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CHAPTER CHAPTER 55:: PPublicublic--keykey cryptography I. RSAcryptography I. RSA

Rapidly  increasing needs for flexible and secure transmission of

information require to  use new cryptographic methods.

The main disadvantage of the classical (symmetric) 

cryptography is the need to send  a (long) key through a super 

secure channel before sending the message itself.
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In the secret-key (symmetric) cryptography both sender and 

receiver share the same secret key.

In the  public-key (assymetric) cryptography there are two 

different keys:

a public encryption key

and 

a secret decryption key (at the receiver side).



2Public-key cryptography

Basic idea: If it is infeasible from the knowledge of an encryption algorithm ek to 

construct the corresponding description algorithm dk, then ek can be made public.

Toy example: (Telephone directory encryption) 

Start: Each user U makes public a unique telephone directory tdU to encrypt 

messages for U and U is the only user to have an inverse telephone directory itdU.

Encryption: Each letter X of a plaintext w is replaced, using the telephone directory

tdU of the intended receiver U, by the telephone number of a person whose name 

starts with letter X.

Decryption: easy for Uk, with the inverse telephone directory, infeasible for others.
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Analogy:

Secret-key cryptography 1. Put the message into a box, lock it with a padlock and 

send the box. 2. Send the key by a secure channel.

Public-key cryptography Open  padlocks, for each user different one, are freely 

available. Only  legitimate user has key from his padlocks. Transmission: Put the 

message into the box of the intended receiver, close the padlock and send the box.

Basic idea - example
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Public Establishment of Secret KeysPublic Establishment of Secret Keys

Main problem of the secret-key cryptography: a need to make a secure 
distribution (establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key 

establishment (distribution) over  public channels.
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Protocol: If two parties, Alice and Bob, want to create a common secret key, then 

they first agree, somehow, on  a large prime p and a q<p of large order in         and 
then they perform, through a public channel, the following activities.

• Alice  chooses, randomly, a large 1 ≤ x < p -1 and computes

X = q x mod p.

• Bob also chooses, again randomly, a large 1 ≤ y < p -1 and computes

Y = q y mod p.

• Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

• Alice computes Y x mod p and Bob computes X y mod p and then each of them 

has the key K = q xy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from

Y, q, p, to have  a capability to compute discrete logarithms, or to compute q xy

from q x and q y, what is believed to be infeasible.

*

pZ
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KEY DISTRIBUTION / AGREEMENTKEY DISTRIBUTION / AGREEMENTIV054

One should distinguish between key distribution and key 

agreement.

•• Key distribution is a mechanism whereby one party 

chooses a secret key and then transmits it to another party or 

parties.

• Key agreement is a protocol whereby two (or more) parties 

jointly establish a secret key by communication over a public 

channel.

The objective of key distribution or key agreement protocols is 

that, at the end of the protocols, the two parties involved both

have possession of the same key k, and the value of k is not 

known to any other party (except possibly the TA).
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MANMAN--ININ--THETHE--MIDDLE ATTACKMIDDLE ATTACK

The following attack, by a man-in-the-middle, is possible against the Diffie-Hellman
key establishment protocol.
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1. Eve chooses an exponent z.

2. Eve intercepts q x and q y.

3. Eve sends q z to both Alice and Bob. (After that Alice believes she has received q y

and Bob believes he has received  q x.)

4. Eve computes KA = q
xz (mod p) and KB = q

yz (mod p) .

Alice, not realizing that Eve is in the middle, also computes KA and 

Bob, not realizing that Eve is in the middle, also computes KB.

5. When Alice sends a message to Bob, encrypted with KA, Eve intercepts it, 

decrypts it, then encrypts it with KB and sends it to Bob.

6. Bob decrypts the message with KB and obtains the message. At this point he 

has no reason to think that communication was insecure.

7. Meanwhile, Eve enjoys reading Alice's message.
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Blom'sBlom's key prekey pre--distribution protocoldistribution protocol

allows to a trusted authority (Trent) to distributed secret keys to n (n - 1) / 2 pairs of
n users.

Let a large prime p > n be publiclly known. The protocol has the following steps:

1. Each user U in the network is assigned, by Trent, a unique public number rU < p.
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2. Trent chooses three random numbers a, b and c, smaller than p.

3. For each user U, Trent calculates two numbers

aU = (a + brU) mod p, bU = (b + crU) mod p

and sends them via his secure channel to U.

