Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
	0000000		0000000000	

Maximum Likelihood

Greg Ewing

CIBIV

Introduction oo	The Likelihood	Optimisation 00	Bootstrap ೦೦೦೦೦೦೦೦೦೦	Hypothesis testing
Outline	uction			

Markov Process

Introduction 00	The Likelihood	Optimisation oo	Bootstrap oooooooooo	Hypothesis testing
Outline				

- Markov Process
- 2 The Likelihood
 - The Rate Matrix
 - Rates and Probabilities

Introduction oo	The Likelihood	Optimisation 00	Bootstrap oooooooooo	Hypothesis testing
Outline	uction			

- Markov Process
- 2 The Likelihood
 - The Rate Matrix
 - Rates and Probabilities
- Optimisation
 - Local Maxima

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
oo	0000000	oo	oooooooooo	
Outline				

Markov Process

2 The Likelihood

- The Rate Matrix
- Rates and Probabilities

Optimisation

Local Maxima

Bootstrap

- Introduction
- Nonparametric Bootstrap
- Parametric bootstrap
- Consensus and interpretation

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
00	0000000	oo	oooooooooo	
Outline	duction			

- Markov Process
- 2 The Likelihood
 - The Rate Matrix
 - Rates and Probabilities
- Optimisation
 - Local Maxima
- 4
- Bootstrap
- Introduction
- Nonparametric Bootstrap
- Parametric bootstrap
- Consensus and interpretation
- 5 Hypothesis testing
 - LRT
 - KH & SH

Introduction	The Likelihood	Optimisation	Bootstrap 000000000	Hypothesis testing
Ou 1	tline Introduction Markov Process			
2	The LikelihoodThe Rate MatrixRates and Probabil	ities		
3	Optimisation Local Maxima 			
4	 Bootstrap Introduction Nonparametric Boo Parametric bootstration Consensus and interval 	otstrap ap erpretation		
5	Hypothesis testing			

- LRT
- KH & SH

Stochastic Models							

A mathematical description of the process of interest, usually describing how things change over time.

• Mathematically define how things change over time.

00	00000000	00	0000000000	000		
Stochastic Models						

- Mathematically define how things change over time.
- So if we have a given state, we can predict what will happen next how the system will behave.

- Mathematically define how things change over time.
- So if we have a given state, we can predict what will happen next how the system will behave.
- Sometimes we can only predict the probability that something will happen at some time in the future.

- Mathematically define how things change over time.
- So if we have a given state, we can predict what will happen next how the system will behave.
- Sometimes we can only predict the probability that something will happen at some time in the future.
- This is a stochastic model.

00	0000000	00	0000000000	000			
Stochastic Models							

- Mathematically define how things change over time.
- So if we have a given state, we can predict what will happen next how the system will behave.
- Sometimes we can only predict the probability that something will happen at some time in the future.
- This is a stochastic model.
- Allows a more rigorous mathematical treatment of the problem of tree reconstruction.

Introduction	The Likelihood	Optimisation 00	Bootstrap 000000000	Hypothesis testing
Introduction:	ML on Coin Tos	sing		

Introduction: ML on Coin Tossing						
Introduction 00	The Likelihood	Optimisation 00	Bootstrap oooooooooo	Hypothesis testing		

We take out one coin and toss it 20 times:

H, T, T, H, H, T, T, T, T, H, T, T, H, T, T, H, T, T, H, T, T

Introduction: ML on Coin Tossing						
	Introduction	The Likelihood	Optimisation oo	Bootstrap oooooooooo	Hypothesis testing	

We take out one coin and toss it 20 times:

H,T,T,H,H,T,T,T,T,H,T,T,H,T,H,T,T,H,T,T

Probability

 $p(k \text{ heads in } n \text{ tosses}|\theta)$

Introduction: ML on Coin Tossing					

We take out one coin and toss it 20 times:

H,T,T,H,H,T,T,T,T,H,T,T,H,T,H,T,T,H,T,T

Probability Likelihood

 $p(k \text{ heads in } n \text{ tosses}|\theta) \equiv L(\theta|k \text{ heads in } n \text{ tosses})$

Introduction: ML on Coin Tossing					

We take out one coin and toss it 20 times:

H, T, T, H, H, T, T, T, T, H, T, T, H, T, H, T, T, H, T, T

Probability

Likelihood

 $p(k \text{ heads in } n \text{ tosses}|\theta) \equiv L(\theta|k \text{ heads in } n \text{ tosses})$ $= \binom{n}{k} \theta^k (1-\theta)^{n-k}$

(The binomial distribution)

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing

Three coin case

$$L(\theta|7 \text{ in } 20) = \binom{20}{7} \theta^7 (1-\theta)^{13}$$

for each coin $\theta \in \left\{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\right\}$

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing

Three coin case

$$L(\theta|7 \text{ in } 20) = \binom{20}{7} \theta^7 (1-\theta)^{13}$$

for each coin
$$heta \in \left\{ rac{1}{3}, rac{1}{2}, rac{2}{3}
ight\}$$

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing

Three coin case

$$L(\theta|7 \text{ in } 20) = \binom{20}{7} \theta^7 (1-\theta)^{13}$$

for each coin
$$heta \in \left\{ rac{1}{3}, rac{1}{2}, rac{2}{3}
ight\}$$

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing

Three coin case

$$L(\theta|7 \text{ in } 20) = \binom{20}{7} \theta^7 (1-\theta)^{13}$$

for each coin $\theta \in \left\{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\right\}$

For infinitely many coins $\theta = (0...1)$

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing

Three coin case

$$L(\theta|7 \text{ in } 20) = \binom{20}{7} \theta^7 (1-\theta)^{13}$$

for each coin $\theta \in \left\{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\right\}$

For infinitely many coins $\theta = (0...1)$

ML estimate: $L(\hat{\theta}) = 0.1844$ where coin shows $\hat{\theta} = 0.35$ heads

Introduction	The Likelihood	Optimisation	Bootstrap 000000000	Hypothesis testing
Coins and Mu	utations			

• Consider 4 coins labelled A, G, T, C.

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
00	00000000	oo	oooooooooo	
Coins and Mu	utations			

- Consider 4 coins labelled A, G, T, C.
- At each time step we pick any coin at random and flip it.

Introduction	The Likelihood	Optimisation	Bootstrap 000000000	Hypothesis testing
Coins and M	utations			

- Consider 4 coins labelled A, G, T, C.
- At each time step we pick any coin at random and flip it.
- If a coin comes up heads, we replace it from a random pick of the other coins.

