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Stochastic Models

Mathematical Model

A mathematical description of the process of interest, usually
describing how things change over time.

Mathematically define how things change over time.

So if we have a given state, we can predict what will
happen next how the system will behave.

Sometimes we can only predict the probability that
something will happen at some time in the future.

This is a stochastic model.

Allows a more rigorous mathematical treatment of the
problem of tree reconstruction.



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Introduction: ML on Coin Tossing

Given a box with 3 coins of different fairness
(

1
3 , 1

2 , 2
3

)



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Introduction: ML on Coin Tossing

Given a box with 3 coins of different fairness
(

1
3 , 1

2 , 2
3

)

We take out one coin and toss it 20 times:

H,T, T,H,H, T, T, T, T,H, T, T,H, T,H, T, T,H, T, T



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Introduction: ML on Coin Tossing

Given a box with 3 coins of different fairness
(

1
3 , 1

2 , 2
3

)

We take out one coin and toss it 20 times:

H,T, T,H,H, T, T, T, T,H, T, T,H, T,H, T, T,H, T, T

Probability

p(k heads in n tosses|θ)



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Introduction: ML on Coin Tossing

Given a box with 3 coins of different fairness
(

1
3 , 1

2 , 2
3

)

We take out one coin and toss it 20 times:

H,T, T,H,H, T, T, T, T,H, T, T,H, T,H, T, T,H, T, T

Probability Likelihood

p(k heads in n tosses|θ) ≡ L(θ|k heads in n tosses)



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Introduction: ML on Coin Tossing

Given a box with 3 coins of different fairness
(

1
3 , 1

2 , 2
3

)

We take out one coin and toss it 20 times:

H,T, T,H,H, T, T, T, T,H, T, T,H, T,H, T, T,H, T, T

Probability Likelihood

p(k heads in n tosses|θ) ≡ L(θ|k heads in n tosses)

=

(

n

k

)

θk(1 − θ)n−k

(The binomial distribution)
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Introduction: ML on Coin Tossing (Estimate)

Three coin case

L(θ|7 in 20) =

(

20

7

)

θ7(1 − θ)13

for each coin θ ∈
{

1
3 , 1

2 , 2
3

}

For infinitely many coins
θ = (0...1)

ML estimate: L(θ̂) = 0.1844
where coin shows θ̂ = 0.35
heads
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Coins and Mutations

Consider 4 coins labelled A, G, T, C.

At each time step we pick any coin at random and flip it.

If a coin comes up heads, we replace it from a random pick
of the other coins.

Note that the statistics of any column is independent of
other columns.
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Coins and Mutations

Flip coins

ACACTTTGTGGTGTGGTGGT
ACACATTGTGGTGTGGTGGT
ACACATTGTAGTGTGGTGGT
ACACATTGTAGTTTGGTGGT
ACACATTGTAGTTTGGAGGT

We can extend this to continuous time.

Each coin can be biased.

Formally a Markov process.

Result is that we can calculate a probability of a sequence
at some time in the future or past, given the sequence now.

Need to get mathematical.
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Markov Process

Markov Property

The probability distribution of the next state is completely
determined by the previous state.

As Maths

Pr(Xn+1 = x|Xn = xn, . . . ,X1 = x1) = Pr(Xn+1 = x|Xn = xn)

In the coin example above, the probability of the new
sequence is completely determined by the previous state.

Consider Evolution. The probability of a DNA sequence of
the next generation is completely determined by the
current generation’s DNA sequence.

In other words the process is memoryless.

We can therefore use a Markov process to model evolution.



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Markov Process

Assumptions

Ergodic. That is, there is some equilibrium distribution.



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Markov Process

Assumptions

Ergodic. That is, there is some equilibrium distribution.

Stationary. The base frequencies are in this equilibrium
distribution.



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Markov Process

Assumptions

Ergodic. That is, there is some equilibrium distribution.

Stationary. The base frequencies are in this equilibrium
distribution.

Reversible. The model is the same when time is reversed.



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Markov Process

Assumptions

Ergodic. That is, there is some equilibrium distribution.

Stationary. The base frequencies are in this equilibrium
distribution.

Reversible. The model is the same when time is reversed.