4. Each user U creates the polynomial

gU (x) = aU + bU (x).

5. If Alice (A) wants to send a message to Bob (B), then Alice computes her key

KAB = gA (rB) and Bob computes his key KBA = gB (rA).

6. It is easy to see that KAB = KBA and therefore Alice and Bob can now use their 

(identical) keys to communicate using some secret-key cryptosystem.
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Secure communicationSecure communication with  secretwith  secret--key cryptosystemskey cryptosystems

but without any need for secret key distribution

(Shamir's ``no-key algorithm’’)

Basic assumption: Each user X has its own

secret encryption function eX

secret decryption function dX

and all these functions  commute (to form a commutative cryptosystem).
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Communication protocol

with which Alice  can send a message w to Bob.

1. Alice sends eA (w) to Bob

2. Bob sends eB (eA (w)) to Alice

3. Alice sends dA (eB (eA (w))) = eB (w) to Bob

4. Bob performs the decryption to get dB (eB (w)) = w.

Disadvantage: 3 communications are needed (in such a context 3 is a much too 

large number) .

Advantage: A perfect protocol for distribution of  secret keys.
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Cryptography and Computational ComplexityCryptography and Computational Complexity

Modern cryptography uses such encryption methods that no ``enemy'' can have 
enough computational power and time to do encryption (even those capable to use 
thousands of supercomputers for tens of years for encryption).

Modern cryptography is based on negative and positive results of complexity 
theory - on the fact that for some algorithm problems no efficient algorithm seem to 
exists, surprisingly, and for some of  “small'' modifications of these problems, 
surprisingly, simple, fast and good enough (randomized) algorithms do exist.
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Integer factorization: Given n (= pq), the task to find p, q is unfeasible.

There is a list of ”most wanted to factor integers''. Top current successes, using 

thousands of computers for months. 

(*) Factorization of 2 2^9 + 1 with 155 digits (1996)

(**) Factorization of a “typical'' 155-digits integer (1999)

Primes recognition: Is a given n a prime? - fast randomized algorithms exist.

The existence of polynomial deterministic algorithms  has been shown only in 2002
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Computationaly Computationaly infeasible problemsinfeasible problemsIV054

Discrete logarithm problem: Given x, y, n, compute a such that

y ≡ x a (mod n) – infeasible in general.

Discrete square root problem: Given y, n, compute x such that 

y ≡ x 2 (mod n) - infeasible in general, easy if n is prime.

Knapsack problem: Given a (knapsack) vector X = (x1,…,xn) and  a 

(knapsack capacity) c, find a binary vector (b1,…,bn) such that

Problem is NP-hard in general, but easy if
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OneOne--way functionsway functions

Informally, a function F:N -> N is said to be one-way function if it is easily 
computable - in polynomial time - but any computation of its inverse is infeasible.

A one-way permutation is a 1-1 one-way function.

easy

x f(x)

computation infeasible

IV054

( )( ) ( )( )( ) .
11

cr
n

xffxfAP <∈ −

A more formal approach

Definition A function f:{0,1}* → {0,1}* is called a strongly one-way function if the 
following conditions are satisfied:

1. f can be computed in polynomial time;

2. there are c, ε > 0 such that |x|ε ≤ |f(x)| ≤ |x|c;

3. for every randomized polynomial time algorithm A, and any constant c > 0,

there exists an nc such that for n > nc

Candidates: Modular exponentiation: f(x) = a x mod n

Modular squaring f(x) = x 2 mod n, n - a Blum integer

Prime number multiplication f(p, q) = pq.
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Trapdoor OneTrapdoor One--way Functionsway Functions

The key concept for design of public-key cryptosystems is that of trapdoor 

one-way functions.

A function f :X →→→→ Y is trapdoor one-way function

• if f and its inverse can be computed efficiently, 

• yet even the complete knowledge of the algorithm to compute f does not 
make it feasible to determine a polynomial time algorithm to compute the 
inverse of f.
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A candidate: modular squaring with a fixed modulus.

- computation of discrete square roots is unfeasible in general, but quite easy if the 

decomposition of the modulus into primes is known.