Introduction	The Likelihood	Optimisation 00	Bootstrap 000000000	Hypothesis testing
Coins and M	utations			

- Consider 4 coins labelled A, G, T, C.
- At each time step we pick any coin at random and flip it.
- If a coin comes up heads, we replace it from a random pick of the other coins.
- Note that the statistics of any column is independent of other columns.

	lutation a			
Introduction 00	The Likelihood	Optimisation	Bootstrap ೦೦೦೦೦೦೦೦೦	Hypothesis testing

ACACTTTGTGGTGTGGTGGT

Coins and Mutations						
00	0000000	00	0000000000	000		
Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing		

ACACTTTGTGGTGTGGTGGT ACACATTGTGGTGTGGTGGT

Coins and Mutations						

ACACTTTGTGGTGTGGTGGT ACACATTGTGGTGTGGTGGT ACACATTGTAGTGTGGTGGT

00	0000000	00	0000000000			
Coins and Mutations						

ACACTTTGTGGTGTGGTGGT ACACATTGTGGTGTGGTGGT ACACATTGTAGTGTGGTGGT ACACATTGTAGTTTGGTGGT

00	0000000	00	0000000000			
Coins and Mutations						

Introduction	The Likelihood	Optimisation	Bootstrap 0000000000	Hypothesis testing
Coins and N	lutations			

ACACTTTGTGGTGTGGTGGT ACACATTGTGGTGTGGTGGT ACACATTGTAGTGTGGTGGT ACACATTGTAGTTTGGTGGT ACACATTGTAGTTTGGAGGT

• We can extend this to continuous time.

Introduction	The Likelihood	Optimisation 00	Bootstrap 0000000000	Hypothesis testing
Coins and M	lutations			

- We can extend this to continuous time.
- Each coin can be biased.

00	0000000	00	000000000	000		
Coins and Mutations						

- We can extend this to continuous time.
- Each coin can be biased.
- Formally a Markov process.

Coins and Mutations						
Introduction	The Likelihood	Optimisation 00	Bootstrap ooooooooooo	Hypothesis testing		

- We can extend this to continuous time.
- Each coin can be biased.
- Formally a Markov process.
- Result is that we can calculate a probability of a sequence at some time in the future or past, given the sequence now.

		00	0000000000	000		
Coins and Mutations						

- We can extend this to continuous time.
- Each coin can be biased.
- Formally a Markov process.
- Result is that we can calculate a probability of a sequence at some time in the future or past, given the sequence now.
- Need to get mathematical.
| Introduction | The Likelihood | Optimisation | Bootstrap | Hypothesis testing |
|----------------|----------------|--------------|-----------|--------------------|
| •• | | | | |
| Markov Process | | | | |

The probability distribution of the next state is completely determined by the previous state.

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
•0				
Markov Process				

The probability distribution of the next state is completely determined by the previous state.

$$\Pr(X_{n+1} = x | X_n = x_n, \dots, X_1 = x_1) = \Pr(X_{n+1} = x | X_n = x_n)$$

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
•0				
Markov Process				

The probability distribution of the next state is completely determined by the previous state.

As Maths

$$\Pr(X_{n+1} = x | X_n = x_n, \dots, X_1 = x_1) = \Pr(X_{n+1} = x | X_n = x_n)$$

 In the coin example above, the probability of the new sequence is completely determined by the previous state.

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
•0				
Markov Process				

The probability distribution of the next state is completely determined by the previous state.

$$\Pr(X_{n+1} = x | X_n = x_n, \dots, X_1 = x_1) = \Pr(X_{n+1} = x | X_n = x_n)$$

- In the coin example above, the probability of the new sequence is completely determined by the previous state.
- Consider Evolution. The probability of a DNA sequence of the next generation is completely determined by the current generation's DNA sequence.

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
•0				
Markov Process				

The probability distribution of the next state is completely determined by the previous state.

$$\Pr(X_{n+1} = x | X_n = x_n, \dots, X_1 = x_1) = \Pr(X_{n+1} = x | X_n = x_n)$$

- In the coin example above, the probability of the new sequence is completely determined by the previous state.
- Consider Evolution. The probability of a DNA sequence of the next generation is completely determined by the current generation's DNA sequence.
- In other words the process is memoryless.

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
•0				
Markov Process				

The probability distribution of the next state is completely determined by the previous state.

$$\Pr(X_{n+1} = x | X_n = x_n, \dots, X_1 = x_1) = \Pr(X_{n+1} = x | X_n = x_n)$$

- In the coin example above, the probability of the new sequence is completely determined by the previous state.
- Consider Evolution. The probability of a DNA sequence of the next generation is completely determined by the current generation's DNA sequence.
- In other words the process is memoryless.
- We can therefore use a Markov process to model evolution.

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
0•	0000000		000000000	
Markov Process				
Assumptions				

• Ergodic. That is, there is some equilibrium distribution.

Introduction o	The Likelihood	Optimisation oo	Bootstrap 000000000	Hypothesis testing
Markov Process				
Assumptions	i			

- Ergodic. That is, there is some equilibrium distribution.
- Stationary. The base frequencies are in this equilibrium distribution.

Introduction o	The Likelihood	Optimisation oo	Bootstrap 000000000	Hypothesis testing
Markov Process				
Assumptions	i			

- Ergodic. That is, there is some equilibrium distribution.
- Stationary. The base frequencies are in this equilibrium distribution.
- Reversible. The model is the same when time is reversed.

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
00				
Markov Process				
Assumptions				

- Ergodic. That is, there is some equilibrium distribution.
- Stationary. The base frequencies are in this equilibrium distribution.
- Reversible. The model is the same when time is reversed.
- Each site in the alignment is independent and identically distributed.

Introduction 00	The Likelihood	Optimisation	Bootstrap 0000000000	Hypothesis testing
Ou	Itline Introduction • Markov Process			
2	The LikelihoodThe Rate MatrixRates and Probab	ilities		
3	Optimisation Local Maxima 			
4	 Bootstrap Introduction Nonparametric Bo Parametric bootstr Consensus and integral 	otstrap ap terpretation		
	L hun other signification of			

- 5 Hypothesis testing
 - LRT
 - KH & SH

Introduction oo	The Likelihood ●ooooooo	Optimisation oo	Bootstrap oooooooooo	Hypothesis testing	
The Rate Matrix					
Substitution Models					

Evolutionary models are often described using a substitution rate matrix R and character frequencies π . Here, 4×4 matrix for DNA models:

Introduction 00	The Likelihood ●0000000	Optimisation	Bootstrap oooooooooo	Hypothesis testing		
The Rate Matrix						
Substitution Models						

Evolutionary models are often described using a substitution rate matrix R and character frequencies π . Here, 4×4 matrix for DNA models:

$$R = \begin{pmatrix} A & C & G & T \\ - & a & b & c \\ a & - & d & e \\ b & d & - & f \\ c & e & f & - \end{pmatrix}$$

$$\boldsymbol{\pi} = (\pi_A, \pi_C, \pi_G, \pi_T)$$

Introduction	The Likelihood ⊙●⊙○○○○○	Optimisation 00	Bootstrap oooooooooo	Hypothesis testing
The Rate Matrix				