Each site in the alignment is independent and identically
distributed.
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The Rate Matrix

Substitution Models

Evolutionary models are often described using a substitution rate
matrix R and character frequencies π. Here, 4 × 4 matrix for DNA
models:
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Evolutionary models are often described using a substitution rate
matrix R and character frequencies π. Here, 4 × 4 matrix for DNA
models:
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
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
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The Rate Matrix

Relations between DNA models

equal base frequencies

JC69

2 transitions)
(transversions,
3 subst. types 6 subst. types

(4 transversions,
2 transitions)

frequencies
different base

2 subst. types
(transitions vs.
transversions)

frequencies

1 substitution type,

different base

F81

2 subst. types
(transitions vs.
transversions)

HKY85 TN93 GTR

K2P
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The Rate Matrix

Protein Models

Generally this is the same for protein sequences, but with
20 × 20 matrices. However unlike DNA the matrix is never
optimised. Some protein models are:

Poisson model ("JC69" for proteins)
Dayhoff (Dayhoff et al., 1978)
JTT (Jones et al., 1992)
mtREV (Adachi & Hasegawa, 1996)
cpREV (Adachi et al., 2000)
VT (Müller & Vingron, 2000)
WAG (Whelan & Goldman, 2000)
BLOSUM 62 (Henikoff & Henikoff, 1992)
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Rates and Probabilities

From Substitution rates to probabilities

. . . R and π are combined into the instantaneous rate matrix Q

Q =









Ã aπC bπG cπT

aπA C̃ dπG eπT

bπA dπC G̃ fπT

cπA eπC fπG T̃









Ã = −(aπC + bπG + cπT )

C̃ = −(aπA + dπG + eπT )

G̃ = −(bπA + dπC + fπT )

T̃ = −(cπA + eπC + fπG)

(where the row sums are zero).
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Q =
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aπA C̃ dπG eπT

bπA dπC G̃ fπT
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G̃ = −(bπA + dπC + fπT )

T̃ = −(cπA + eπC + fπG)

(where the row sums are zero).
Given now the instantaneous rate matrix Q, we can compute a
substitution probability matrix P at time t as

P (t) = eQt

. With this matrix P we can compute the probability Pij(t) of a
change i → j over a time t.
That is Pr(Xt = j|X0 = j) = Pij(t)
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Rates and Probabilities

Probability of the data

Start with a sequence s = {AGGT} at time 0.
We can calculate the probability that the sequence
changed to s′ = {ACGA} at t.
First we calculate P (t) = eQt usually using some
eigenvalue decomposition of Qt.
Let si be the character at the i’th position, ℓ be the number
of characters in s and s′. Pij(t) is the probability that
character i changed to character j.

P (s′|s, t) =
ℓ

∏

i=1

Psis
′

i

(t)

Consider finding the value of t where this is maximised.
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Rates and Probabilities

Computing ML Distances Using Pij(t)

The Likelihood of sequence s evolving to s′ in time t:

L(t|s → s′) = P (s′|s, t) =

ℓ
∏

i=1

Psis
′

i
(t)

Likelihood surface for two
sequences under JC69:

GATCCTGAGAGAAATAAAC
GGTCCTGACAGAAATAAAC

Note: we do not compute the
probability of the distance t

but that of the data D = {s, s′}.
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Rates and Probabilities

Likelihoods of a Single column tree
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t =10Tt =10S
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G
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Likelihoods of nucleotides at inner
nodes:



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Rates and Probabilities

Likelihoods of a Single column tree

A

G
C

T

1

T
G
C
A 0.0009

0.0273
0.0273
0.0009

U

Ut =10 tV=10

V

1

A

G
C

T

A

G
C

T

1

t =10Tt =10S

TS

A
C
G
T 0.000075

0.023402
0.000075

0.000771

W

Likelihoods of nucleotides at inner
nodes:
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Piu(tU ) · LU (u)
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Rates and Probabilities

Likelihoods of a Single column tree

A
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1
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C
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1
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t =10Tt =10S

TS

A
C
G
T 0.000075

0.023402
0.000075

0.000771

W

Likelihoods of nucleotides at inner
nodes:

LU (i) = [PiC(10) · L(C)] · [PiG(10) · L(G)]

LW (i) =

[

∑

u∈Ω

Piu(tU ) · LU (u)

]

·

[

∑

v∈Ω

Piv(tV ) · LV (v)

]

Site-Likelihood of an alignment
column k:

L(k) =
∑

i∈Ω

πi · LW (i) = 0.024323
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Rates and Probabilities

Likelihoods of Trees (multiple columns)

G

CT T

AA

10 10

1010

U

W

T

V

S
CAA

0.047554

0.047554
0.024323

Considering this tree with n = 3 se-
quences of length ℓ = 3 the tree likelihood
of this tree is