One way to design a trapdoor one-way function is to transform an easy case of a 

hard (one-way) function to a hard-looking case of such a function, that can be, 

however, solved easily by those knowing how the above  transformation was 

performed.
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Example Example -- Computer passwordsComputer passwords

A naive solution is to keep in computer a file with entries as

login CLINTON password BUSH,

that is with logins and corresponding passwords. This  is not sufficiently safe.
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A more safe method is to keep in the computer a file with entries as

login CLINTON password BUSH one-way function f c

The idea is that BUSH is a “public'' password and CLINTON is the only one 

that knows a “secret'' password, say MADONA, such that

f c(MADONA) = BUSH
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LAMPORT’s ONE-TIME PASSWORDS

One-way functions can be used to create a sequence of passwords:

• Alice chooses a random w and computes, using a one-way function 

h, a sequence of passwords

w, h(w), h(h(w)),…,hn(w)

• Alice then transfers securely (?????) ``the initial secret’’ w0=hn(w) to 

Bob.

• The i-th authentication, 0 < i < n+1, is performed as follows:

------- Alice sends wi=hn-i(w) to Bob

------- Bob checks whether wi-1=h(wi).

When the number of identifications reaches n, a new w has to be 

chosen.
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General knapsack problem - unfeasible

KNAPSACK PROBLEM: Given an integer-vector X = (x1,…,xn) and an integer c.

Determine a binary vector B = (b1,…,bn) (if it exists) such that XBT = c.
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Knapsack problem with superincreasing vector – easy

Problem Given a superincreasing integer-vector X = (x1,…,xn) (i.e.

and an integer c,

determine a binary vector B = (b1,…,bn) (if it exists) such that XBT = c.

Algorithm - to solve  knapsack problems with  superincreasing vectors:

for i ← n downto 2 do

if c ≥ 2xi then terminate  {no solution}

else if c > xi then bi ← 1; c ← c – xi ;

else bi = 0;

if c = x1 then b1 ← 1

else if c = 0 then b1 ← 0;

else terminate  {no solution}

Example X = (1,2,4,8,16,32,64,128,256,512) c = 999

X = (1,3,5,10,20,41,94,199) c = 242
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KNAPSACK ENCODING KNAPSACK ENCODING -- BASIC IDEASBASIC IDEAS

Let a (knapsack) vector

A = (a1,…,an)

be given.

Encoding of a (binary) message B = (b1, b2,…,bn) by A is done by the

vector/vector multiplication:

ABT = c

and results in the cryptotext c

IV054

Decoding of c requires to solve the knapsack problem for the instant given by 

the knapsack vector A and the cryptotext c.

The problem is that decoding seems to be infeasible.

Example

If A = (74, 82,94, 83, 39, 99, 56, 49, 73, 99) and B = (1100110101) then

ABT =
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Design of knapsack cryptosystemsDesign of knapsack cryptosystems

1. Choose a superincreasing vector X = (x1,…,xn).

2. Choose m, u such that m > 2xn, gcd(m, u) = 1. 

3. Compute u -1 mod m, X '= (x1
’,…,xn

'), xi
’= ux i mod m.

diffusion

confusion

IV054

Cryptosystem: X' - public key

X, u, m - trapdoor information

Encryption: of a binary vector w of length n: c = X' w

Decryption: compute c‘ = u -1c mod m

and solve the knapsack problem with X and c'.

Lemma Let X, m, u, X', c, c' be as defined above. Then the knapsack problem 
instances (X, c') and (X', c) have at most one solution, and if one of them has a 
solution, then the second one has the same solution.

Proof Let X'w = c. Then

c‘ ≡ u -1c ≡ u -1X'w ≡ u -1uXw ≡ Xw (mod m).
Since X is superincreasing and m > 2xn we have

(X w) mod m = X w

and therefore c‘ = Xw.
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Design of knapsack cryptosystemsDesign of knapsack cryptosystems

Example X = (1,2,4,9,18,35,75,151,302,606)

m = 1250, u = 41

X‘ = (41,82,164,369,738,185,575,1191,1132,1096)

In order to encrypt an English plaintext, we first encode its letters by 5-bit numbers
_ - 00000, A - 00001, B - 00010,… and then divide the resulting binary strings into 
blocks of length 10.

Plaintext: Encoding of AFRICA results in vectors

w1 = (0000100110) w2 = (1001001001) w3 = (0001100001)

Encryption: c1’ = X'w1 = 3061 c2’ = X'w2 = 2081 c3’ = X‘w3 = 2203

Cryptotext: (3061,2081,2203)

IV054

Decryption of cryptotexts: (2163, 2116, 1870, 3599)

By multiplying with u –1 = 61 (mod 1250) we get new cryptotexts (several new c’)

(693, 326, 320, 789)

and in the binary form  solutions B of equations XBT=c’ have the form

(1101001001, 0110100010, 0000100010, 1011100101)

that is the resulting plaintext is:

ZIMBABWE
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Story of the KnapsackStory of the Knapsack

Invented: 1978 - Ralp C. Merkle, Martin Hellman

Patented: in 10 countries

Broken: 1982: Adi Shamir

New idea: iterated knapsack cryptosystem using hyper-reachable vectors.