Relations between DNA models

Introduction 00	The Likelihood oo●ooooo	Optimisation oo	Bootstrap oooooooooo	Hypothesis testing	
The Rate Matrix					
Protein Models					

Generally this is the same for protein sequences, but with 20×20 matrices. However unlike DNA the matrix is never optimised. Some protein models are:

- Poisson model ("JC69" for proteins)
- Dayhoff (Dayhoff et al., 1978)
- JTT (Jones et al., 1992)
- mtREV (Adachi & Hasegawa, 1996)
- cpREV (Adachi et al., 2000)
- VT (Müller & Vingron, 2000)
- WAG (Whelan & Goldman, 2000)
- BLOSUM 62 (Henikoff & Henikoff, 1992)

Introduction 00	The Likelihood	Optimisation oo	Bootstrap oooooooooo	Hypothesis testing	
Rates and Probabilities					

From Substitution rates to probabilities

 $\ldots R$ and π are combined into the instantaneous rate matrix Q

$$Q = \begin{pmatrix} \tilde{A} & a\pi_C & b\pi_G & c\pi_T \\ a\pi_A & \tilde{C} & d\pi_G & e\pi_T \\ b\pi_A & d\pi_C & \tilde{G} & f\pi_T \\ c\pi_A & e\pi_C & f\pi_G & \tilde{T} \end{pmatrix} \qquad \begin{pmatrix} \tilde{A} = -(a\pi_C + b\pi_G + c\pi_T) \\ \tilde{C} = -(a\pi_A + d\pi_G + e\pi_T) \\ \tilde{G} = -(b\pi_A + d\pi_C + f\pi_T) \\ \tilde{T} = -(c\pi_A + e\pi_C + f\pi_G) \end{pmatrix}$$

(where the row sums are zero).

Introduction oo	The Likelihood	Optimisation oo	Bootstrap oooooooooo	Hypothesis testing	
Rates and Probabilities					

From Substitution rates to probabilities

... R and π are combined into the instantaneous rate matrix Q

$$Q = \begin{pmatrix} \tilde{A} & a\pi_C & b\pi_G & c\pi_T \\ a\pi_A & \tilde{C} & d\pi_G & e\pi_T \\ b\pi_A & d\pi_C & \tilde{G} & f\pi_T \\ c\pi_A & e\pi_C & f\pi_G & \tilde{T} \end{pmatrix} \qquad \begin{array}{l} \tilde{A} = -(a\pi_C + b\pi_G + c\pi_T) \\ \tilde{C} = -(a\pi_A + d\pi_G + e\pi_T) \\ \tilde{G} = -(b\pi_A + d\pi_C + f\pi_T) \\ \tilde{T} = -(c\pi_A + e\pi_C + f\pi_G) \end{array}$$

(where the row sums are zero).

Given now the instantaneous rate matrix Q, we can compute a substitution probability matrix P at time t as

$$P(t) = e^{Qt}$$

. With this matrix P we can compute the probability $P_{ij}(t)$ of a change $i \rightarrow j$ over a time t.

Introduction oo	The Likelihood	Optimisation oo	Bootstrap oooooooooo	Hypothesis testing	
Rates and Probabilities					

From Substitution rates to probabilities

... R and π are combined into the instantaneous rate matrix Q

$$Q = \begin{pmatrix} \tilde{A} & a\pi_C & b\pi_G & c\pi_T \\ a\pi_A & \tilde{C} & d\pi_G & e\pi_T \\ b\pi_A & d\pi_C & \tilde{G} & f\pi_T \\ c\pi_A & e\pi_C & f\pi_G & \tilde{T} \end{pmatrix} \qquad \begin{array}{l} \tilde{A} = -(a\pi_C + b\pi_G + c\pi_T) \\ \tilde{C} = -(a\pi_A + d\pi_G + e\pi_T) \\ \tilde{G} = -(b\pi_A + d\pi_C + f\pi_T) \\ \tilde{T} = -(c\pi_A + e\pi_C + f\pi_G) \end{array}$$

(where the row sums are zero).

Given now the instantaneous rate matrix Q, we can compute a substitution probability matrix P at time t as

$$P(t) = e^{Qt}$$

. With this matrix P we can compute the probability $P_{ij}(t)$ of a change $i \rightarrow j$ over a time t. That is $Pr(X_t = j | X_0 = j) = P_{ij}(t)$

Introduction oo	The Likelihood ○○○○●○○○	Optimisation oo	Bootstrap oooooooooo	Hypothesis testing		
Rates and Probabilities						
Probability of the data						

• Start with a sequence $s = \{AGGT\}$ at time 0.

Introduction oo	The Likelihood ○○○○●○○○	Optimisation	Bootstrap oooooooooo	Hypothesis testing	
Rates and Probabilities					
Probability of the data					

- Start with a sequence $s = \{AGGT\}$ at time 0.
- We can calculate the probability that the sequence changed to $s' = \{ACGA\}$ at *t*.

Probability of the data						
Rates and Proba	abilities					
Introduction 00	The Likelihood ○○○○●○○○	Optimisation	Bootstrap ೦೦೦೦೦೦೦೦೦	Hypothesis testing		

- Start with a sequence $s = \{AGGT\}$ at time 0.
- We can calculate the probability that the sequence changed to $s' = \{ACGA\}$ at *t*.
- First we calculate $P(t) = e^{Qt}$ usually using some eigenvalue decomposition of Qt.

F	Probability of the data					
Rates and Probabilities						
In o	ntroduction	The Likelihood ○○○○●○○○	Optimisation	Bootstrap 000000000	Hypothesis testing	

- Start with a sequence $s = \{AGGT\}$ at time 0.
- We can calculate the probability that the sequence changed to $s' = \{ACGA\}$ at *t*.
- First we calculate $P(t) = e^{Qt}$ usually using some eigenvalue decomposition of Qt.
- Let s_i be the character at the *i*'th position, ℓ be the number of characters in *s* and *s'*. $P_{ij}(t)$ is the probability that character *i* changed to character *j*.

F	Probability of the data					
Rates and Probabilities						
In o	ntroduction	The Likelihood ○○○○●○○○	Optimisation	Bootstrap 000000000	Hypothesis testing	

- Start with a sequence $s = \{AGGT\}$ at time 0.
- We can calculate the probability that the sequence changed to $s' = \{ACGA\}$ at *t*.
- First we calculate $P(t) = e^{Qt}$ usually using some eigenvalue decomposition of Qt.
- Let s_i be the character at the *i*'th position, ℓ be the number of characters in *s* and *s'*. $P_{ij}(t)$ is the probability that character *i* changed to character *j*.

