2007 - Exercises III.

- 1. Determine whether the following code are cyclic:
 - (a) $C_1 = \{x \mid x \in \mathbb{Z}_3^7 \text{ and } w(x) = 0 \pmod{3}\}$
 - (b) $C_2 = \{x \mid x \in \mathbb{Z}_3^7 \text{ and } x_1 + \ldots + x_7 = 0 \pmod{3}\}$
 - (c) $C_3 = \{x \mid x \in \mathbb{Z}_6^5 \text{ and } x = i \cdot 22222, i \in \mathbb{Z}_6\}$
- 2. Let C be the smallest binary cyclic code which contains the word 011011.
 - (a) List the codewords of C.
 - (b) Determine the polynomial g(x) which generates C.
 - (c) Use g(x) to encode a message 11.
- 3. Find two different binary cyclic codes of length 8 which are equivalent or show that such codes do not exist.
- 4. (a) Factorize $x^6 1 \in \mathbb{F}_3[x]$ into irreducible polynomials.
 - (b) Let n_k be the number of ternary cyclic codes of length 6 and dimension k. Determine n_k for $k \in \{0, 1, ..., 6\}$.
 - (c) For each cyclic code of dimension 5, find the check polynomial and a parity check matrix and determine whether it contains the word 120210.
- 5. Let C_1 and C_2 be linear cyclic codes with generator polynomials $g_1(x)$ and $g_2(x)$. Show that the following code is linear and cyclic and find its generator polynomial.

$$C = \{c_1 + c_2 \mid c_1 \in C_1, \, c_2 \in C_2\}$$

- 6. Let C be a q-ary cyclic code of length n and let f(x) be its generator polynomial. Show that all the codewords $c_0c_1 \ldots c_{n-1} \in C$ satisfy $c_0 + c_1 \cdots + c_{n-1} = 0$ in \mathbb{F}_q if and only if the polynomial x - 1 is a factor of f(x) in $\mathbb{F}_q[x]$.
- 7. Let C_1 and C_2 be cyclic codes of the same length over \mathbb{Z}_q . Is C a cyclic code?
 - (a) $C = \{c_1c_2 \mid c_1 \in C_1, c_2 \in C_2\}$, where c_1c_2 denotes the concatenation of the codewords;
 - (b) $C = C_1 \cup C_2$
 - (c) $C = C_1 \cap C_2$
 - (d) $C = C_1 \cup C_2^{\perp}$
 - (e) $C = \Sigma^* \setminus C_1$, where Σ^* is the set of all strings over \mathbb{Z}_q of the same length as codewords of C_1 ;
 - (f) $C = \{c_1 \oplus c_2 \mid c_1 \in C_1, c_2 \in C_2\}$, where \oplus denotes characterwise addition modulo q.