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Data science and anomaly detection
• Machine learning techniques – four main categories:

• Clustering

• Classification 

• Frequent pattern mining and

• Anomaly detection

“Unlike the first three main tasks, which aim to find patterns that characterize 
the majority of the data, the fourth task focuses on identifying patterns that 
represent only the minority data."
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Anomaly detection
• “An outlier is an observation which deviates so much from the other 

observations as to arouse suspicions that it was generated by a 
different mechanism” [Hawkins 1980]

• Outlier factor

• = dissimilarity with other instances

• Two needs for outlier detection (OD):
1) Detect, Remove & Run again

2) Detect, Analyze
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Applications of anomaly detection
• Detecting measurement errors 

• Data derived from sensors may contain measurement errors. Removing such 
errors can be important in other data mining and data analysis tasks

• Fraud detection 
• Purchasing behavior of a credit card owner usually changes when the card is 

stolen

• Education: detection of unexpected solutions
• E.g., constructive tasks in logic

• Intrusion detection
• Attacks to a network, or to a blog

• Plagiarism detection
• A part of text has been written by somebody else
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Applications of anomaly detection
• Language “irregularities” PT: Ser casado, estar morte

• Medicine
• Unusual symptoms/test results may indicate potential health  problems

• Whether a particular test result is abnormal may depend on other 
characteristics of the patients (e.g., gender, age, …)

• …
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Anomaly detection and Novelty detection
• What is the difference between novelty detection and anomaly

detection?

• Anomaly detection encompasses two broad practices: outlier 
detection and novelty detection

• Outliers are abnormal or extreme data points that exist only in training 
data

• In contrast, novelties are new or previously unseen instances 
compared to the original (training) data
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Types of outliers
• Point outliers

• Cases that either individually or in small groups are very different from the 
others

• Contextual outliers
• Cases that can only be regarded as outliers when taking the context where they 

occur into account

• Collective outliers
• Cases that individually cannot be considered strange, but together with other 

associated cases are clearly outliers
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Contextual outliers
• If a data instance is anomalous in a specific context, but not otherwise

• Solution: find contextual features

• Example: temperature time-series

• Is the temperature 28°C outlier?
• If we are in Brno in summer NO

• If we are in Brno in winter YES

→ it depends on the location and time – CONTEXT

• Any other solution?
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Types of anomaly detection methods
• Supervised methods

• Building a predictive model for normal vs. anomaly classes

• Semi-supervised methods
• Training data has labeled instances only for the normal class

• Example: accidents in nuclear power stations

• Unsupervised methods
• No labels, most widely used
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Anomaly detection methods
• Statistical methods

• Proximity-based methods
• An object is an outlier if the proximity of the object to its neighbors significantly 

deviates from the proximity of most of the other objects to their neighbors in the 
same data set

• Distance-based detection
• Radius r, k-nearest neighbors

• Density-based detection
• Relative density of object counted from density of its neighbors

• Clustering-based detection
• Normal data objects belong to large and dense clusters, whereas outliers 

belong to small or sparse clusters, or do not belong to any clusters
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High-dimensional outlier detection
• ABOD – angle-based outlier degree

• Object o is an outlier if most other objects are located in similar 
directions

• Object o is no outlier if many other objects are located in varying 
directions
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Local and global anomalies/methods
• A global anomaly

• Is an object which has a significantly large distance to its k-th nearest neighbor 
(usually greater than a global threshold) whereas

• = can be used for sorting anomalies w.r.t. the outlier factor

• Example: k-NN

• A local anomaly
• Has a distance to its k-th neighbor that is large relatively to the average 

distance of its neighbors to their own k-th nearest neighbors

• Example: LOF
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Local Outlier Factor (LOF)
• Only one parameter, k, a number of neighbors
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Local Outlier Factor (LOF)

• 𝑑𝑖𝑠𝑡𝑘(𝑜) – k-distance of an object 𝑜 – distance from 𝑜 to its k-th
nearest neighbor