L(T ) =

ℓ
∏

k=1

L(k)
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Rates and Probabilities

Likelihoods of Trees (multiple columns)

G

CT T

AA

10 10

1010

U

W

T

V

S
CAA

0.047554

0.047554
0.024323

Considering this tree with n = 3 se-
quences of length ℓ = 3 the tree likelihood
of this tree is

L(T ) =

ℓ
∏

k=1

L(k) = 0.0475542 · 0.024323

= 0.000055

or the log-likelihood

lnL(T ) =

ℓ
∑

k=1

lnL(k) = −9.80811



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Outline
1 Introduction

Markov Process
2 The Likelihood

The Rate Matrix
Rates and Probabilities

3 Optimisation
Local Maxima

4 Bootstrap
Introduction
Nonparametric Bootstrap
Parametric bootstrap
Consensus and interpretation

5 Hypothesis testing
LRT
KH & SH



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Optimise branch lengths

To compute optimal branch lengths:

Initialise the branch lengths



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Optimise branch lengths

To compute optimal branch lengths:

Initialise the branch lengths

Starting with a branch, adjust the length calculating the log
Likelihood until a maximum is found.



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Optimise branch lengths

To compute optimal branch lengths:

Initialise the branch lengths

Starting with a branch, adjust the length calculating the log
Likelihood until a maximum is found.

Do the same to other branches and repeat until no further
improvement can be made.



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Optimise branch lengths

To compute optimal branch lengths:

Initialise the branch lengths

Starting with a branch, adjust the length calculating the log
Likelihood until a maximum is found.

Do the same to other branches and repeat until no further
improvement can be made.

Model parameters can also be optimised (ie π).



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Optimise branch lengths

To compute optimal branch lengths:

Initialise the branch lengths

Starting with a branch, adjust the length calculating the log
Likelihood until a maximum is found.

Do the same to other branches and repeat until no further
improvement can be made.

Model parameters can also be optimised (ie π).

Note traditional multivariate optimisation can apply.



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Optimise branch lengths

To compute optimal branch lengths:

Initialise the branch lengths

Starting with a branch, adjust the length calculating the log
Likelihood until a maximum is found.

Do the same to other branches and repeat until no further
improvement can be made.

Model parameters can also be optimised (ie π).

Note traditional multivariate optimisation can apply.

Changing the topology is much harder.
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Finding the ML Tree

Exhaustive Search

Guarantees to find the optimal tree, because all trees are
evaluated, but not feasible for more than 10-12 taxa.

Branch and Bound

Guarantees to find the optimal tree, without searching certain
parts of the tree space – can run on more sequences, but often
not for current-day datasets.

Heuristics

Cannot guarantee to find the optimal tree, but are at least able
to analyse large datasets.
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Build up a tree: Stepwise Insertion

A

C

B BA

C D

BA

CD

A

B

C

D
−3920.21

−3689.22

−3920.98

B

D

A

C

BC

D
A

E

B

A D
C

E

BC

A D
E

B

A

C

D
E

D

A

C

B
E

B

A

C

D
E

−4710.37

−4560.70

−4521.39

−4579.17−4610.40
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What if we have multiple maxima in the likelihood surface?

Use Tree rearrangements to escape local maxima.
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Tree Rearrangements
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subtree pruning + regrafting

 Possible SPR trees = O(n*n)
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...
...

tree−bisection + reconnection

 Possible TBR trees = O(n*n*n)
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Introduction

Bootstraps

Usually when we estimate some parameter from data, we
have some measure of variability. ie Mean and standard
deviation.

We want to be able to do the same with trees.
The bootstrap is a general statistical method that can be
used in this case.

Nonparametric bootstrap, just re-samples the alignment.
Parametric bootstrap uses model parameters to generate
replicate data.

Bayesian methods usually get this for “free” because we
already have a large set of trees that represent potions in
the posterior density.
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Introduction

Pros and Cons

Pros
Established statistical
method.

Simple to implement.

Studies indicate that it’s
quite conservative.

Cons
Results have no
convenient interpretation.
ie 50% support does not
mean 50% probability.

Some strong assumptions
are imposed on the data.
ie iid.

Relies on the fact that the
data sample we are using
is representative of entire
“population” of data.
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Introduction

Bootstrap flow

Estimate a ML tree and the model parameters θ.

From the data/or estimateted parameters, generate
replicate data sets.

For each replicate data set estimate a replicate ML tree.