E	Probability of the data					
R	Rates and Probabilities					
	ntroduction	The Likelihood ○○○○●○○○	Optimisation	Bootstrap 000000000	Hypothesis testing	

- Start with a sequence $s = \{AGGT\}$ at time 0.
- We can calculate the probability that the sequence changed to $s' = \{ACGA\}$ at *t*.
- First we calculate $P(t) = e^{Qt}$ usually using some eigenvalue decomposition of Qt.
- Let s_i be the character at the *i*'th position, ℓ be the number of characters in *s* and *s'*. $P_{ij}(t)$ is the probability that character *i* changed to character *j*.

$$P(s'|s,t) = \prod_{i=1}^{\ell} P_{s_i s_i'}(t)$$

Probability of the data				
Rates and Probabilities				
Introduction The Likelihood	Optimisation	Bootstrap ০০০০০০০০০০	Hypothesis testing	

- Start with a sequence $s = \{AGGT\}$ at time 0.
- We can calculate the probability that the sequence changed to $s' = \{ACGA\}$ at *t*.
- First we calculate $P(t) = e^{Qt}$ usually using some eigenvalue decomposition of Qt.
- Let s_i be the character at the *i*'th position, ℓ be the number of characters in *s* and *s'*. $P_{ij}(t)$ is the probability that character *i* changed to character *j*.

$$P(s'|s,t) = \prod_{i=1}^{\ell} P_{s_i s_i'}(t)$$

• Consider finding the value of t where this is maximised.

Introduction	The Likelihood ○○○○○●○○	Optimisation	Bootstrap 000000000	Hypothesis testing
Rates and Probabilities				

Computing ML Distances Using $\mathbf{P}_{ij}(t)$

The Likelihood of sequence s evolving to s' in time t:

$$L(t|s \to s') = P(s'|s, t) = \prod_{i=1}^{\ell} P_{s_i s'_i}(t)$$

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
00	○○○○○●○○	oo	oooooooooo	
Rates and Probabilities				

Computing ML Distances Using $P_{ij}(t)$

The Likelihood of sequence s evolving to s' in time t:

$$L(t|s \to s') = P(s'|s, t) = \prod_{i=1}^{\ell} P_{s_i s'_i}(t)$$

Likelihood surface for two sequences under JC69:

GATCCTGAGAGAAATAAAC GGTCCTGACAGAAATAAAC

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
00	○○○○○●○○	oo	oooooooooo	
Rates and Probabilities				

Computing ML Distances Using $P_{ij}(t)$

The Likelihood of sequence s evolving to s' in time t:

$$L(t|s \to s') = P(s'|s,t) = \prod_{i=1}^{\ell} P_{s_i s'_i}(t)$$

Likelihood surface for two sequences under JC69:

GATCCTGAGAGAAATAAAC GGTCCTGACAGAAATAAAC

Note: we do not compute the probability of the distance t but that of the data $D = \{s, s'\}$.

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
00	○○○○○○●○	oo	000000000	
Rates and Probabilities				

Likelihoods of a Single column tree

Likelihoods of nucleotides at inner nodes:

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
	00000000			

Rates and Probabilities

Likelihoods of a Single column tree

Likelihoods of nucleotides at inner nodes:

$$L_U(i) = [P_{iC}(10) \cdot L(C)] \cdot [P_{iG}(10) \cdot L(G)]$$
$$L_W(i) = \left[\sum_{u \in \Omega} P_{iu}(t_U) \cdot L_U(u)\right] \cdot \left[\sum_{v \in \Omega} P_{iv}(t_V) \cdot L_V(v)\right]$$

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
	0000000			

Rates and Probabilities

Likelihoods of a Single column tree

Likelihoods of nucleotides at inner nodes:

$$L_U(i) = [P_{iC}(10) \cdot L(C)] \cdot [P_{iG}(10) \cdot L(G)]$$
$$L_W(i) = \left[\sum_{u \in \Omega} P_{iu}(t_U) \cdot L_U(u)\right] \cdot \left[\sum_{v \in \Omega} P_{iv}(t_V) \cdot L_V(v)\right]$$

Site-Likelihood of an alignment column *k*:

$$L^{(k)} = \sum_{i\in\Omega} \pi_i \cdot L_W(i) = 0.024323$$

Introduction	The Likelihood ○○○○○○○●	Optimisation oo	Bootstrap oooooooooo	Hypothesis testing
Rates and Probabilities				

Likelihoods of Trees (multiple columns)

Considering this tree with n = 3 sequences of length $\ell = 3$ the tree likelihood of this tree is

$$\mathcal{L}(T) = \prod_{k=1}^{\ell} L^{(k)}$$

Introduction 00	The Likelihood ○○○○○○●	Optimisation	Bootstrap oooooooooo	Hypothesis testing
Rates and Probabilities				

Likelihoods of Trees (multiple columns)

Considering this tree with n = 3 sequences of length $\ell = 3$ the tree likelihood of this tree is

$$\mathcal{L}(T) = \prod_{k=1}^{\ell} L^{(k)} = 0.047554^2 \cdot 0.024323$$
$$= 0.000055$$

Introduction 00	The Likelihood ○○○○○○○●	Optimisation	Bootstrap oooooooooo	Hypothesis testing
Rates and Probabilities				

Likelihoods of Trees (multiple columns)

Considering this tree with n = 3 sequences of length $\ell = 3$ the tree likelihood of this tree is

$$\mathcal{L}(T) = \prod_{k=1}^{\ell} L^{(k)} = 0.047554^2 \cdot 0.024323$$
$$= 0.000055$$

or the log-likelihood

$$\ln \mathcal{L}(T) = \sum_{k=1}^{\ell} \ln L^{(k)} = -9.80811$$

Introduction	The Likelihood	Optimisation	Bootstrap oooooooooo	Hypothesis testing
Ou	Itline Introduction Markov Process			
2	The LikelihoodThe Rate MatrixRates and Probabilities	ities		
3	Optimisation Local Maxima 			
4	 Bootstrap Introduction Nonparametric Boo Parametric bootstration Consensus and interval 	tstrap p erpretation		
5	Hypothesis testing LRT KH & SH 			

Introduction 00	The Likelihood	Optimisation	Bootstrap 000000000	Hypothesis testing
Optimise bra	nch lengths			

To compute optimal branch lengths:

• Initialise the branch lengths
Introduction	The Likelihood	Optimisation 00	Bootstrap 000000000	Hypothesis testing
Optimise bra	anch lengths			

- Initialise the branch lengths
- Starting with a branch, adjust the length calculating the log Likelihood until a maximum is found.

Introduction 00	The Likelihood 0000000	Optimisation	Bootstrap 000000000	Hypothesis testing
Optimise bra	nch lengths			

- Initialise the branch lengths
- Starting with a branch, adjust the length calculating the log Likelihood until a maximum is found.
- Do the same to other branches and repeat until no further improvement can be made.

Introduction	The Likelihood	Optimisation	Bootstrap 0000000000	Hypothesis testing
Optimise bra	anch lengths			

- Initialise the branch lengths
- Starting with a branch, adjust the length calculating the log Likelihood until a maximum is found.
- Do the same to other branches and repeat until no further improvement can be made.
- Model parameters can also be optimised (ie π).

