and C’ significantly
* |.e., difference of coverage is smaller than a threshold
« = normal examples
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