

Geographic information retrieval

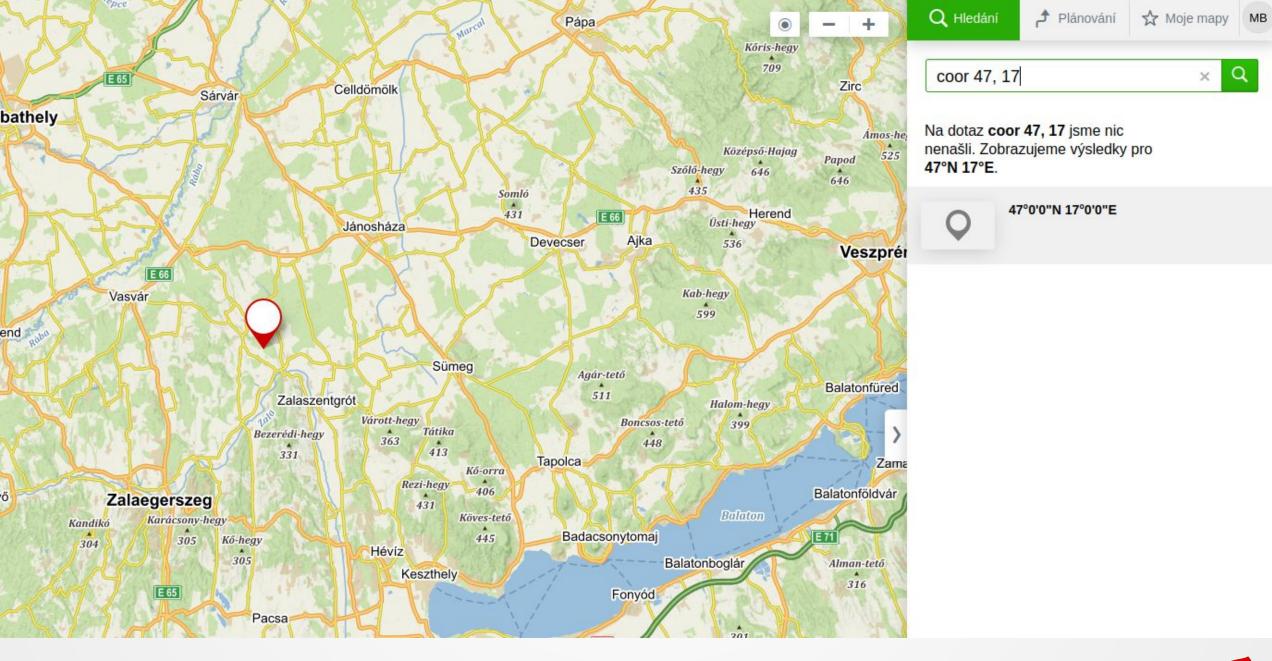
Mikuláš Bankovič