Definition A knapsack vector X '= (x1',…,xn') is obtained from a knapsack vector 
X=(x1,…,xn) by strong modular multiplication if

X’i = ux i mod m, i = 1,…,n,

where

and gcd(u, m) = 1. A knapsack vector X' is called hyper-reachable, if there is a 
sequence of knapsack vectors X = x0, x1,…,xk = X ‘,

where x0 is a super-increasing vector and for i = 1,…,k} and xi is obtained from xi-1

by a strong modular multiplication.

Iterated knapsack cryptosystem was broken in 1985 - E. Brickell

New ideas: dense knapsack cryptosystems. Density of a knapsack vector: 
X=(x1,…,xn) is defined by

Remark. Density of super-increasing vectors is

IV054
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KNAPSACK CRYPTOSYSTEM KNAPSACK CRYPTOSYSTEM -- COMMENTSCOMMENTS

The term “knapsack'' in the name of the cryptosystem is quite misleading.

By the Knapsack problem one usually understands the following problem:

Given n items with weights w1, w2,…, wn and values v1, v2,…, vn and a knapsack 

limit c, the task is to find a bit vector (b1, b2,…, bn) such that

and is as large as possible.

IV054
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The term subset problem is usually used for the problem used in our construction 

of the knapsack cryptosystem. It is well-known that the decision version of this 

problem is NP-complete.

Sometimes, for our main version of the knapsack problem the term Merkle-

Hellmman (Knapsack) Cryptosystem is used.
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McElieceMcEliece CryptosystemCryptosystem

McEliece cryptosystem is based on  a similar design principle as the

Knapsack cryptosystem. McEliece cryptosystem is formed by

transforming an easy to break cryptosystem into a cryptosystem that is 

hard to break because it seems to be based on a problem that is, in 

general, NP-hard.

The underlying fact is that the decision version of the decryption

problem for linear codes is in general NP-complete. However, for 

special types of linear codes polynomial-time decryption algorithms 

exist. One such a class of linear codes, the so-called Goppa codes, 

are used to design McEliece cryptosystem.

Goppa codes are [2m, n - mt, 2t + 1]-codes, where n = 2m.

(McEliece suggested to use m = 10, t = 50.)

IV054
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McElieceMcEliece CryptosystemCryptosystem -- DESIGNDESIGN

Goppa codes are [2m, n - mt, 2t + 1]-codes, where n = 2m.

Design of  McEliece cryptosystems. Let

• G be a generating matrix for an [n, k, d] Goppa code C;

• S be a k × k binary matrix invertible over Z2;

• P be an n × n permutation matrix;

• G‘ = SGP.

Plaintexts: P = (Z2)
k; cryptotexts: C = (Z2)

n, key: K = (G, S, P, G‘), message: w

G' is made public, G, S, P are kept secret.
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Encryption: eK(w, e) = wG‘ + e, where e is a binary vector of length n and weight t.

Decryption of a cryptotext c = wG’+e ∈ (Z2)
n.

1. Compute c1 = cP –1 =wSGPP –1 + eP –1 = wSG+eP-1

2. Decode c1 to get w1 = wS, 

3. Compute w = w1S
-1
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COMMENTS on COMMENTS on McELIECEMcELIECE CRYPTOSYSTEMCRYPTOSYSTEM

1. Each irreducible polynomial over Z2
m of degree t generates a Goppa code with 

distance at least 2t + 1.
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2. In the design of McEliece cryptosystem the goal of matrices S and C is to modify

a generator matrix G for an easy-to-decode Goppa code to get a matrix that looks 

as a general random matrix for a linear code  for which decoding problem is NP-

complete.

3. An important novel and unique trick is an introduction, in the encoding process, 

of a random vector e that represents an introduction of up to t errors - such a 

number of errors that are correctable using the given Goppa code and this is the 

basic trick of  the decoding process.

