
Other cryptosystems 1

CHAPTER CHAPTER 66:: Other cryptosystems , pseudoOther cryptosystems , pseudo--

random numbers generators and hash functionsrandom numbers generators and hash functions

A large number of interesting and important cryptosystems have already been

designed. In this chapter we present some of them in order to illustrate:

• Principles and techniques that can be used to design cryptosystems.

At first, we present several cryptosystems security of which is based on the

fact that computation of discrete logarithms is infeasible in some groups.

Secondly, we discuss pseudo-random number generators and hash functions

– other very important concepts of modern cryptography.

Finally, we discuss one of the fundamental questions of modern cryptography:

when can a cryptosystem be considered as (computationally) perfectly

secure?

In order to do that we will:

• discuss the role randomness play in the cryptography;

• introduce the very fundamental definitions of perfect security of cryptosystem

• present some examples of perfectly secure cryptosystems.

IV054

2Other cryptosystems

Decryption: Using a method to compute w given c with Chinese remainder theorem

one can get that w equals to one of the numbers:

Indeed, it is easy to verify, using Euler's criterion which says that if c is a quadratic

residue modulo p, then , that

are two square roots of c modulo p and q. One can now obtain four square roots of

c modulo n using the method shown in Appendix.

Rabin cryptosystemRabin cryptosystem

Primes p, q of the form 4k + 3 are kept secret, n = pq is the public key.

Encryption: of a plaintext w < n

c = w2 mod n

IV054

() () qcpc qp mod and mod 4/14/1 ++ ±±

() ()pc p mod 12/1 ≡−

() ()

() () ncqwncw

ncpwncw

qq

pp

mod mod

mod mod

4/1

4

4/1

3

4/1

2

4/1

1

++

++

−==

−==

In case the plaintext w is a meaningful English text, it should be easy to determine

w from w1, w2, w3, w4.

However, if w is a random string (say, for a key exchange) it is impossible to

determine w from w1, w2, w3, w4.

Rabin did not propose this system as a practical cryptosystem.

3Other cryptosystems

GeneralizedGeneralized RabinRabin cryptosystemcryptosystem

Public key: n, B (0 ≤ B ≤ n -1)
Trapdoor: primes p, q (n = pq) of the form 4k+3

Encryption: e(x) = x (x + B) mod n

Decryption:

It is easy to verify that if is a nontrivial square root of 1 modulo n, then there are

four decryptions of e(x):

IV054

() () nyyd BB mod
24

2 −+=
ω

() ()
2222

 , , , BBBB xxxx −+−−+− ωω

()() ()() ()() () () ()xeBxxxxxxe BBBBBBBB =+=−+=++−+=−+ 22

2

2

2

2

222222
ωωωω

Example

Decryption of the generalized Rabin cryptosystem can be reduced to the

decryption of the original Rabin cryptosystem.

Indeed, the equation => x2 + Bx ≡ y (mod n)
can be transformed by the substitution x = x1 – B/2 => into

x1
2 ≡ B2/4 + y (mod n) and, by defining c = B2/4 + y, => into x1

2 ≡ c (mod n)

Decryption can be done by factoring n and solving congruences

x1
2 ≡ c (mod p) x1

2 ≡ c (mod q)

4Other cryptosystems

SecuritySecurity of of RabinRabin cryptosystemcryptosystem

We show that any hypothetical decryption algorithm A for Rabin cryptosystem,

can be used, as an oracle, in the following Las Vegas algorithm, to factor an

integer n.

Algorithm:

1. Choose a random r , 1 ≤ r ≤ n -1;
2. Compute y = (r2 - B2/4) mod n; {y = ek(r – B/2)}.

3. Call A(y), to obtain a decryption

4. Compute x1 = x + B/2; {x1
2 ≡ r2 mod n}

5. if x1 = ± r then quit (failure)

else gcd(x1 + r, n) = p or q

IV054

() ;mod
24

2

nyx BB −+=

rωIndeed, after Step 4, either x1 = ± r mod n or x1 = ± mod n.

