Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary

Bayesian Tree Sampling

Greg Ewing

CIBIV

December 3, 2007

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
Outline	÷				
	/es Theoren	n			
• [Bayes Theoi	rem			

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Outline	د				

- Bayes Theorem
- 2 Markov Chains
 - definition
 - Properties

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary

- Bayes Theorem
- 2 Markov Chains
 - definition
 - Properties
- 3
 - MHMCMC
 - Algorithm
 - Examples

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough 000000	Phylogenetic Bayesian MCMC 00000	Summary

- Bayes Theorem
- 2 Markov Chains
 - definition
 - Properties
- 3
- MHMCMC
- Algorithm
- Examples
- 4
- What is long enough
- Its all about the die
- Hats

ayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summar

- Bayes Theorem
- 2
 - Markov Chains
 - definition
 - Properties
- 3
- MHMCMC
- Algorithm
- Examples
- 4
 - What is long enough
 - Its all about the die
 - Hats

Phylogenetic Bayesian MCMC

- In practice
- Priors ٩

Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Sumn
Outline	2			

- Markov Chains
 - definition
 - Properties
- 3 MHMCMC
 - Algorithm
 - Examples
- What is long enough
 Its all about the die
 - Hats
- 5 Phylogenetic Bayesian MCMC
 - In practice
 - Priors

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem					
The differe	ence				

The Bayesian approach asks the right question in a hypothesis testing procedure, namely, "What is the probability that this hypothesis is true, given the data?" rather than the classical approach, which asks a question like, "Assuming that this hypothesis is true, what is the probability of the observed data?"

-Statistical Methods in Bioinformatics

Bayes Theorem o●oooo	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem					
Derivation					

We know that

$$\Pr(A \cap B) = \Pr(B|A) \Pr(A),$$

from conditional probability.

Bayes Theorem o●oooo	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem					
Derivation					

We know that

$$\Pr(A \cap B) = \Pr(B|A) \Pr(A),$$

from conditional probability. Also

$$\Pr(A \cap B) = \Pr(B \cap A) = \Pr(A|B)\Pr(B).$$

Bayes Theorem o●oooo	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem					
Derivation					

We know that

$$\Pr(A \cap B) = \Pr(B|A) \Pr(A),$$

from conditional probability. Also

$$\Pr(A \cap B) = \Pr(B \cap A) = \Pr(A|B)\Pr(B).$$

Therefore

$$\Pr(A|B) \Pr(B) = \Pr(B|A) \Pr(A)$$

 $\Pr(A|B) = rac{\Pr(B|A) \Pr(A)}{\Pr(B)}.$

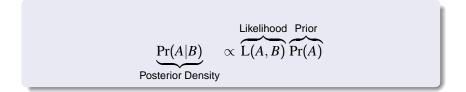
This is Bayes formula or theorem.

Bayes Theorem 00●000	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem					
Bayes The	orem				

$$\Pr(A|B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B)}$$

Bayes Theorem oo●ooo	Markov Chains	MHMCMC 00000	What is long enough ০০০০০০	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem					
Bayes The	eorem				

$$\Pr(A|B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B)}$$



Bayes Theorem 000●00	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem					
Bayes The	orem				

$$\Pr(A|B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B)}$$

• Bayesian, flips the probability around.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem					
Bayes The	orem				

$$\Pr(A|B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B)}$$

- Bayesian, flips the probability around.
- It is easy to include prior information which is often available.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem					
Bayes The	orem				

$$\Pr(A|B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B)}$$

- Bayesian, flips the probability around.
- It is easy to include prior information which is often available.
- The Bayesian conditional probability is perhaps more intuitive.

Bayes Theorem 0000●0	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem					
Making fo	rmulas tan	gible			

• The likelihood is L(T, D, M) = Pr(D|T, M)

Bayes Theorem 0000●0	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem					
Making for	mulas tang	jible			

• The likelihood is L(T, D, M) = Pr(D|T, M)

- T is the tree.
- *D* is the DNA/Protein etc sequence data.
- *M* is the model parameters, like GTR.