4. Since P is a permutation matrix eP -1 has the same weight as e.

5. As already mentioned, McEliece suggested to use a Goppa code with m=10 and 

t=50. This provides a [1024, 524, 101]-code. Each plaintext is then a 524-bit string, 

each cryptotext is a 1024-bit string. The public key is an 524 × 1024 matrix.

6. Observe that the number of potential matrices S and P is so large that 

probability of guessing these matrices is smaller that probability of guessing correct 

plaintext!!!

7. It can be shown that it is not safe to encrypt twice the same plaintext with the 

same public key (and different error vectors).
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FINAL COMMENTSFINAL COMMENTS

1. Public-key cryptosystems can never provide unconditional security. This is 

because an eavesdropper, on observing a cryptotext c can encrypt each posible

plaintext  by the encryption algorithm eA until he finds  an c such that eA(w) = c.
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2. One-way functions exists if and only if P = UP, where UP is the class of 

languages accepted by unambiguous polynomial time bounded 

nondeterministic Turing machine.

3. There are actually two types of keys in practical use: A session key is used for

sending a particular message (or few of them). A master key is usually used to

generate several session keys.

4. Session keys are usually generated when actually required and discarded after 

their use. Session keys are usually keys of a secret-key cryptosystem.

5. Master keys are usually used for longer time and need therefore be carefully 

stored.Master keys are usually keys of a public-key cryptosystem.
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SATELLITE VERSION of ONESATELLITE VERSION of ONE--TIME PADTIME PAD

Suppose a satellite produces and broadcasts several random sequences of 

bits at a rate fast enough that no computer can store more than a small 

fraction of the output.

If Alice wants to send a message to Bob they first  agree, using a public key 

cryptography, on a method of sampling bits from the satellite outputs.

Alice and Bob use this method to generate a random key and they use it with

ONE-TIME PAD for encryption.

By the time Eve decrypted their  public key communications,  random streams 

produced by the satellite and  used by Alice and Bob to get the secret key 

have disappeared, and therefore there is no way for Eve to make decryption.

The point is that satellites produce so large amount of date that Eve cannot

store all of them

IV054
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RSA cryptosystemRSA cryptosystem

The most important public-key cryptosystem is the RSA cryptosystem

on which one can also illustrate a variety of important ideas of modern

public-key cryptography.

A special attention will be given in Chapter 7 to the problem of

factorization of integers that play such an important role for security of 

RSA.

In doing that we will illustrate modern distributed techniques to 

factorize very large integers.

IV054

For example we will discuss various possible attacks on the RSA 

cryptosystem and  problems related to security of RSA.
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DESIGN and USE of RSA CRYPTOSYSTEMDESIGN and USE of RSA CRYPTOSYSTEM

Invented in 1978  by Rivest, Shamir, Adleman

Basic idea: prime multiplication is very easy, integer factorization seems to be 
unfeasible.
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Design of RSA cryptosystems

1. Choose two large s-bit primes p,q, s in [512,1024], and denote

2. Choose a large d such that

and compute

Public key: n (modulus), e (encryption algorithm)

Trapdoor information: p, q, d (decryption algorithm)

Plaintext w

Encryption: cryptotext c = we mod n

Decryption: plaintext w = cd mod n

Details: A plaintext is first encoded as a word over the alphabet {0, 1,…,9}, then 
divided into blocks of length i -1, where 10 i-1 < n < 10 i. Each block is  taken as an 
integer and decrypted using modular exponentiation.
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Correctness of RSACorrectness of RSA

Let c = we mod n be the cryptotext for a plaintext w, in the cryptosystem with 

In such a case

and, if the decryption is unique, w = cd mod n.
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Proof Since , there exist a j € N such that 

• Case 1. Neither p nor q divides w. 

In such a case  gcd(n, w) = 1 and by the Euler's Totien Theorem we get that

• Case 2. Exactly one of p,q divides w - say p.

In such a case wed ≡ w (mod p) and by Fermat's Little theorem wq-1 ≡ 1 (mod q)

Therefore:

• Case 3 Both p,q divide w.

This cannot happen because, by our assumption, w < n.
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DESIGN and USE of RSA CRYPTOSYSTEMDESIGN and USE of RSA CRYPTOSYSTEM

Example of the design and of the use of RSA cryptosystems.

• By choosing p = 41,q = 61 we get n = 2501, φ(n) = 2400 

• By choosing  d = 2087 we get e = 23

• By choosing  d = 2069 we get e=29

• By choosing other values of d we get other values of e.