In the second case we have

n | (x1 - r)(x1 + r),

but n does not divide either factor x1 - r or x1 + r.

Therefore computation of gcd(x1 + r, n) or gcd(x1 - r, n) must yield factors of n.

5Other cryptosystems

ElGamalElGamal cryptosystemcryptosystem

Design: choose a large prime p – (with at least 150 digits).

choose two random integers 1 ≤ q, x < p - where q is a primitive element of Z*p
calculate y = qx mod p.

IV054

.modmod pbapw x

a

b
x

−==

()pw

pqa

rx

rx

x

r

x q

wq

a

wy

a

b

rxx

mod

mod

≡≡≡

≡

Public key: p, q, y; trapdoor: x

Encryption of a plaintext w: choose a random r and compute

a = qr mod p, b = yrw mod p

Cryptotext: c = (a, b)

(Cryptotext contains indirectly r and the plaintext is masked by

multiplying with yr (and taking modulo p))

Decryption:

Proof of correctness:

Note: Security of the ElGamal cryptosystem is based on infeasibility of the discrete

logarithm computation.

6Other cryptosystems

ShanksShanks’’ algorithmalgorithm for for discretediscrete logarithmlogarithm

Let m = [sqrt(p - 1)]. The following algorithms computes lgqy in Z*p.

1. Compute qmjmod p, 0 ≤ j ≤ m - 1.

2. Create list L1 of m pairs (j, qmjmod p), sorted by the second item.

3. Compute yq -i mod p, 0 ≤ i ≤ m - 1.

4. Create list L2 of pairs (i, yq
-i mod p) sorted by the second item.

5. Find two pairs, one (j, z) ∈ L1 and second (i, z) ∈ L2

IV054

If such a search is successful, then

qmj mod p = z = yq -i mod p

and as the result

lgqy ≡ (mj + i) mod (p -1).
Therefore

qmj+i ≡ y (mod p)
On the other hand, for any y we can write

lgqy = mj + i,

For some 0 ≤ i, j ≤ m - 1. Hence the search in the Step 5 of the algorithm has to be

successful.

7Other cryptosystems

Bit security of discrete logarithmBit security of discrete logarithm

Let us consider problem to compute Li(y) = i-th least significant bit of lgqy in Z*p.

Result 1 L1(y) can be computed efficiently.

To show that we use the fact that the set QR(p) has (p -1)/2 elements.

Let q be a primitive element of Z*p. Clearly, q
a ∈QR(p) if a is even. Since the

elements

q0 mod p, q2 mod p, …, q p-3 mod p

are all distinct, we have that

QR(p) = {q 2i mod p | 0 ≤ i ≤ (p - 3)/2}
Consequence: y is a quadratic residue iff lgqy is even, that is iff L1(y) = 0.

By Euler's criterion y is a quadratic residue if y(p-1)/2 ≡ 1 mod p
L1(y) can therefore be computed as follows:

L1(y) = 0 if y(p-1)/2 ≡ 1 mod p;
L1(y) = 1 otherwise

IV054

Result 2 Efficient computability of Li(y), i > 1 in Z*p would imply efficient

computability of the discrete logarithm in Z*p.

8Other cryptosystems

Williams cryptosystem Williams cryptosystem -- basicsbasics

Similar to RSA, but number operations are performed in a quadratic field.

Cryptoanalysis of Williams cryptosystem is equivalent to factoring.

Consider numbers of the form

where a, b, c are integers.

If c remains fixed α can be viewed as a pair (a, b).