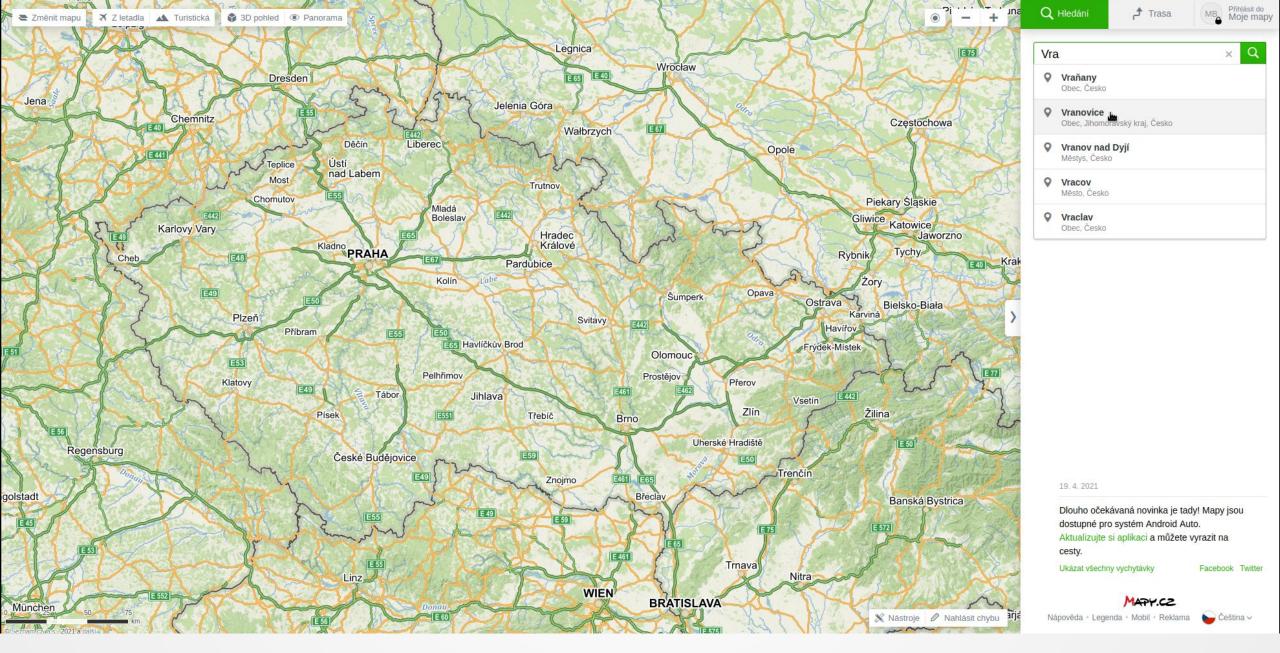
Researcher

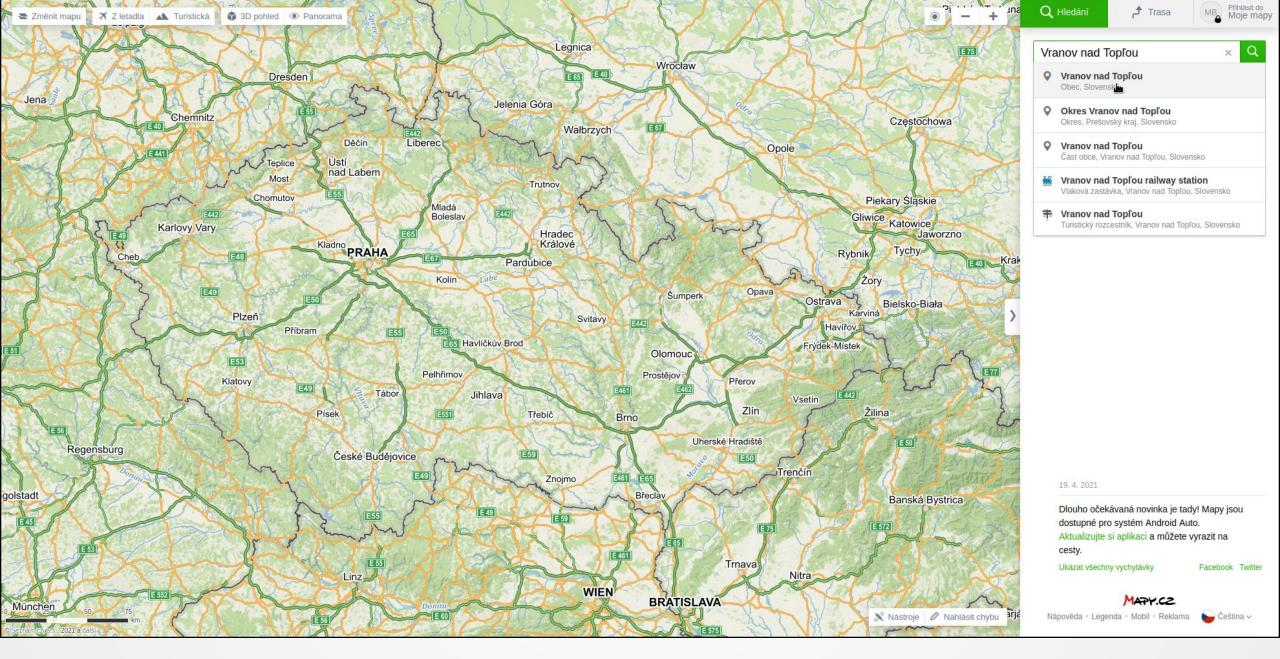
