2007 - Exercises VIII.

- 1. Consider the elliptic curve $y^2 = x^3 + x + 6$ over the field \mathbb{F}_{11} .
 - (a) Determine the number of multiple roots of this elliptic curve.
 - (b) Compute in detail the points (2,7) + (5,2) and (3,6) + (3,6).
- 2. Let E be the elliptic curve $y^2 = x^3 + 2$ over the field \mathbb{F}_7 .
 - (a) Find the points of E.
 - (b) Which group is the elliptic curve E isomorphic to?
- 3. Let $y^2 = x^3 + 9x + 17$ be the elliptic curve over the field \mathbb{F}_{23} . What is the discrete logarithm k of Q = (4, 5) to the base P = (16, 5)?
- 4. Consider the following elliptic curve cryptosystem.

An elliptic curve $E: y^2 = x^3 + ax + b$ over the field \mathbb{Z}_p and a generator point $G \in E$ of order n are public parameters.

Each user U selects as a private key a number $s_U < n$ and computes the corresponding public key $P_U = s_U G$.

To encrypt a message point M, one selects a random k and computes the ciphertext pair of points $C = [(kG), (M + kP_U)].$

- (a) Show how the user U can decrypt C and obtain M.
- (b) Let *E* be $y^2 = x^3 + x + 6 \pmod{11}$, G = (2,7) and $s_A = 7$. Recover the plaintext message point *M* from C = [(8,3), (10,2)].
- 5. Factorize n = 4453 using the elliptic curve $y^2 = x^3 + 10x 2 \pmod{n}$ and the point P = (1, 3).
- 6. (a) Factorize the following numbers $n_1 = 527$ and $n_2 = 1241$ using the Pollard's ρ -algorithm (the first one from the lecture) with $f(x) = x^2 + 1$ and $x_0 = 0$.
 - (b) Factorize the following numbers $n_1 = 65$ (b = 10) and $n_2 = 15770708441$ (b = 200) using the Pollard's p 1 algorithm.
- 7. Consider the Pollard's ρ -algorithm with a pseudo-random function $f(x) = x^2 + c \pmod{n}$ with a randomly chosen $c, 0 \le c < n$. Why should be the values c = 0 and c = n 2 avoided?
- 8. Show that $n^{13} n$ is a multiple of 420 for any odd n.