α1 + α 2 = (a 1, b 1) + (a 2,b 2) = (a 1 + a 2, b 1 + b2)

α 1α 2 = (a 1, b 1) · (a 2,b 2) = (a 1a 2 + c b 1b 2, a 1b 2 + b1a 2)

The conjugate α of α is defined by

IV054

cba += α

cba −= α

() ()

() ()
() ()

c

b

i

i

iii

ii

Y

X

2

2

αα
αα
αα

αα

α

α
−

−
−

+

==

=
−

−

() ()
() () c

ααα

ααα

ii

i

ii

i

YX

cYX

−=

+=

Auxiliary functions:

Hence

9Other cryptosystems

Williams cryptosystem Williams cryptosystem -- efficient exponentiationefficient exponentiation

Assume now

a 2 - cb 2 = 1

Then αα = 1 and consequently

XI
2 - cYI

2 = 1

Moreover, for j ≥ i
XI+J = 2XI XJ – XJ – I
YI+J = 2YI XJ – YJ – I

From these and following equations:

XI+J = 2XI XJ + cYI YJ
YI+J = 2YI XJ + XI YJ

we get the recursive formulas:

X 2i = X i
2 + cY i

2 = 2X i
2 - 1

Y 2i = 2X iY i

X 2i+1 = 2X iY i+1 – X 1

Y 2i+1 = 2X iY i+1 – Y 1

Consequences: 1. X i and Y i can be, given i, computed fast.

Remark Since X 0 = 1, X 1 = a, X i does not depend on b.

IV054

10Other cryptosystems

WHEN is a CRYPTOSYSTEM (perfectly) SECURE?WHEN is a CRYPTOSYSTEM (perfectly) SECURE?

First question:. Is it enough for perfect security of a cryptosystem that one

cannot get a plaintext from a cryptotext?

NO, NO, NO

WHY?

For many applications it is not acceptable that some information about the

plaintext could be obtained.

• Intuitively, a cryptosystem is (perfectly) secure if one cannot get any (new)

information about the corresponding plaintext from any cryptotext, even if

some a priori information about plaintext is known.

• It is very nontrivial to define correctly when a cryptosystem is

(computationally) perfectly secure.

• It has been shown that perfectly secure cryptosystems have to use

randomized encryptions.

IV054

11Other cryptosystems

Cryptography and RandomnessCryptography and Randomness

Randomness and cryptography are deeply related.

1. Prime goal of encryption methods is to transform a highly nonrandom plaintext

into a highly random cryptotext. (Avalanche effect.)

Example Let ek be an encryption algorithm, x0 be a plaintext. And

x i = ek (x i-1), i ≥ 1.
It is intuitive clear that if ek is “cryptographically secure'', then it is likely that the

sequence x 0 x 1 x 2 x 3 is quite random.

Perfect encryption can therefore produce quite perfect (pseudo)randomness.

IV054

2. The other side of the relation is more complex.

It is clear that perfect randomness together with ONE-TIME PAD cryptosystem

produces perfect secrecy. The price to pay: a key as long as plaintext is needed.

The way out seems to be to use an encryption algorithm with a pseudo-random

generator to generate a long pseudo-random sequence from a short seed and to

use the resulting sequence with ONE-TIME PAD.

Basic question: When is a pseudo-random generator good enough for

cryptographical purposes?

12Other cryptosystems

Secure encryptions Secure encryptions -- basic concepts Ibasic concepts I

We now start to discuss a very nontrivial question: when is an encryption

scheme computationally perfectly SECURE?

First ,some very basic technical concepts:

Definition A function f:N → R is a negligible function if for any polynomial p (n)

and almost all n, it holds

IV054

() () .
1

np
nf ≤

() ()[] ()[]1Pr1Pr =−== nnA YAXAnd

Definition - computational distinguishibility Let X = {X n} n∈N and Y = {Y n} n∈N be

probability ensembles such that each X n and Y n ranges over strings of length

n. We say that X and Y are computationally indistinguishable if for every

feasible algorithm A the difference

is a negligible function in n.

13Other cryptosystems

Secure encryptions Secure encryptions -- pseudorandom generatorspseudorandom generators

In cryptography random sequences can be fully replaced by pseudorandom
sequences generated by (cryptographically perfect) pseudorandom generators.