Introduction 00	The Likelihood	Optimisation	Bootstrap 000000000	Hypothesis testing
Optimise b	ranch lengths			

- Initialise the branch lengths
- Starting with a branch, adjust the length calculating the log Likelihood until a maximum is found.
- Do the same to other branches and repeat until no further improvement can be made.
- Model parameters can also be optimised (ie π).
- Note traditional multivariate optimisation can apply.

Introduction	The Likelihood	Optimisation	Bootstrap 0000000000	Hypothesis testing
Optimise bra	anch lengths			

- Initialise the branch lengths
- Starting with a branch, adjust the length calculating the log Likelihood until a maximum is found.
- Do the same to other branches and repeat until no further improvement can be made.
- Model parameters can also be optimised (ie π).
- Note traditional multivariate optimisation can apply.
- Changing the topology is much harder.

Introduction	The Likelihood	Optimisation	Bootstrap 000000000	Hypothesis testing
Finding the	Al Tree			

Exhaustive Search

Guarantees to find the optimal tree, because all trees are evaluated, but not feasible for more than 10-12 taxa.

Introduction 00	The Likelihood	Optimisation	Bootstrap 0000000000	Hypothesis testing
Finding the	ML Tree			

Exhaustive Search

Guarantees to find the optimal tree, because all trees are evaluated, but not feasible for more than 10-12 taxa.

Branch and Bound

Guarantees to find the optimal tree, without searching certain parts of the tree space – can run on more sequences, but often not for current-day datasets.

Introduction 00	The Likelihood	Optimisation 00	Bootstrap 0000000000	Hypothesis testing
Finding the	ML Tree			

Exhaustive Search

Guarantees to find the optimal tree, because all trees are evaluated, but not feasible for more than 10-12 taxa.

Branch and Bound

Guarantees to find the optimal tree, without searching certain parts of the tree space – can run on more sequences, but often not for current-day datasets.

Heuristics

Cannot guarantee to find the optimal tree, but are at least able to analyse large datasets.

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing

Introduction oo	The Likelihood	Optimisation ●○	Bootstrap oooooooooo	Hypothesis testing
Local Maxima				
Local Maxima	1			

What if we have multiple maxima in the likelihood surface?

Use Tree rearrangements to escape local maxima.

Introduction 00	The Likelihood	Optimisation ○●	Bootstrap oooooooooo	Hypothesis testing
Local Maxima				
Tree Rearrangements				

Introduction 00	The Likelihood	Optimisation ○●	Bootstrap oooooooooo	Hypothesis testing
Local Maxima				
Tree Rearrangements				

Introduction	The Likelihood	Optimisation o●	Bootstrap oooooooooo	Hypothesis testing
Local Maxima				
Tree Deerven vemente				

Nearest Neighbor Interchange

Possible NNI trees = O(n)

Introduction	The Likelihood	Optimisation o●	Bootstrap oooooooooo	Hypothesis testing
Local Maxima				

Tree Rearrangements

Nearest Neighbor Interchange

Possible NNI trees = O(n)

Introduction 00	The Likelihood	Optimisation o●	Bootstrap oooooooooo	Hypothesis testing
Local Maxima				

Tree Rearrangements

Nearest Neighbor Interchange

Possible NNI trees = O(n)

subtree pruning + regrafting Possible SPR trees = O(n*n)

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
	0000000	00	000000000	
Local Maxima				

Tree Rearrangements

Nearest Neighbor Interchange

Possible NNI trees = O(n)

subtree pruning + regrafting Possible SPR trees = O(n*n) **tree-bisection + reconnection** Possible TBR trees = $O(n^*n^*n)$

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
Ou	Itline Introduction			
	Markov Process			
2	The LikelihoodThe Rate MatrixRates and Probab	ilities		
3	Optimisation Local Maxima 			
4	 Bootstrap Introduction Nonparametric Bo Parametric bootstr Consensus and interval 	otstrap ap terpretation		
5	Hypothesis testing • LRT • KH & SH			

Introduction oo	The Likelihood	Optimisation 00	Bootstrap ●ooooooooo	Hypothesis testing
Introduction				
Bootstraps				

• Usually when we estimate some parameter from data, we have some measure of variability. ie Mean and standard deviation.

Introduction oo	The Likelihood	Optimisation 00	Bootstrap ●ooooooooo	Hypothesis testing
Introduction				
Bootstraps				

- Usually when we estimate some parameter from data, we have some measure of variability. ie Mean and standard deviation.
- We want to be able to do the same with trees.

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ●oooooooo	Hypothesis testing
Introduction				
Bootstraps				

- Usually when we estimate some parameter from data, we have some measure of variability. ie Mean and standard deviation.
- We want to be able to do the same with trees.
- The bootstrap is a general statistical method that can be used in this case.

Introduction oo	The Likelihood	Optimisation oo	Bootstrap ●oooooooo	Hypothesis testing
Introduction				
Bootstraps				

- Usually when we estimate some parameter from data, we have some measure of variability. ie Mean and standard deviation.
- We want to be able to do the same with trees.
- The bootstrap is a general statistical method that can be used in this case.
 - Nonparametric bootstrap, just re-samples the alignment.

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ●oooooooo	Hypothesis testing
Introduction				
Bootstraps				

- Usually when we estimate some parameter from data, we have some measure of variability. ie Mean and standard deviation.
- We want to be able to do the same with trees.
- The bootstrap is a general statistical method that can be used in this case.
 - Nonparametric bootstrap, just re-samples the alignment.
 - Parametric bootstrap uses model parameters to generate replicate data.

Introduction 00	The Likelihood	Optimisation	Bootstrap ●oooooooo	Hypothesis testing
Introduction				
Bootstraps				

- Usually when we estimate some parameter from data, we have some measure of variability. ie Mean and standard deviation.
- We want to be able to do the same with trees.
- The bootstrap is a general statistical method that can be used in this case.
 - Nonparametric bootstrap, just re-samples the alignment.
 - Parametric bootstrap uses model parameters to generate replicate data.
- Bayesian methods usually get this for "free" because we already have a large set of trees that represent potions in the posterior density.

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ooooooooo	Hypothesis testing
Introduction				
Pros and Cons				

• Established statistical method.

Introduction 00	The Likelihood	Optimisation	Bootstrap ooooooooo	Hypothesis testing
Introduction				
Pros and Cons				

- Established statistical method.
- Simple to implement.

Pros and Cons				
Introduction				
Introduction 00	The Likelihood	Optimisation oo	Bootstrap 000000000	Hypothesis testing

- Established statistical method.
- Simple to implement.
- Studies indicate that it's quite conservative.

Pros and Cons					
I	ntroduction				
ļ	ntroduction	The Likelihood	Optimisation 00	Bootstrap o●ooooooo	Hypothesis testing

- Established statistical method.
- Simple to implement.
- Studies indicate that it's quite conservative.