Geographic information retrieval

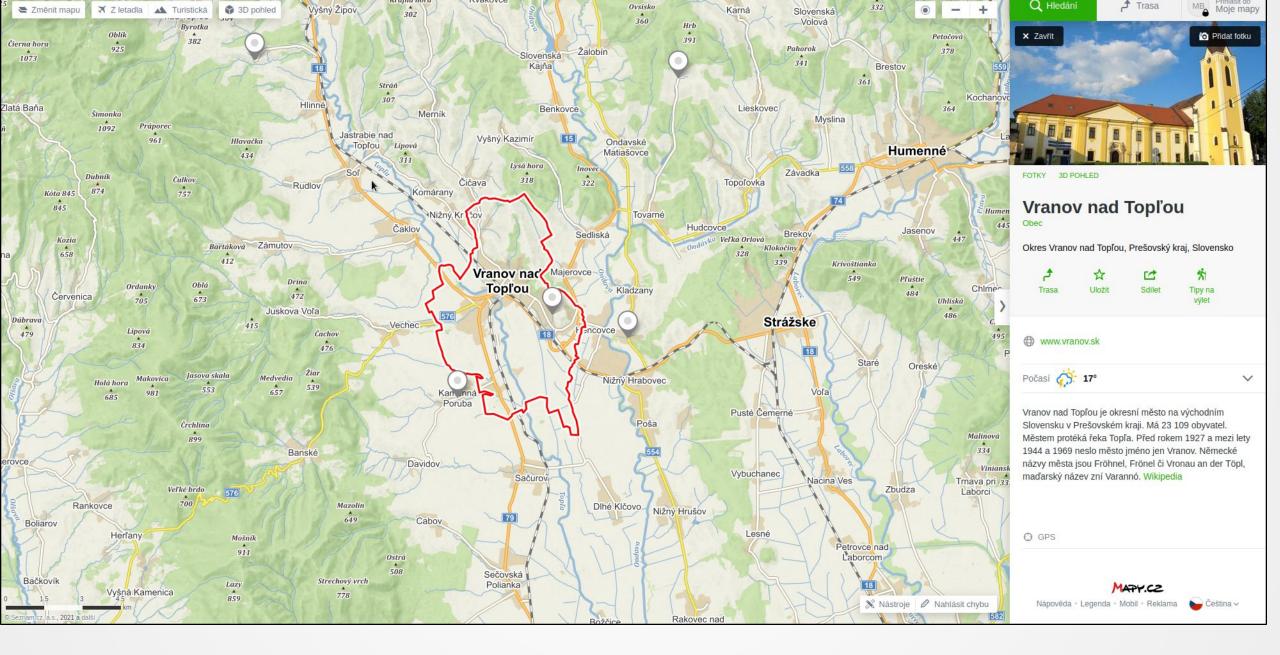
POI - Point Of Interest