Combine the replicate ML trees into some kind of
consensus tree.
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Nonparametric Bootstrap

Nonparametric Bootstrap

Nonparametric bootstrap samples the alignment with
replacement.

A site, or column in the alignment is picked at random.
This column of sequence data is placed into the replicate
alignment.
Some columns will appear more than once in the replicate
alignment.
Other columns will not appear at all.

Requires that the data is IID across sites.
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Nonparametric Bootstrap

Original Data

A C A C G C T T T A
A G A T G C T T A A
A C C C C - - G T A
A T A C C C T T T T
A T - - C C T T T A

Re-sampled Data

C A T C C T T T C G
G A T G T T A T T G
C A - C C G T G C C
T T T T C T T T C C
T A T T - T T T - C

Jackknife is the same without replacement



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Parametric bootstrap

Parametric Bootstrap

Instead of re-sampling the data, we use estimated model
parameters.



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Parametric bootstrap

Parametric Bootstrap

Instead of re-sampling the data, we use estimated model
parameters.

Start by estimating a ML tree and model parameters θ.



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Parametric bootstrap

Parametric Bootstrap

Instead of re-sampling the data, we use estimated model
parameters.

Start by estimating a ML tree and model parameters θ.
Using these estimated parameters and the estimated ML
tree simulate a new replicate data set.



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Parametric bootstrap

Parametric Bootstrap

Instead of re-sampling the data, we use estimated model
parameters.

Start by estimating a ML tree and model parameters θ.
Using these estimated parameters and the estimated ML
tree simulate a new replicate data set.
Estimate a new ML tree and parameters θ′.



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Parametric bootstrap

Parametric Bootstrap

Instead of re-sampling the data, we use estimated model
parameters.

Start by estimating a ML tree and model parameters θ.
Using these estimated parameters and the estimated ML
tree simulate a new replicate data set.
Estimate a new ML tree and parameters θ′.
In some cases model parameters can be fixed.



Introduction The Likelihood Optimisation Bootstrap Hypothesis testing

Parametric bootstrap

Parametric Bootstrap

Instead of re-sampling the data, we use estimated model
parameters.

Start by estimating a ML tree and model parameters θ.
Using these estimated parameters and the estimated ML
tree simulate a new replicate data set.
Estimate a new ML tree and parameters θ′.
In some cases model parameters can be fixed.

Parametric bootstraps do not make any extra assumptions
about the data over the model.
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Consensus and interpretation

Combining the trees

50% Majority rule is conservative and all nodes cannot be
conflicting.

Extended consensus rules can vary slightly in
implementation.

In particular the extended majority rule (default in
Consensus) can have nodes in the final tree that conflict
with nodes that are more frequent.
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Consensus and interpretation

Interpretation

Unfortunately in this setting interpreting bootstrap scores is
not straight forward.

It is not a probability.

Generally it appears to be somewhat conservative.

On the other hand it is not uncommon to see high
bootstrap support for the wrong tree.

One interpretation is that the bootstrap attempts to
measure sampling variance. (Swofford, et al 1996)
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Consensus and interpretation

Example Support of a known tree

Hills et al, 1992. Bacteriophage T7 DNA sequences with a
known phylogeny.
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Hypothesis testing

What question do I want to answer?

Say should I use the JC model or the GTR model?

Or perhaps, Is tree A statistically significantly different from
tree B?

Answering these question is the advantage of using ML.

It’s important to note that you should know the null
hypothesis/hypotheses before you “collect” the data.
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LRT

Nested models

A model is nested in another model, if it is a simplification
of the complicated model.

eg Star topology. GTR vrs JC.

In such a situation we can consider the likelihood of both
models.

The Hypothesis: Is the more complicated model better?

The Null Hypothesis: Both models are equally good.

Note that the more complicated model always has an
equal or higher likelihood.

We can use a Log Likelihood ratio test.
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LRT

LRT

Log Likelihood ratio test

λ = −2 log
L0

L1
= 2(log L1 − log L0)

λ is asymptotically distributed to the χ2 distribution with the
appropriate degrees of freedom.

The degrees of freedom are the difference between the
two models i.e. Star tree compared to a given tree, it’s the
number of internal branches.

We calculate λ and check if it’s outside our P -value range
on the χ2 distribution.
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KH & SH

Tree Tests

LRT cannot be used on different topologies.

So two tree test methods have been developed. KH and
SH

Note that the first test (KH) is often misapplied.

The idea is similar to the LRT that there is a statistic that is
compared to a distribution. Only now we must estimate
that distribution.
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