Definition - pseudorandom generator Let l (n):N → N be such that l(n) > n for all n.
A (computationally indistinguishable) pseudorandom generator with stretch function
l, is an efficient deterministic algorithm which on input of a random n-bit seed
outputs a l(n)-bit sequence which is computationally indistinguishable from a
random l(n)-bit sequence.

IV054

() () ()() () ()()sfbsfbsbsG
sl 1−⋅⋅⋅⋅=

Theorem Let f be a one-way function which is length preserving and efficiently
computable, and b be a hard core predicate of f, then

is a (computationally indistinguishable) pseudorandom generator with stretch
function l(n).

Definition A predicate b is a hard core predicate of the function f if b is easy to
evaluate, but b(x) is hard to predict from f(x). (That is, it is unfeasible, given f(x)
when x is uniformly chosen, to predict b(x) substantially better than with probability
1/2.)

It is conjectured that the least significant bit of the modular squaring function x2

mod n is a hard-core predicate.

Theorem A (good) pseudorandom generator exists if a one-way function exists.

14Other cryptosystems

Remark: The concept of a cryptographically strong pseudo-random generator is

one of the key concepts of the foundation of computing.

Indeed, a cryptographically strong pseudo-random generator exists if and only if a

one-way function exists what is equivalent with P ≠ UP and what implies P ≠ NP.

Cryptographically strong pseudoCryptographically strong pseudo--random generatorsrandom generators

Fundamental question: when is a pseudo-random generator good enough for

cryptographical purposes?

Basic concept: A pseudo-random generator is called cryptographically strong if the

sequence of bits it produces, from a short random seed, is so good for using with

ONE-TIME PAD cryptosystem, that no polynomial time algorithm allows a

cryptanalyst to learn any information about the plaintext from the cryptotext.

A cryptographically strong pseudo-random generator would therefore provide

sufficient security in a secret-key cryptosystem if both parties agree on some short

seed and never use it twice.

As discussed later: Cryptographically strong pseudo-random generators could

provide perfect secrecy also for public-key cryptography.

Problem: Do cryptographically strong pseudo-random generators exist?

IV054

15Other cryptosystems

Candidates for cryptographically strongCandidates for cryptographically strong pseudopseudo--random random

generatorsgenerators

So far there are only candidates for cryptographically strong pseudo-random
generators.

For example, cryptographically strong are all pseudo-random generators that are
unpredictable to the left in the sense that a cryptanalyst that knows the generator
and sees the whole generated sequence except its first bit has no better way to
find out this first bit than to toss the coin.

It has been shown that if integer factoring is intractable, then the so-called BBS
pseudo-random generator, discussed below, is unpredictable to the left.

(We make use of the fact that if factoring is unfeasible, then for almost all quadratic
residues x mod n, coin-tossing is the best possible way to estimate the least
significant bit of x after seeing x2 mod n.)

Let n be a Blum integer. Choose a random quadratic residue x0 (modulo n).

For i ≥ 0 let
x i+1 = x i

2mod n, b i = the least significant bit of x I

For each integer i, let

BBS n, i (x0) = b0…b i-1

be the first i bits of the pseudo-random sequence generated from the seed x0 by
the BBS pseudo-random generator.

IV054

16Other cryptosystems

BBSBBS pseudopseudo--random generator random generator -- analysisanalysis

Choose random x, relatively prime to n, compute x0 = x
2mod n

x i+1 = x i
2mod n, b i = the least significant bit of x I

BBS n, i (x0) = b0…b i-1

IV054

Assume that the pseudo-random generator BBS with a Blum integer is not

unpredictable to the left.

Let y be a quadratic residue from Zn*.

Compute BBS n, I -1 (y) for some i > 1.

Let us pretend that last (i -1) of BBS n, i (x) are actually the first (i -1) bits of

BBS n, I -1 (y), where x is the principal square root of y.