Cons

 Results have no convenient interpretation. ie 50% support does not mean 50% probability.

Pros a	nd Cons			
	0000000	00	000000000	000
Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing

- Established statistical method.
- Simple to implement.
- Studies indicate that it's quite conservative.

- Results have no convenient interpretation. ie 50% support does not mean 50% probability.
- Some strong assumptions are imposed on the data. ie iid.

Pros a	nd Cons			
	0000000	00	000000000	000
Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing

- Established statistical method.
- Simple to implement.
- Studies indicate that it's quite conservative.

- Results have no convenient interpretation. ie 50% support does not mean 50% probability.
- Some strong assumptions are imposed on the data. ie iid.
- Relies on the fact that the data sample we are using is representative of entire "population" of data.

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ooeoooooo	Hypothesis testing	
Introduction					
Bootstrap flow					

• Estimate a ML tree and the model parameters θ .

Introduction oo	The Likelihood	Optimisation oo	Bootstrap ooeoooooo	Hypothesis testing
Introduction				
Bootstrap flow				

- Estimate a ML tree and the model parameters θ .
- From the data/or estimateted parameters, generate replicate data sets.
| Introduction
oo | The Likelihood | Optimisation
oo | Bootstrap
ooooooooo | Hypothesis testing | | | |
|--------------------|----------------|--------------------|------------------------|--------------------|--|--|--|
| Introduction | | | | | | | |
| Bootstrap flow | | | | | | | |

- Estimate a ML tree and the model parameters θ .
- From the data/or estimateted parameters, generate replicate data sets.
- For each replicate data set estimate a replicate ML tree.

Introduction oo	The Likelihood	Optimisation oo	Bootstrap ooooooooo	Hypothesis testing			
Introduction							
Bootstrap flow							

- Estimate a ML tree and the model parameters θ .
- From the data/or estimateted parameters, generate replicate data sets.
- For each replicate data set estimate a replicate ML tree.
- Combine the replicate ML trees into some kind of consensus tree.

Introduction oo	The Likelihood	Optimisation	Bootstrap ○○○●○○○○○	Hypothesis testing			
Nonparametric Bootstrap							
Nonparametric Bootstrap							

• Nonparametric bootstrap samples the alignment with replacement.

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ○○○●O○○○○○	Hypothesis testing				
Nonparametric Bootstrap								
Nonparametric Bootstrap								

- Nonparametric bootstrap samples the alignment with replacement.
 - A site, or column in the alignment is picked at random.

Introduction 00	The Likelihood	Optimisation 00	Bootstrap ○○○●O○○○○○	Hypothesis testing				
Nonparametric Bootstrap								
Nonparametric Bootstrap								

- Nonparametric bootstrap samples the alignment with replacement.
 - A site, or column in the alignment is picked at random.
 - This column of sequence data is placed into the replicate alignment.

Introduction 00	The Likelihood	Optimisation 00	Bootstrap ○○○●O○○○○○	Hypothesis testing				
Nonparametric Bootstrap								
Nonparametric Bootstrap								

- Nonparametric bootstrap samples the alignment with replacement.
 - A site, or column in the alignment is picked at random.
 - This column of sequence data is placed into the replicate alignment.
 - Some columns will appear more than once in the replicate alignment.

Introduction 00	The Likelihood	Optimisation 00	Bootstrap ○○○●O○○○○○	Hypothesis testing				
Nonparametric Bootstrap								
Nonparametric Bootstrap								

- Nonparametric bootstrap samples the alignment with replacement.
 - A site, or column in the alignment is picked at random.
 - This column of sequence data is placed into the replicate alignment.
 - Some columns will appear more than once in the replicate alignment.
 - Other columns will not appear at all.

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ○○○●O○○○○○	Hypothesis testing				
Nonparametric Bootstrap								
Nonparametric Bootstrap								

- Nonparametric bootstrap samples the alignment with replacement.
 - A site, or column in the alignment is picked at random.
 - This column of sequence data is placed into the replicate alignment.
 - Some columns will appear more than once in the replicate alignment.
 - Other columns will not appear at all.
- Requires that the data is IID across sites.

Introduction	The Likelihood	Optimisation oo	Bootstrap ○○○○●○○○○○	Hypothesis testing
Nonparametric Bootstrap				

Re-sampled Data

C G C T T

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ○○○○●○○○○○	Hypothesis testing
Nonparametric Bootstrap				

Re-sampled Data

C G C T T

Introdu 00	uction		Tł o	ne Likeli	hood		C	ptimisa	tion		Bootstrap ○○○○	Hypothesis testin
Nonpa	rametric	Bootst	rap									
	Orig	inal	Dat	a								
	А	С	А	С	G	С	Т	Т	Т	Α		
	А	G	А	Т	G	С	Т	Т	А	Α		
	А	С	С	С	С	-	-	G	Т	Α		
	А	Т	А	С	С	С	Т	Т	Т	Т		
	А	Т	-	-	С	С	Т	Т	Т	Α		

Re-sampled Data

C A G A C A T T T A

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ○○○○●○○○○○	Hypothesis testing
Nonparametric Bootstrap				

Re-sampled Data

C A T G A T C A -T T T T A T

Introduction	The Likelihood	Optimisation oo	Bootstrap ○○○○○○○○○	Hypothesis testing
Nonparametric Bootstrap				

Introduction	The Likelihood	Optimisation oo	Bootstrap ○○○○●○○○○○	Hypothesis testing
Nonparametric Bootstrap				

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ○○○○●○○○○○	Hypothesis testing
Nonparametric Bootstrap				

С	А	Т	С	С	Т
G	А	Т	G	Т	Т
С	А	-	С	С	G
Т	Т	Т	Т	С	Т
Т	А	Т	Т	-	Т

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
			000000000	
Nonparametric Bootstrap				

С	А	Т	С	С	Т	Т
G	А	Т	G	Т	Т	А
С	А	-	С	С	G	Т
Т	Т	Т	Т	С	Т	Т
Т	А	Т	Т	-	Т	Т

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ○○○○●○○○○○	Hypothesis testing
Nonparametric Bootstrap				

С	А	Т	С	С	Т	Т	Т
G	А	Т	G	Т	Т	А	Т
С	А	-	С	С	G	Т	G
Т	Т	Т	Т	С	Т	Т	Т
Т	А	Т	Т	-	Т	Т	Т

Introduction	The Likelihood	Optimisation	Bootstrap	Hypothesis testing
00	0000000	00	00000000	000
Nonparametric Bootstrap				

С	А	Т	С	С	Т	Т	Т	С
G	А	Т	G	Т	Т	А	Т	Т
С	А	-	С	С	G	Т	G	С
Т	Т	Т	Т	С	Т	Т	Т	С
Т	А	Т	Т	-	Т	Т	Т	-

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ○○○○○○○○○○	Hypothesis testing
Nonparametric Bootstrap				