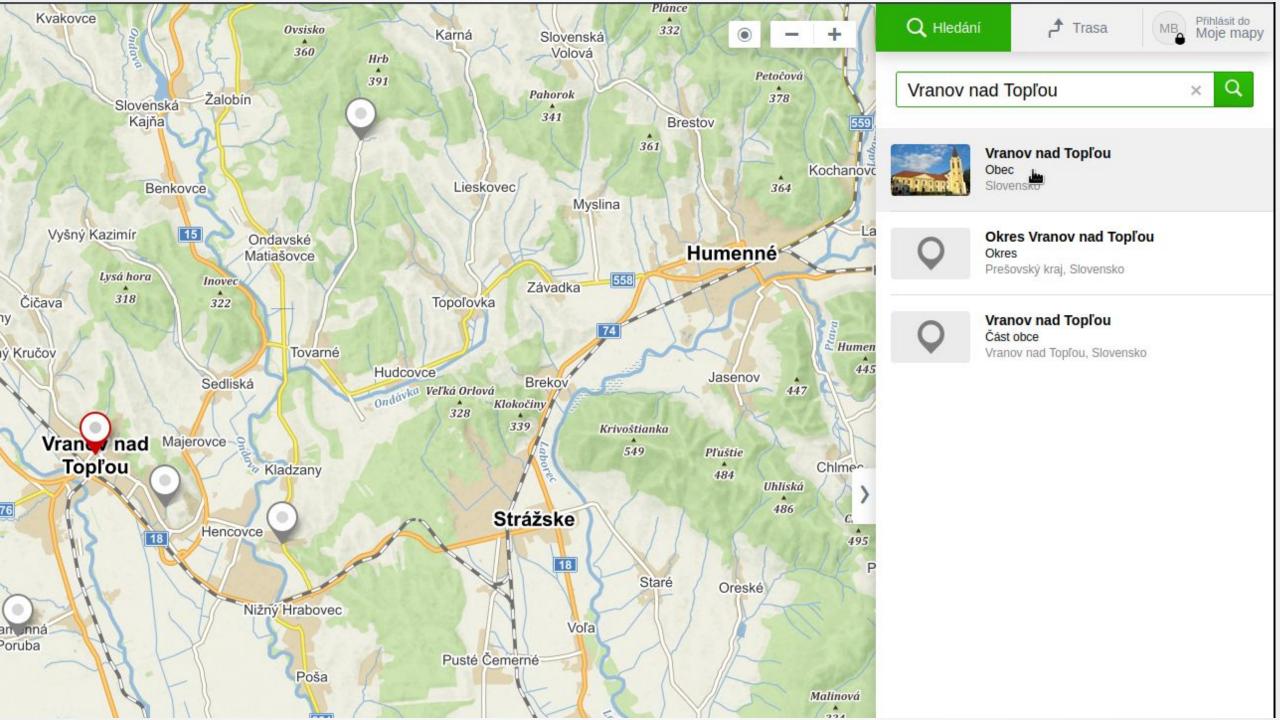
- searching POI
- suggesting POI
- routing between 2 POIs