Let us choose the first pair of encryption/decryption exponents ( e=23 and d=2087).
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Plaintext: KARLSRUHE

Encoding: 100017111817200704 

Since 103 < n < 104, the numerical plaintext is divided into blocks of 3 digits ⇒ 6 plaintext 

integers are obtained

100, 017, 111, 817, 200, 704
Encryption:

10023 mod 2501, 1723 mod 2501, 11123 mod 2501

81723 mod 2501, 20023 mod 2501, 70423 mod 2501

provides cryptotexts: 2306, 1893, 621, 1380, 490, 313

Decryption:

2306 2087 mod 2501 = 100, 1893 2087 mod 2501 = 17

621 2087 mod 2501 = 111, 1380 2087 mod 2501 = 817

490 2087 mod 2501 = 200, 313 2087 mod 2501 = 704
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RSA challengeRSA challenge

One of the first description of RSA was in the paper.

Martin Gardner: Mathematical games, Scientific American, 1977

and in this paper RSA inventors presented the following challenge.

Decrypt the cryptotext:

9686 9613 7546 2206 1477 1409 2225 4355 8829 0575 9991 1245 7431 9874 

6951 2093 0816 2982 2514 5708 3569 3147 6622 8839 8962 8013 3919 9055 

1829 9451 5781 5154
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Encrypted using the RSA cryptosystem with 129 digit number

n: 114 381 625 757 888 867 669 235 779 976 146 612 010 218 296 721 242 362 

562 561 842 935 706 935 245 733 897 830 597 123 513 958 705 058 989 075 147 

599 290 026 879 543 541. 

and with e = 9007.

The problem was solved in 1994 by first factorizing n into one 64-bit prime and one 

65-bit prime, and then computing the plaintext

THE MAGIC WORDS ARE SQUEMISH OSSIFRAGE
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How to design a good RSA cryptosystemHow to design a good RSA cryptosystem

1. How to choose large primes p,q?

Choose randomly a large integer p, and verify, using a randomized algorithm, 
whether p is prime. If not, check p + 2, p + 4,…

From the Prime Number Theorem if follows that there are approximately

d bit primes. (A probability that a 512-bit number is prime is 0.00562.)
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2. What kind of relations should be between p and q?

2.1 Difference |p-q| should be neither too small not too large.

2.2 gcd(p-1, q-1) should not be large.

2.3 Both p-1 and q-1 should contain large prime factors.

2.4 Quite ideal case: q, p should be safe primes - such that also (p–1)/2 and 
(q-1)/2 are primes. (83,107,10100 – 166517 are examples of safe primes).

3. How to choose e and d?

3.1 Neither d nor e should be small.

3.2 d should not be smaller than n1/4. (For d < n1/4 a polynomial time algorithm is

known to determine d).
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Prime recognition and Prime recognition and factorizationfactorization

The key problems for the development of RSA cryptosystem are that of prime 

recognition and integer factorization.

On August 2002, the  first polynomial time algorithm was discovered that allows to 

determine whether a given m bit integer is a prime. Algorithm works in time O(m12).

Fast randomized algorithms for prime recognition has been known since 1977. One

of the simplest one is due to Rabin and will be presented later.
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For integer factorization situation is somehow different.

• No polynomial time classical algorithm is known.

• Simple, but not efficient factorization algorithms are known.

• Several sophisticated distributed factorization algorithms are known that allowed 

to factorize, using enormous computation power, surprisingly large integers.

• Progress in integer factorization, due to progress in algorithms and technology,

has been recently enormous.

• Polynomial time quantum algorithms for integer factorization are known since 

1994 (P. Shor).

Several simple and some sophisticated factorization algorithms will be presented

and illustrated in the following.
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RabinRabin--Miller's prime recognitionMiller's prime recognition

Rabin-Miller's Monte Carlo prime recognition algorithm is based on the

following result from the number theory.

Lemma Let n∈N. Denote, for 1 ≤ x ≤ n, by C(x) the condition:

Either , or there is an for some i, such that

If C(x) holds for some 1 ≤ x ≤ n, then n is not a prime. If n is not a prime, then 

C(x) holds for at least half of x between 1 and n.
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Algorithm:

Choose randomly integers x1,x2,…,xm such that 1 ≤ xi ≤ n.
For each xi determine whether C(xi) holds.