С	А	Т	С	С	Т	Т	Т	С	G
G	А	Т	G	Т	Т	А	Т	Т	G
С	А	-	С	С	G	Т	G	С	С
Т	Т	Т	Т	С	Т	Т	Т	С	С
Т	А	Т	Т	-	Т	Т	Т	-	С

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ○○○○●○○○○○	Hypothesis testing
Nonparametric Bootstrap				

С	А	Т	С	С	Т	Т	Т	С	G
G	А	Т	G	Т	Т	А	Т	Т	G
С	А	-	С	С	G	Т	G	С	С
Т	Т	Т	Т	С	Т	Т	Т	С	С
Т	А	Т	Т	-	Т	Т	Т	-	С

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ○○○○●○○○○○	Hypothesis testing
Nonparametric Bootstrap				

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ○○○○●○○○○○	Hypothesis testing
Nonparametric Bootstrap				

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ○○○○●○○○○○	Hypothesis testing
Nonparametric Bootstrap				

Re-sampled Data

Jackknife is the same without replacement

Introduction oo	The Likelihood	Optimisation 00	Bootstrap ○○○○○○○○○○	Hypothesis testing	
Parametric bootstrap					
Parametric Bootstrap					

 Instead of re-sampling the data, we use estimated model parameters.

Introduction oo	The Likelihood	Optimisation oo	Bootstrap ○○○○○○○○○○	Hypothesis testing	
Parametric bootstrap					
Parametric Bootstrap					

- Instead of re-sampling the data, we use estimated model parameters.
 - Start by estimating a ML tree and model parameters θ .

Introduction 00	The Likelihood	Optimisation 00	Bootstrap ○○○○○●○○○○	Hypothesis testing	
Parametric bootstrap					
Parametric Bootstrap					

- Instead of re-sampling the data, we use estimated model parameters.
 - Start by estimating a ML tree and model parameters θ .
 - Using these estimated parameters and the estimated ML tree simulate a new replicate data set.

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ○○○○○●○○○○	Hypothesis testing	
Parametric bootstrap					
Parametric Bootstrap					

- Instead of re-sampling the data, we use estimated model parameters.
 - Start by estimating a ML tree and model parameters θ .
 - Using these estimated parameters and the estimated ML tree simulate a new replicate data set.
 - Estimate a new ML tree and parameters θ' .

Introduction 00	The Likelihood	Optimisation oo	Bootstrap ○○○○○●○○○○	Hypothesis testing	
Parametric bootstrap					
Parametric Bootstrap					

- Instead of re-sampling the data, we use estimated model parameters.
 - Start by estimating a ML tree and model parameters θ .
 - Using these estimated parameters and the estimated ML tree simulate a new replicate data set.
 - Estimate a new ML tree and parameters θ' .
 - In some cases model parameters can be fixed.

Introduction oo	The Likelihood	Optimisation	Bootstrap ○○○○○●○○○○	Hypothesis testing	
Parametric bootstrap					
Parametric Bootstrap					

- Instead of re-sampling the data, we use estimated model parameters.
 - Start by estimating a ML tree and model parameters θ .
 - Using these estimated parameters and the estimated ML tree simulate a new replicate data set.
 - Estimate a new ML tree and parameters θ' .
 - In some cases model parameters can be fixed.
- Parametric bootstraps do not make any extra assumptions about the data over the model.

Introduction oo	The Likelihood	Optimisation oo	Bootstrap 000000000	Hypothesis testing		
Consensus and interpretation						
Combining the trees						

• 50% Majority rule is conservative and all nodes cannot be conflicting.

Introduction oo	The Likelihood	Optimisation oo	Bootstrap 000000000	Hypothesis testing
Consensus and interpretat	tion			
Combining th	e trees			

- 50% Majority rule is conservative and all nodes cannot be conflicting.
- Extended consensus rules can vary slightly in implementation.

Introduction oo	The Likelihood	Optimisation oo	Bootstrap 000000000	Hypothesis testing	
Consensus and interpretation					
Combining th	e trees				

- 50% Majority rule is conservative and all nodes cannot be conflicting.
- Extended consensus rules can vary slightly in implementation.
- In particular the extended majority rule (default in Consensus) can have nodes in the final tree that conflict with nodes that are more frequent.

Introduction	The Likelihood ೦೦೦೦೦೦೦೦	Optimisation 00	Bootstrap ○○○○○○●○○	Hypothesis testing
Consensus and interp	retation			
• • •				

Summarising Trees: Consensus Methods

Introduction 00	l he Likelihood 00000000	Optimisation 00	Bootstrap ○○○○○○●○○	Hypothesis testing
Consensus and interpreta	ation			
Summarising	g Trees: Consen	sus Methods		

Introduction 00	The Likelihood	Optimisation 00	Bootstrap ○○○○○○●○○	Hypothesis testing
Consensus and interpreta	ation			
Summarising	JTrees: Consen	sus Methods		

Consensus and interpretation						
Summarising Trace: Consensus Methods						

Summarising Trees: Consensus Methods								
Consensus and interpretation								
Introduction	The Likelihood	Optimisation	Bootstrap ○○○○○○○○○○	Hypothesis testing				

Introduction	The Likelihood 00000000	Optimisation 00	Bootstrap ○○○○○○○●○	Hypothesis testing			
Consensus and interpretation							
Interpretation							

 Unfortunately in this setting interpreting bootstrap scores is not straight forward.

Introduction	The Likelihood	Optimisation 00	Bootstrap ○○○○○○○●○	Hypothesis testing			
Consensus and interpretation							
Interpretation							

- Unfortunately in this setting interpreting bootstrap scores is not straight forward.
- It is not a probability.

Introduction	The Likelihood	Optimisation 00	Bootstrap ○○○○○○○●○	Hypothesis testing			
Consensus and interpretation							
Interpretation							

- Unfortunately in this setting interpreting bootstrap scores is not straight forward.
- It is not a probability.
- Generally it appears to be somewhat conservative.

Introduction oo	The Likelihood	Optimisation	Bootstrap ○○○○○○○●○	Hypothesis testing			
Consensus and interpretation							
Interpretation							

- Unfortunately in this setting interpreting bootstrap scores is not straight forward.
- It is not a probability.
- Generally it appears to be somewhat conservative.
- On the other hand it is not uncommon to see high bootstrap support for the wrong tree.

Introduction oo	The Likelihood	Optimisation	Bootstrap ○○○○○○○●○	Hypothesis testing			
Consensus and interpretation							
Interpretation							

- Unfortunately in this setting interpreting bootstrap scores is not straight forward.
- It is not a probability.
- Generally it appears to be somewhat conservative.
- On the other hand it is not uncommon to see high bootstrap support for the wrong tree.
- One interpretation is that the bootstrap attempts to measure sampling variance. (Swofford, et al 1996)

Introduction		The Likel	ihood		Optim 00	nisation	Boot	strap 000000	Нуро 000	thesis testing	
Consensus and interpretation											
-	•										

Example Support of a known tree

Hills et al, 1992. Bacteriophage T7 DNA sequences with a known phylogeny.