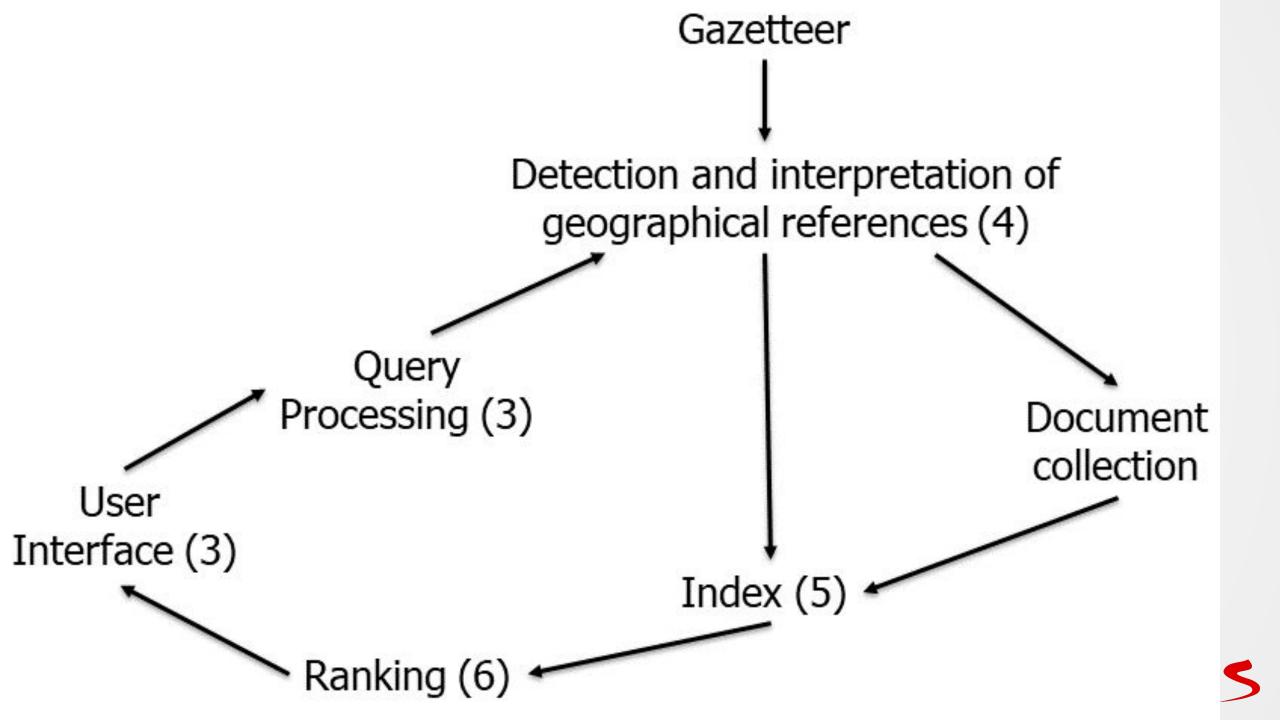
POI - Point Of Interest

street, municipality, country

• mountains, rivers, canyons, beaches

• stores, merchandise, restaurants, etc.

public transport, special events, vaccination centres, etc.



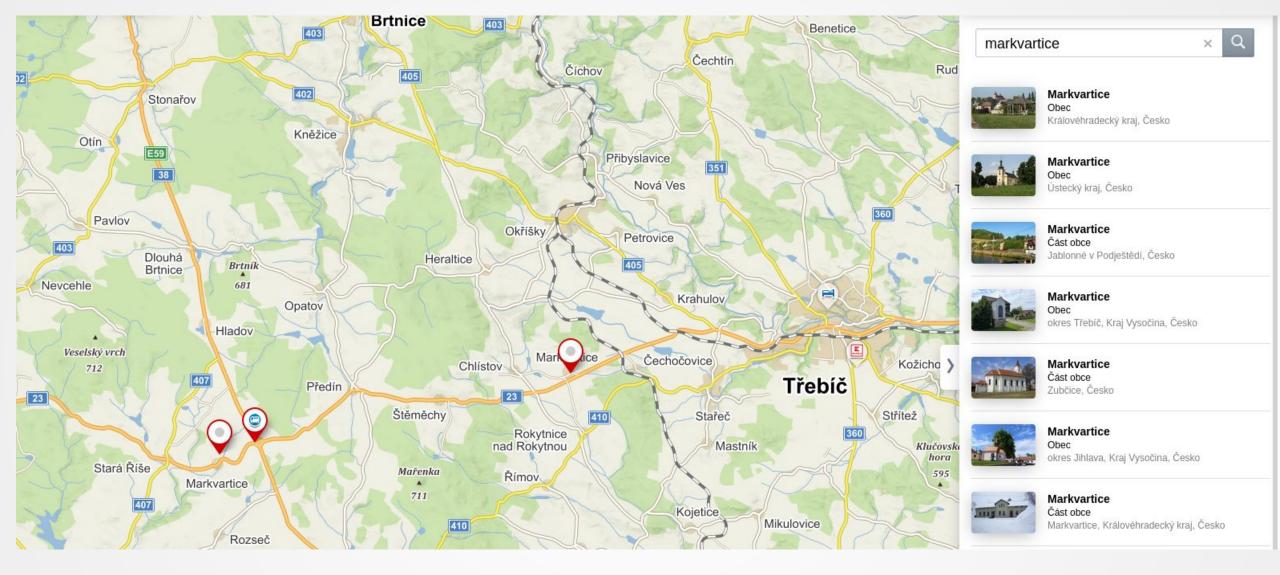
General Problems

Ambiguous POIs

Category + locality

Personalization

Diversity in SERP(Search engine result page)



POI characteristics

- Name string
- Address string
- Coordinates (float, float)
- Geometry area, diagonal
- Popularity float
- Importance float
- POI type category
- Aliases List[string]