Claim: If C(xi) holds for some i, then n is not a prime for sure. Otherwise n is 

prime, with probability of error 2 -m.
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FactorizationFactorization of a 512of a 512--bit numberbit number

On August 22, 1999, a team of scientifists from 6 countries found, after 7 

months of computing, using 300 very fast SGI and SUN workstations and 

Pentium II, factors of the so-called RSA-155 number with 512 bits (about 155 

digits).
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RSA-155 was a number from a Challenge list issue by the US company RSA 

Data Security and “represented'' 95% of 512-bit numbers used as the key to 

protect electronic commerce and financinal transmissions on Internet.

Factorization of RSA-155 would require in total 37 years of computing time on 

a single computer.

When in 1977 Rivest and his colleagues challenged the world to factor RSA-

129, he estimated that, using knowledge of that time, factorization of RSA-129 

would require 1016 years.
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LARGE NUMBERSLARGE NUMBERS

Hindus named many large numbers - one having 153 digits.

Romans initially had no terms for numbers larger than 104.

Greeks had a popular belief that no number is larger than the total count of sand 

grains needed to fill the universe.

Large numbers with special names:

googol - 10100 golplex - 1010^100
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FACTORIZATION of very large NUMBERS

W. Keller factorized F23471 which has 107000 digits. 

J. Harley factorized: 1010^1000 +1.

One factor: 316,912,650,057,350,374,175,801,344,000,001

1992 E. Crandal, Doenias proved, using a computer that F22, which has more than 

million of digits, is composite (but no factor of F22 is known).

Number was used to develop a theory of the distribution of prime numbers.
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DESIGN OF GOOD RSA CRYPTOSYSTEMSDESIGN OF GOOD RSA CRYPTOSYSTEMS

Claim 1. Difference |p-q| should not be small.

Indeed, if |p - q| is small, and p > q, then (p + q)/2 is only slightly larger than 
because 

In addition is a square, say y2. 

In order to factor n, it is then enough to test x > until x is found such that x2 - n is 
a square, say y2. In such a case 

p + q = 2x, p – q = 2y and therefore p = x + y, q = x - y.
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Claim 2. gcd(p-1, q-1) should not be large.

Indeed, in the opposite case s = lcm(p-1, q-1) is much smaller than If

then, for some integer k,

since p - 1|s, q - 1|s and therefore wk1s ≡ 1 mod p and wks+1 ≡ w mod q. Hence,  d' 
can serve as a decryption exponent.

Moreover, in such a case s can be obtained by testing.

Question Is there enough primes (to choose again and again new ones)? 

No problem, the number of primes of length 512 bit or less exceeds 10150.
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How important is How important is factorizationfactorization for breaking RSA?for breaking RSA?

1. If integer factorization is feasible, then RSA is breakable.
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2. There is no proof that factorization is needed to break RSA.

3. If a method of breaking RSA would provide an effective way to get a trapdoor 

information, then factorization could be done effectively.

Theorem Any algorithm to compute φ(n) can be used to factor integers with the 

same complexity.

Theorem Any algorithm for computing d can be converted into a break randomized

algorithm for factoring integers with the same complexity.

4. There are setups in which RSA can be broken without factoring modulus n. 

Example An agency chooses p, q and computes a modulus n = pq that is 

publicized and common to all users U1, U2 and also encryption exponents e1, e2,…

are publicized. Each user Ui gets his decryption exponent di.

In such a setting any user is able to find in deterministic quadratic time another 

user's decryption exponent.
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We show two important properties of the functions half and parity.

1. Polynomial time computational equivalence of the functions half and parity
follows from the following identities

and the multiplicative rule ek(w1)ek(w2) = ek(w1w2).

Security of RSASecurity of RSA

None of the numerous attempts to develop attacks on RSA has turned out to be 
successful.

There are various results showing that it is impossible to obtain even only  partial

information about the plaintext from the cryptotext produces by the RSA

cryptosystem.

We will show that were the following two functions, computationally

polynomially equivalent, be efficiently computable, then the RSA cryptosystem

with  the encryption (decryption) algorithm ek (dk) would be breakable.

parityek(c) = the least significant bit of such an w that ek(w) = c;
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2. There is an efficient algorithm  to determine  plaintexts w from the cryptotexts c
obtained by RSA-decryption provided efficiently computable function half can be 
used as the oracle:
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Security of RSASecurity of RSA

BREAKING RSA USING AN ORACLE

Algorithm:

for i = 0 to [lg n] do

c i ← half(c); c ← (c × ek(2)) mod n

l ← 0; u ← n

for i = 0 to [lg n] do

m ← (i+ u) / 2;

if c i = 1 then i ← m else u ← m;

output ← [u]

Indeed, in the first cycle 

is computed for 0 ≤ i ≤ lg n.
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In the second part of the algorithm binary search is used to determine interval in 

which w lies. For example, we have that
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Security of RSASecurity of RSA

There are many results for RSA showing that certain parts are as hard as whole. 