Hence, if the BBS pseudo-random generator is not unpredictable to the left,

then there exists a better method than coin-tossing to determine the least

significant bit of x, what is, as mentioned above, impossible.

17Other cryptosystems

Randomized encryptionsRandomized encryptions

From security point of view, public-key cryptography with deterministic encryptions
has the following serious drawback:

A cryptoanalyst who knows the public encryption function e k and a cryptotext c can
try to guess a plaintext w, compute e k (w) and compare it with c.

The purpose of randomized encryptions is to encrypt messages, using randomized
algorithms, in such a way that one can prove that no feasible computation on the
cryptotext can provide any information whatsoever about the corresponding
plaintext (except with a negligible probability).

IV054

Formal setting: Given: plaintext-space P

cryptotext C

key-space K

random-space R

encryption: e k: P х R → C

decryption: d k: C → P or C → 2P such that for any p, r:

d k (e k (p, r)) = p.

• d k, e k should be easy to compute.

• Given e k, it should be unfeasible to determine d k.

18Other cryptosystems

Secure encryption Secure encryption -- First definitionFirst definition

Definition - semantic security of encryption A cryptographic system is

semantically secure if for every feasible algorithm A, there exists a feasible

algorithm B so that for every two functions

f, h: {0,1}* → {0,1} n

and all probability ensembles {X n} n∈N, where X n ranges over {0,1}
n

where is a negligible function.

IV054

() ()() ()[] ()() ()[] (),Pr,Pr nXfXhBXfXhXEA nnnnn µ+=<=

µ

It can be shown that any semantically secure public-key cryptosystem must

use a randomized encryption algorithm.

RSA cryptosystem is not secure in the above sense. However, randomized

versions of RSA are semantically secure.

19Other cryptosystems

Secure encryptions Secure encryptions -- Second definitionSecond definition

Definition A randomized-encryption cryptosystem is polynomial time secure if, for
any c∈N and sufficiently large s∈N (security parameter), any randomized
polynomial time algorithms that takes as input s (in unary) and the public key,
cannot distinguish between randomized encryptions, by that key, of two given
messages of length c, with the probability larger than 1/2 +1/sc.

Both definitions are equivalent.

IV054

Example of a polynomial-time secure randomized (Bloom-Goldwasser) encryption:

p, q - large Blum primes n = p х q - key

Plaintext-space - all binary strings

Random-space – QR n

Crypto-space - QR n х {0,1}*

Encryption: Let w be a t-bit plaintext and x0 a random quadratic residue modulo n.

Compute x t and BBS n,t (x0) using the recurrence

x i+1 = x i
2mod n

Cryptotext: (x t, w ⊕ BBS n,t(x0))

Decryption: Legal user, knowing p, q, can compute x0 from x t, then BBS n,t(x0), and
finally w.

Other cryptosystems 20

HASH FUNCTIONSHASH FUNCTIONS

Another very simple and very important cryptographic concept is that

of a hash function.

Hash functions

h:{0,1}* → {0,1}m ; h:{0,1}n→ {0,1}m, n>m

map long messages into short ones, called usually message digest or

hash or fingerprints, in a way that has important cryptographic

properties.

Digital signatures are one of important applications of hash functions.

In most of the digital signature schemes, to be discussed in the next

chapter, the length of a signature is at least as long as of the message

being signed. This is clearly a big disadvantage.

To remedy this situation, signing procedure is applied to a hash of the

message, rather than to the message itself. This is OK provided the

hash function has good cryptographic properties, discussed next.

IV054

Other cryptosystems 21

HASH FUNCTIONS & DIGITAL SIGNATUREHASH FUNCTIONS & DIGITAL SIGNATURE

Basic use of hash functions for digital signatures:

If Alice wants to sign a message w, she first creates hash z=h(w), then

computes signature s of the hash z, using a signing algorithm sig and a

key k:

s=sigk(z)

and transmits the pair (w,s).