• 𝑁𝑘(𝑜) – k-distance neighborhood of 𝑜 – set of k nearest neighbors of 𝑜

• 𝑟𝑒𝑎𝑐ℎ–𝑑𝑖𝑠𝑡𝑘 𝑜, 𝑝 = max 𝑑𝑖𝑠𝑡𝑘 𝑝 , 𝑑𝑖𝑠𝑡(𝑜, 𝑝) – reachability-distance of 
an object 𝑜 with respect to another object 𝑝

• The local reachability-distance is the inverse of the average 
reachability-distance of its k-neighborhood

• LOF is the average of the ratio between the local reachability-distance 
of o and those of its k-nearest neighbors
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Example of Scikit-learn
• Black – border between inliers and 

outliers

• 15% samples generated as random 
uniform noise

• 15% is also a parameter of one class-
SVM and the contamination for other 
algorithms
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Deep learning and anomaly detection
• Autoencoders

• Two multilayered perceptrons (MLP) – encoder X → Z + decoder Z → X

• Reconstruction loss = outlier factor

• Variational autoencoders
• Model conditional probabilities Z|X and X|Z, assuming Gaussian distribution

• Generative adversarial networks
• Two adversaries (MLP) – generator + discriminator

• Generator creates samples that resemble the real data, while the discriminator 
is trying to recognize the fake samples from the real ones
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Which OD algorithm is better?
• Hyperparameter settings can be a problem

• [Škvára et al. Are generative deep models for novelty detection truly better? 2018]
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Class-based outliers

Class-based outliers. Why do we need a new concept?
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Class-based outliers
• Example: e-shop planning marketing campaign to increase income

• Which clients to be sent with a new offer?
• Monitoring two groups of clients:

• Group PLUS: buying products more or less often

• Group MINUS: browsing list of offers/products more or less often but (almost) 
have not bought anything so far

• Which clients to be sent with a new offer?

• Other examples?
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ROBUST-C4.5
• C4.5 incorporates a pruning scheme that partially addresses the 

outlier removal problem

• ROBUST-C4.5 (John 1995)

• Extending the pruning method to fully remove the effect of outliers

• This results in a smaller tree without decrease of accuracy (average 
and st. dev. on 21 datasets)
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Class-based outlier detection
• Sometimes called “semantic outlier”
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Multi-class outlier detection
• [Han, Data Mining. Principle and Techniques, 3rd edition]

• Learn a model for each normal class
• If the data point does not fit any of the model, then it is declared an outlier

• Advantage – easy to use

• Disadvantage – some outliers cannot be detected
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Semantic outliers (He et al. 2004)
• Solve the problem

• Cluster and then compute

• The probability of the class label of the example with respect to other 
members of the cluster

• The similarity between the example and other examples in the class 
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How to compute class-based outlier factor
• [He et al., 2004]

• COF = OF w.r.t. own class (+) OF w.r.t. the other classes

• Pros & Cons
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Semantic outliers (cont.)

• 𝑥1 has the same rank

• To fix it:
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CODB (Class Outlier Distance-Based)
• [Hewahi and Saad, 2007]

• Combination of distance-based and density-based approach w.r.t.
class attribute

• No need for clustering
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CODB
• 𝐶𝑂𝐹 𝑇 = 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑇𝑜𝐾𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠 +

𝛼 ∙ 1/𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐹𝑟𝑜𝑚𝑂𝑡ℎ𝑒𝑟𝐸𝑙𝑒𝑚𝑒𝑛𝑡𝑠𝑂𝑓𝑇ℎ𝑒𝐶𝑙𝑎𝑠𝑠 +
𝛽 ∙ 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝐹𝑟𝑜𝑚𝑇ℎ𝑒𝑁𝑒𝑎𝑟𝑒𝑠𝑡𝑁𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑠

• 𝐶𝑂𝐹 𝑇 = 𝑘 ∙ 𝑃𝐶𝐿 𝑇, 𝑘 + 𝛼 ∙ 1/𝐷𝑒𝑣 𝑇 + 𝛽 ∙ 𝑑𝑖𝑠𝑡𝑘(𝑇)
• 𝑃𝐶𝐿 𝑇, 𝐾 – the probability of the class label of 𝑇 w.r.t. the 𝑘 nearest neighbors

• 𝐷𝑒𝑣 𝑇 – the sum of distances from all other elements from the same class

• 𝑑𝑖𝑠𝑡𝑘(𝑇) – the distance between 𝑇 and its 𝑘 nearest neighbor
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RF-OEX: COD with Random Forests
• Random Forests is an ensemble classification and regression 

approach

• Random Forests
• Consists of many classification trees

• 1/3 of all samples are left out – OOB (out of bag) data – for classification error

• Each tree is constructed by a different bootstrap sample from the original data 
and with different subset of attributes
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Random forest (Breiman 2000)
• Bootstrapping

• Random tree
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Class Outlier Detection – Random Forests
• After each tree is built, all of the data are run down the tree, and 

proximities are computed for each pair of cases:

• If two cases occupy the same terminal node, their proximity is 
increased by one

• At the end of the run, the proximities are normalized by dividing by the 
number of trees

• Define the average proximity from case 𝑛 in class 𝑗 to the rest of the 
training data class 𝑗 as:

ത𝑃 𝑛 = ෍

𝑐𝑙 𝑘 =𝑗

prox2(𝑛, 𝑘)

• The raw outlier measure for case 𝑛 is defined as: 𝑛𝑠𝑎𝑚𝑝𝑙𝑒/ ത𝑃 𝑛
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Proximity matrix
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Example 1 Example 2 Example 3 Example 4 Example 5

Example 1 0 1 1 2

Example 2 0 0 1 1

Example 3 1 0 4 3

Example 4 1 1 4 3

Example 5 2 1 3 3



Class Outlier Factor
• Outlier factor 

= sum of three different measures of proximity or outlierness

=

Proximity to the members of the same class 

+ 

Misclassification – proximity to the members of other classes and

+

Ambiguity measure – a percentage of ambiguous classification
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RF-OEX
• Detection

• +

• Explanation
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Applications
• ZOO

• E-shop: clients vs. potential clients

• Educational data mining:
• Students with standard/non-standard study interval

• Intro to logic: finding anomalous solutions

• IMDb

• Czech Parliament 

• Data pre-processing

• ... and more?
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Teaching logic: finding anom. solutions
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• Task: Build a resolution proof, 400 students, at least 3 task to solve

• Automated evaluation: error detection

• Two classes: CORRECT, INCORRECT

• If an error appeared, the solution is classified as incorrect

• Find solutions that was classified as CORRECT and not, and opposite

• We cannot use a common outlier detection methods because data are 
labeled as correct and incorrect solutions

• Class outlier detection can help



Finding anom. solutions
• Search/discover students’ solutions which are unusual

• We need data in attribute-value representation
• Frequent pattern mining, frequent subgraphs

• One attribute for each higher-level generalized pattern; values are true 
(occurrence of the pattern) and false (non-occurrence of the pattern)

• Class: occurrence or non-occurrence of the error of resolving on two 
literals at the same time (we call it E3 error)

• Novel “solutions” found, not recognized with the tool used
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IMDb: Funny/unusual reviews
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Finding anom. solutions
• Search/discover  reviews that do not correspond to positive or 

negative star evaluation

• Large Movie Review Dataset

• Each review represented as a list of word appearance

• Only 68 most frequent words in the dataset used

• Class negative *… ****

• Class positive   *******…***
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Finding anom. solutions
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Appendix: ILP

• Given E+ positive and E- negative  examples and the background 
knowledge B, learn concept C and dual Concept C’ (swap positive and 
negative examples)

• Look for examples that if removed from the learning set do not change 
the description (logic program) of C and C’ significantly
• I.e., difference of coverage is smaller than a threshold

• = normal examples
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