For example any feasible algorithm to determine the last bit of the plaintext can be 

converted into a feasible algorithm to determine the whole plaintext.

Example Assume that we have an algorithm H to determine whether a plaintext x

designed in RSA with public key e, n is smaller than n / 2 if the cryptotext y is 

given.

We construct an algorithm A to determine in which of the intervals (jn/8, (j +1)n/8), 

0 ≤ j ≤ 7 the plaintext lies.

Basic idea H can be used to decide whether the plaintexts for cryptotexts xe mod n,

2exe mod n, 4exe mod n are smaller than n / 2 .

Answers

yes, yes, yes 0 < x < n/8 no, yes, yes n/2 < x < 5n/8

yes, yes, no n/8 < x < n/4 no, yes, no 5n/8 < x < 3n/4 

yes, no, yes n/4 < x < 3n/8 no, no, yes 3n/4 < x < 7n/8 

yes, no, no 3n/8 < x < n/2 no, no, no 7n/8 < x < n
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RSA with a composite RSA with a composite ““to be a prime''to be a prime''

Let us explore what happens if some integer p used,  as  a prime, to design a RSA  
is actually not a prime.

Let n = pq where q be a prime, but p = p1p2, where p1, p2 are primes.  In such a 
case

but assume that the RSA-designer works with

Let u = lcm(p1 - 1, p2 - 1, q -1) and let gcd(w, n) = 1. In such a case

and as a consequence

In such a case u divides and let us assume that also u divides  

Then

So if ed ≡ 1 mod φ1(n), then encryption and decryption work as if p were prime.
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Example p = 91 = 7 ·13, q = 41, n = 3731, φ1(n) = 3600, φ(n) = 2880, lcm(6, 12, 40)
= 120, 120|φ1(n).

If gcd(d, φ1(n)) = 1, then gcd(d, φ(n)) = 1 ⇒ one can compute e using φ1(n). 
However, if u does not divide φ1(n), then the cryptosystem does not work properly.



41Public-key cryptography

Two users should not use the same modulusTwo users should not use the same modulus

Otherwise, users, say A and B,  would be able to decrypt messages of each other using the
following method. 

Decryption: B computes

Since

it holds:

and therefore

m and eA have no common divisor and therefore there exist integers u, v such that

um + veA = 1

Since m is a multiple of φ(n) we have

and since eAdA ≡ 1 mod φ(n) we have

and therefore

is a decryption exponent of A. Indeed, for a cryptotext c:
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PrivatePrivate--key versus publickey versus public--key cryptographykey cryptography

• The prime advantage of public-key cryptography is increased security - the 

private keys do not ever need to be transmitted or revealed to anyone.

IV054

• Public key cryptography is not meant to replace secret-key cryptography, but 

rather to supplement it, to make it more secure.

• Example RSA and DES (AES) are usually combined as follows

1. The message is encrypted with a random DES key

2. DES-key is encrypted with RSA

3. DES-encrypted message and RSA-encrypted DES-key are sent.

This protocol is called RSA digital envelope.

• In software (hardware) DES is generally about 100 (1000) times faster than RSA.

If n users communicate with secrete-key cryptography, they need n (n - 1) / 2 keys. 

If n users communicate with  public-key cryptography 2n keys are sufficient.

Public-key cryptography allows spontaneous communication.
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KERBEROSKERBEROSIV054

We describe a popular key distribution protocol with trusted authority 

TA, where each user A shares a secrete KA with TA.

• To communicate with the user B the user A asks TA a session key

• TA chooses a random session key K, a time-stamp T, and a lifetime 

limit L.

• TA computes

and sends m1, m2 to A.

•A decrypts m1, recovers K, T, L, ID(B), computes m3=eK(ID(B), T)

and sends m2 and m3 to B.

• B decrypts m2 and m3, checks whether two values of T and of ID(B)

are the same. If so, B computes m4=eK(T+1) and sends it to A.

• A decrypts m4 and verifies that she got T+1.
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