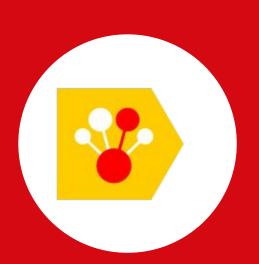
```
▼ result: Array(3) [ {...}, {...}, {...} ]
▼ 0: Object { adminWeight: 0, correctedResult: false, exact: 1, ... }
    address: ""
    adminWeight: 0
  bbox: Object { leftLat: 48.83468246459961, leftLon: 21.63821220397
    correctedResult: false
    description: ""
    exact: 1
  P extendedData: Object { paid: false }
    firstRow: "Vranov nad Toplou"
    fromOstat: false
    hasAddress: false
    hash: 67
  icon: Object { }
    iconSize: 2
    id: 1015713400
    importance: 0.45489264662750767
  mark: Object { lat: 48.889151241545534, lon: 21.68223173453063 ]
    matchedLang: "cs"
    mmid: ""
    mmsource: ""
    mmtype: ""
    origin: "osmm"
    poiTypeId: 203
    popularity: 0.445
    premisePoiMapyHighlightLevel: 0
    relevance: 11.983667200000001
    seasonality: 0
    secondRow: "Obec, Slovensko"
    simplifiedDistance: 450.680419921875
    sortTypeId: 23
    source: "osm"
    title: "Vranov nad Topľou"
    wikiId: "0842005"
```

Previous suggester ranking

- hand-crafted equation and a lot of magic constants
- equation components:
 - popularity
 - importance
 - simple text score (based on matches with name, address or category)
 - distance
 - o zoom
 - category relevance
 - category distance coefficient

Nowadays - Learning to Rank

- Pointwise predict real number for each POI independently
- Pairwise classify two POIs: better/worse
- Listwise optimize list as a whole



CatBoost

CatBoost

- https://catboost.ai/
- hand-crafted signals (features)
- not so easy to beat equation on metrics

Datasets

- 15 000 annotations
- millions of logs in history (label 1 if user clicked on POI, 0 otherwise)

Suggester signals

Query context

- language
- zoom
- time signals

POI properties

- area
- diagonal
- importance
- popularity
- POI type

POI and query relationship

- distance
- simple text score
- prefix text score
- previous ranking value

Evaluation

- Differently filtered logs: longtail, frequent, categories,
- AB tests small improvement in some parts, globally not visible

Metric TOP1	Random Queries	Frequent Queries	LongTail Queries
Original equation	77%	98%	82%
CatBoost model	81%	97%	86%

Personalization

Personalization (Baidu Maps)

- word2vec signals for catboost
- neural net signals for catboost
- end-to-end neural net
- all-in-one catboost

W2V

- train and learn embedding for POI (only from ID)
- user has a matrix U, with some embeddings from POI history
- for each ranking POI candidate multiple its embedding with the user matrix U, and get personalized embedding

The most common POI embedding	
The second most common POI embedding	
The third most common POI embedding	
The freshest POI embedding	
The second freshest POI embedding	

Training

- skipgram
- user_id -> poi1_id, poi2_id, poi3_id
- fasttext, word2vec

Neural network signals

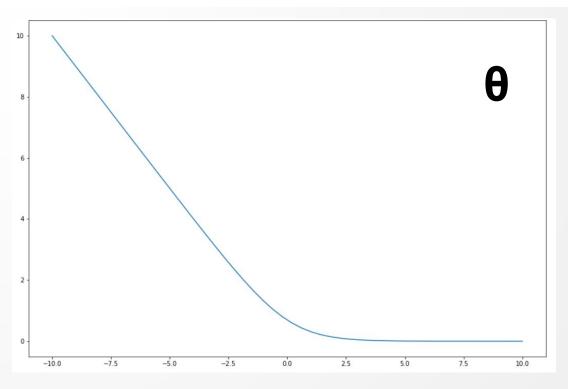
Create embedding (Bi-LSTM, sentence CNN, transformer):

- id
- name
- address
- category

Skip-gram training with negative sampling.

Minimize
$$\sum_{t \in T} \left[\sum_{c \in C} \theta(s(\mathbf{e}_t, \mathbf{e}_c)) + \sum_{n \in N} \theta(-s(\mathbf{e}_t, \mathbf{e}_n)) \right],$$

$$s(t,c) = \mathbf{e}_t \cdot \mathbf{e}_c$$
.



End-To-End

Embeddings for name, address, location, category type

Embeddings for personalized query

 Connected through triplet loss function - similar idea of pushing clicked poi embedding closer to the personalized query prefix

Kontakt

Mikuláš Bankovič Research

E-mail: mikulas.bankovic@firma.seznam.cz

Tel.: +420735507244

Mapy

Learning-to-rank -

Personalized embeddings for POIs - WIP

End-to-end neural network - Future