Introduction	The Likelihood	Optimisation 00	Bootstrap 0000000000	Hypothesis testing
	Itline Introduction Markov Process			
2	The LikelihoodThe Rate MatrixRates and Probab	ilities		
3	Optimisation Local Maxima 			
4	 Bootstrap Introduction Nonparametric Bo Parametric bootstr Consensus and integration 	otstrap ap terpretation		
5	Hypothesis testing LRT KH & SH 			

Introduction	The Likelihood	Optimisation	Bootstrap oooooooooo	Hypothesis testing
Hypothesis t	esting			

• What question do I want to answer?

Int oc	roduction	The Likelihood	Optimisation 00	Bootstrap 000000000	Hypothesis testing
н	ypothesis te	sting			

- What question do I want to answer?
- Say should I use the JC model or the GTR model?

Introduction	The Likelihood	Optimisation 00	Bootstrap oooooooooo	Hypothesis testing
Hypothesis te	sting			

- What question do I want to answer?
- Say should I use the JC model or the GTR model?
- Or perhaps, Is tree A statistically significantly different from tree B?

Introduction 00	The Likelihood	Optimisation	Bootstrap 000000000	Hypothesis testing
Hypothesis	testing			

- What question do I want to answer?
- Say should I use the JC model or the GTR model?
- Or perhaps, Is tree A statistically significantly different from tree B?
- Answering these question is the advantage of using ML.

Introduction	The Likelihood 00000000	Optimisation 00	Bootstrap oooooooooo	Hypothesis testing
Hypothesis t	esting			

- What question do I want to answer?
- Say should I use the JC model or the GTR model?
- Or perhaps, Is tree A statistically significantly different from tree B?
- Answering these question is the advantage of using ML.
- It's important to note that you should know the null hypothesis/hypotheses before you "collect" the data.

Introduction 00	The Likelihood	Optimisation 00	Bootstrap oooooooooo	Hypothesis testing ●○○
LRT				
Nested models				

• A model is nested in another model, if it is a simplification of the complicated model.

Introduction 00	The Likelihood	Optimisation 00	Bootstrap oooooooooo	Hypothesis testing ●○○
LRT				
Nested models				

- A model is nested in another model, if it is a simplification of the complicated model.
- eg Star topology. GTR vrs JC.

Introduction 00	The Likelihood 00000000	Optimisation 00	Bootstrap oooooooooo	Hypothesis testing ●○○
LRT				
Nested models				

- A model is nested in another model, if it is a simplification of the complicated model.
- eg Star topology. GTR vrs JC.
- In such a situation we can consider the likelihood of both models.

Introduction	The Likelihood	Optimisation	Bootstrap oooooooooo	Hypothesis testing ●○○
LRT				
Nested models				

- A model is nested in another model, if it is a simplification of the complicated model.
- eg Star topology. GTR vrs JC.
- In such a situation we can consider the likelihood of both models.
- The Hypothesis: Is the more complicated model better?

Introduction	The Likelihood	Optimisation oo	Bootstrap oooooooooo	Hypothesis testing ●○○
LRT				
Nested models				

- A model is nested in another model, if it is a simplification of the complicated model.
- eg Star topology. GTR vrs JC.
- In such a situation we can consider the likelihood of both models.
- The Hypothesis: Is the more complicated model better?
- The Null Hypothesis: Both models are equally good.

Introduction	The Likelihood	Optimisation oo	Bootstrap oooooooooo	Hypothesis testing ●○○
LRT				
Nested models				

- A model is nested in another model, if it is a simplification of the complicated model.
- eg Star topology. GTR vrs JC.
- In such a situation we can consider the likelihood of both models.
- The Hypothesis: Is the more complicated model better?
- The Null Hypothesis: Both models are equally good.
- Note that the more complicated model always has an equal or higher likelihood.

Introduction 00	The Likelihood	Optimisation	Bootstrap oooooooooo	Hypothesis testing ●○○
LRT				
Nested models				

- A model is nested in another model, if it is a simplification of the complicated model.
- eg Star topology. GTR vrs JC.
- In such a situation we can consider the likelihood of both models.
- The Hypothesis: Is the more complicated model better?
- The Null Hypothesis: Both models are equally good.
- Note that the more complicated model always has an equal or higher likelihood.
- We can use a Log Likelihood ratio test.

Introduction	The Likelihood	Optimisation	Bootstrap oooooooooo	Hypothesis testing ○●○
LRT				
LRT				

Log Likelihood ratio test

$$\lambda = -2 \log \frac{L_0}{L_1} = 2(\log L_1 - \log L_0)$$

 λ is asymptotically distributed to the χ² distribution with the appropriate degrees of freedom.

Introduction	The Likelihood	Optimisation	Bootstrap oooooooooo	Hypothesis testing ○●○
LRT				
LRT				

Log Likelihood ratio test

$$\lambda = -2\log \frac{L_0}{L_1} = 2(\log L_1 - \log L_0)$$

- λ is asymptotically distributed to the χ² distribution with the appropriate degrees of freedom.
- The degrees of freedom are the difference between the two models i.e. Star tree compared to a given tree, it's the number of internal branches.

Introduction	The Likelihood	Optimisation	Bootstrap oooooooooo	Hypothesis testing ○●○
LRT				
LRT				

Log Likelihood ratio test

$$\lambda = -2\log rac{L_0}{L_1} = 2(\log L_1 - \log L_0)$$

- λ is asymptotically distributed to the χ² distribution with the appropriate degrees of freedom.
- The degrees of freedom are the difference between the two models i.e. Star tree compared to a given tree, it's the number of internal branches.
- We calculate λ and check if it's outside our *P*-value range on the χ^2 distribution.

Introduction 00	The Likelihood	Optimisation 00	Bootstrap oooooooooo	Hypothesis testing ○○●
KH & SH				
Tree Tests				

• LRT cannot be used on different topologies.

Introduction 00	The Likelihood	Optimisation oo	Bootstrap oooooooooo	Hypothesis testing ○○●
KH & SH				
Tree Tests				

- LRT cannot be used on different topologies.
- So two tree test methods have been developed. KH and SH

Introduction 00	The Likelihood	Optimisation oo	Bootstrap oooooooooo	Hypothesis testing ○○●
KH & SH				
Tree Tests				

- LRT cannot be used on different topologies.
- So two tree test methods have been developed. KH and SH
- Note that the first test (KH) is often misapplied.

Introduction 00	The Likelihood	Optimisation oo	Bootstrap oooooooooo	Hypothesis testing ○○●
KH & SH				
Tree Tests				

- LRT cannot be used on different topologies.
- So two tree test methods have been developed. KH and SH
- Note that the first test (KH) is often misapplied.
- The idea is similar to the LRT that there is a statistic that is compared to a distribution. Only now we must estimate that distribution.