To verify a signature, a verification algorithm ver and the key k are

used. At first z=h(w) is computed and then it is verified that

verk(z,s)=true.

IV054

Other cryptosystems 22

PROPERTIES HASH FUNCTIONS NEED I.PROPERTIES HASH FUNCTIONS NEED I.

We now derive basic properties cryptographically good hash functions

should have by analysing several possible attacks on their use.

Attack 1 If Eve gets a valid signature (w,y), where y=sigk(h(w)) and she

would be able to find w’ such that h(w’)=h(w), then also (w’,y), a

forgery, would be a valid signature.

Cryptographically good hash function should therefore have the

following weak collision-free property

Definition 1.Let w be a message. A hash function h is weakly collision-

free for w, if it is computationally infeasible to find a w’ such that

h(w)=h(w’).

IV054

Other cryptosystems 23

PROPERTIES HASH FUNCTIONS NEED II.PROPERTIES HASH FUNCTIONS NEED II.

Attack 2 If Eve finds two w and w’ such that h(w’)=h(w), she can ask

Alice to sign h(w) to get signature s and than Eve can create forgery

(w’,s).

Cryptographically good hash function should therefore have the

following strong collision-free property

Definition 2. A hash function h is strongly collision-free if it is

computationally infeasible to find w≠w such that h(w)=h(w’).

IV054

Other cryptosystems 24

PROPERTIES HASH FUNCTIONS NEED III.PROPERTIES HASH FUNCTIONS NEED III.

Attack 3 If Eve can compute signature s of a random z, and then she

can find w such that z=h(w), then Eve can create forgery (w,s).

To exclude such an attack, hash functions should have the following

one-wayness property.

Definition 3. A hash function h is one-way if it is computationally

infeasible to find, given z, an w such that h(w)=z.

One can show that if a hash function has strongly collision-free

property, then it has one-wayness property.

IV054

25Other cryptosystems

Hash functions and integrity of data

An important use of hash functions is to protect integrity of data in the
following way:

The problem of protecting data of arbitrary length is reduced, using
hash functions, to the problem to protect integrity of the data of fixed,
small, length, fingerprints.

In addition, to sending only a message w through an unreliable (and
cheap channel, one sends also its small hash h(w) through a very
secure (and so expensive) channel.

The receiver, familiar also with the hashing function h being used, can
then verify the integrity of the message w’ he receives by computing
h(w’) and comparing

h(w) and h(w’)

Other cryptosystems 26

Example 2 For a vector a=(a1,…, ak) of integers let

where n is a product of two large integers.

This functions is one-way, but not weakly collision-free.

EXAMPLESEXAMPLES

Example 1 For a vector a=(a1,…, ak) of integers let

where n is a product of two large integers.

This hash functions does not meet any of the three properties

mentioned on the last slide.

IV054

∑
=

=
k

i

i naaH
0

mod)(

∑
=

=
k

i

i naaH
0

2 mod)()(

27Other cryptosystems

Hash functions and commitments

A commitment to a data w, without revealing w, using a

hash function h, can be done as follows:

Commitment phase: To commit to a w choose a random r

and make public h(wr).

Opening phase: reveal r and w.

For this application the hash function h has to be one-way:

from h(wr) it should be unfeasible to determine wr

Other cryptosystems 28

FIND COLLISIONS with INVERSION ALGORITHMFIND COLLISIONS with INVERSION ALGORITHM

Theorem Let h:X→Z be a hash function where X and Z are finite and

|X| ≥ 2|Z|. If there is an inversion algorithm A for h, then there exists

randomized algorithm to find collisions.

IV054

Xx∈

,
2

1

|][|

1|][|

||

1
)(≥−= ∑

∈Xx x

x

X
successp

Xx∈

Sketch of the proof. One can easily show that the following algorithm

1. Choose a random and compute z=h(x); Compute x1=A(z);

2. if x1≠x, then x1 and x collide (under h – success) else failure

has probability of success

where, for ,[x] is the set of elements having the same hash as

x.

29Other cryptosystems

VARIATION on BIRTHDAY PARADOXVARIATION on BIRTHDAY PARADOX

It is well know that if we have 23 (39) [40] people in one room, then

the probability that two of them have the same birthday is more

than 50% (70%)[89%] – this is called a Birthday paradox.

IV054

Another version of the birthday paradox: Let us have n objects and two

groups of r people. If , then probability that someone from one

group chooses the same object as someone from the other group is

(1-e-λ).

nr λ≈

)2(177.1 λ≈≈ rnr

More generally, if we have n objects and r people, each choosing one
object (so that several can choose the same object), then if

, then probability that two people choose the
same object is 50% (1-e-λ)%.

30Other cryptosystems

Birthday Paradox attack on digital signaturesBirthday Paradox attack on digital signaturesIV054

Similarly, Fred makes 230 changes of the fraudulent document.

Considering birthday problem with n = 250, r = 230 we get that r = ,

with = 210 and therefore with probability 1- e-1024 1 there is a

version of the good document that has the same hash as a version of

the fraudulent document.

Finding a match, Fred can ask Alice to sign a good version and then

append the signature to the fraudulent contract.

nλ
λ ≈

Assume Alice uses a hash function that produces 50 bits.

Fred, who wants Alice to sign a fraudulent contract, find 30 places in

a good document, where he can make change in the document

(adding a coma, space, …) such that Alice would not notice that. By

choosing at each place whether to make or not a change, he can

produce 230 documents essentially identical with the original good

document.

31Other cryptosystems

HASH FUNCTION DOMAIN LOWER BOUNDHASH FUNCTION DOMAIN LOWER BOUNDIV054

Birthday paradox imposes a lower bound on the sizes of message

digests.

For example a 40-bit message would be insecure because a collision

could be found with probability 0.5 with just over 2020 random hashes.

Minimum acceptable size of message digest seems to be 128 and

therefore 160 are used in such important systems as DSS – Digital

Signature Schemes (standard).

32Other cryptosystems

AN ALMOST GOOD HASH FUNCTIONAN ALMOST GOOD HASH FUNCTIONIV054

We show an example of the hash function (so called Discrete Log

Hash Function) that seems to have as the only drawback that it is too

slow to be used in practice:

Let p be a large prime such that q = (p -1)/2 is also prime and let α, β

be two primitive roots modulo p. Denote a = logα β (that is β = α
a).

h will map two integers mod q to an integer mod p, for m = x0 + x1q,

with 0 ≤ x0, x1 ≤ q –1 as follows,
h(x0, x1) = h(m) = (mod p).

10 xx βα

To show that h is one-way and collision-free the following fact can

be used:

FACT: If we know different messages m1 andm2 such that h(m1) =

h(m2), then we can compute logα β.

33Other cryptosystems

EXTENDING HASH FUNCTIONSEXTENDING HASH FUNCTIONSIV054

Let h :{0, 1}m → {0, 1}t be a strongly collision-free hash function,
where m > t +1.

We design now a strongly collision-free hash function

h* :

Let a bit string x, |x| = n > m, has decomposition

x = x1 || x2 . . . || xk ,

where |xi| = m – t – 1 if i < k and |xk| = m – t – 1 – d for some d.

(Hence k = n / (m – t – 1).)

h* will be computed as follows:

1. for i=1 to k-1 do yi := xi ;

2. yk := xk || 0
d ; yk+1 := binary representation of d ;

3. g1 := h(0
t+1 || y1) ;

4. for i=1 to k do gi+1 := h(gi ||1 || yi+1) ;

5. h*(x) := gk+1.

∑
∞

=

→
mi

ti .}1,0{}1,0{

Other cryptosystems 34

HASH FUNCTIONS from CRYPTOSYSTEMSHASH FUNCTIONS from CRYPTOSYSTEMS

Let us have computationally secure cryptosystem with plaintexts, keys

and cryptotexts being binary strings of a fixed length n and with

encryption function ek .

If

x=x1 || x2 || … || xk

is decomposition of x into substrings of length n, g0- is a random string,

and

gi = f(xi , gi-1)

for i=1,..,k, where f is a function that “incorporates” encryption function

ek of the cryptosystem, then

h(x)= gk .

For example such good properties have these two functions:

IV054

11

1

)(),(

)(),(

1

1

−−

−

⊕⊕=

⊕=

−

−

iiigii

iigii

gxxegxf

xxegxf

i

i

Other cryptosystems 35

PRACTICALLY USED HASH FUNCTIONSPRACTICALLY USED HASH FUNCTIONS

A variety of hash functions has been constructed. Very often used

hash functions are MD4, MD5 (created by Rivest in 1990 and 1991

and producing 128 bit message digest).

NIST even published, as a standard, in 1993, SHA (Secure Hash

Algorithm) – producing 160 bit message digest – based on similar

ideas as MD4 and MD5.

A hash function is called secure if it is strongly collision-free.

One of the most important cryptographic results of the last years was

due to the Chinese Wang who has shown that MD4 is not

cryptographically secure.

IV054

36Other cryptosystems

Randomized version of RSARandomized version of RSA--like cryptosystemslike cryptosystems

The scheme works for any trapdoor function (as in case of RSA),

for any pseudorandom generator

G: {0,1} k → {0,1} l, k << l

and any hash function

h: {0,1} l → {0,1} k,

where n = l + k. Given a random seed s ∈ {0,1} k as input, G generates a

pseudorandom bit-sequence of length l.

IV054

{ } ,1,0,:
n

DDDf ⊂→

()() ()()() ()1. step togo If .|| DxrGmhrrGmx ∉⊕⊕⊕=

() ().get and rGambahr ⊕=⊕=

Encryption of a message m ∈ {0,1} l is done as follows:

1. A random string r ∈ {0,1} k is chosen.

2. Set

3. Compute encryption c = f(x) – length of x and of c is n.

Decryption of a cryptotext c.

• Compute f -1(c) = a||b, |a| = l and |b| = k.

• Set

Comment Operation “||'' stands for a concatenation of strings.

37Other cryptosystems

BloomBloom--GoldwasserGoldwasser cryptosystem once more cryptosystem once more

Private key: Blum primes p and q.

IV054

().lsb and ii s=σ
.... 21 mxy σσσ⊕=

() .mod and lsb compute 2

1 nsss iiii ←= =σ
.... 21 my σσσ⊕

Public key: n = pq.

Encryption of x ∈ {0,1} m.

1. Randomly choose s0 ∈ {0, 1, …, n}.

2. For I = 1, 2, …, m + 1 compute

s i ← s i-1
2mod n

The cryptotext is (s m+1, y), where

Decryption: of the cryptotext (r, y):

Let d = 2 –m mod φ (n).
• Let s 1 = r

dmod n.

• For i = 1, …, m,

The plaintext x can then be computed as

38Other cryptosystems

Global goals of cryptographyGlobal goals of cryptography

Cryptosystems and encryption/decryption techniques are only one part of

modern cryptography.

General goal of modern cryptography is construction of schemes which are

robust against malicious attempts to make these schemes to deviate from their

prescribed functionality.

The fact that an adversary can design its attacks after the cryptographic

scheme has been specified, makes design of such cryptographic schemes

very difficult - schemes should be secure under all possible attacks.

In the next chapters several of such most important basic functionalities and

design of secure systems for them will be considered. For example: digital

signatures, user and message authentication,....

Moreover, also such basic primitives as zero-knowledge proofs, needed to

deal with general cryptography problems will be presented and discussed.

We will also discuss cryptographic protocols for a variety of important

applications. For example for voting, digital cash,....

IV054