Bayes Theorem 0000€0	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem					
Making for	rmulas tan	gible			

- The likelihood is L(T, D, M) = Pr(D|T, M)
 - T is the tree.
 - *D* is the DNA/Protein etc sequence data.
 - *M* is the model parameters, like GTR.
- In words: The likelihood is the probability of the DNA data given the Tree and the model parameters.

	yes Theorem ooo●o	Markov Chains		What is long enough	Phylogenetic Bayesian MCMC	Summary
Bay	yes Theorem					
Μ	aking for	mulas tang	jible			

- The likelihood is L(T, D, M) = Pr(D|T, M)
 - T is the tree.
 - *D* is the DNA/Protein etc sequence data.
 - *M* is the model parameters, like GTR.
- In words: The likelihood is the probability of the DNA data given the Tree and the model parameters.
- The Prior is Pr(T, M) and indicates any information we already know. i.e. The root is not older than 10 million years.

Bayes Theorem 0000●0	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem					
Making for	mulas tang	jible			

- The likelihood is L(T, D, M) = Pr(D|T, M)
 - T is the tree.
 - *D* is the DNA/Protein etc sequence data.
 - *M* is the model parameters, like GTR.
- In words: The likelihood is the probability of the DNA data given the Tree and the model parameters.
- The Prior is Pr(T, M) and indicates any information we already know. i.e. The root is not older than 10 million years.
- The Posterior density is Pr(T, M|D) the probability of the tree and model parameters given the sequence data.

Bayes Theorem oooooo●	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem				
The Bad N	ews			

• We can't directly solve for the posterior distribution.

Bayes Theorem oooooo●	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem					
The Bad N	ews				

- We can't directly solve for the posterior distribution.
- Therefore MHMCMC must be used, this means it will take a lot of computer resources.

Bayes Theorem ooooo●	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem					
The Bad N	ews				

- We can't directly solve for the posterior distribution.
- Therefore MHMCMC must be used, this means it will take a lot of computer resources.
- The "answer" is not a tree, but a distribution of trees/states.

Bayes Theorem ooooo●	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Bayes Theorem					
The Bad N	ews				

- We can't directly solve for the posterior distribution.
- Therefore MHMCMC must be used, this means it will take a lot of computer resources.
- The "answer" is not a tree, but a distribution of trees/states.
- It will always be slower than ML.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Baye

Summary

Outline

- 2 Markov Chains
 - definition
 - Properties
- 3 MH
 - MHMCMC
 - Algorithm
 - Examples
- What is long enoughIts all about the die
 - Hats
- 5 Phylogenetic Bayesian MCMC
 - In practice
 - Priors

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
definition					
Markov Ch	nains				

• Assume that I have a machine that outputs random numbers, ie a chain of numbers.

	Bayes Theorem	Markov Chains		What is long enough	Phylogenetic Bayesian MCMC	Summary	
C	definition						
	Markov Chains						

- Assume that I have a machine that outputs random numbers, ie a chain of numbers.
- If I can work out the probability of the next output by only looking at the previous output, it is said to have the Markov property.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary		
definition							
Markov Chains							

- Assume that I have a machine that outputs random numbers, ie a chain of numbers.
- If I can work out the probability of the next output by only looking at the previous output, it is said to have the Markov property.
- Example: Our machine flips a coin and either adds one to the last output or subtracts one.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary		
definition							
Markov Chains							

- Assume that I have a machine that outputs random numbers, ie a chain of numbers.
- If I can work out the probability of the next output by only looking at the previous output, it is said to have the Markov property.
- Example: Our machine flips a coin and either adds one to the last output or subtracts one.

1,2,1,0,1,0,-1,-2,-3,-2,-3,-4,-3,-2,-1,0,-1,0,1,2,1,2,3

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary		
definition							
Markov Chains							

- Assume that I have a machine that outputs random numbers, ie a chain of numbers.
- If I can work out the probability of the next output by only looking at the previous output, it is said to have the Markov property.
- Example: Our machine flips a coin and either adds one to the last output or subtracts one.

1,2,1,0,1,0,-1,-2,-3,-2,-3,-4,-3,-2,-1,0,-1,0,1,2,1,2,3

• We don't care about the whole sequence, just the last output which is 3.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary		
definition							
Markov Chains							

- Assume that I have a machine that outputs random numbers, ie a chain of numbers.
- If I can work out the probability of the next output by only looking at the previous output, it is said to have the Markov property.
- Example: Our machine flips a coin and either adds one to the last output or subtracts one.

1,2,1,0,1,0,-1,-2,-3,-2,-3,-4,-3,-2,-1,0,-1,0,1,2,1,2,3

- We don't care about the whole sequence, just the last output which is 3.
- The next item has a 50% chance that it will be a 4, and a 50% chance that it will be a 2.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary		
definition							
Markov Chains							

- Assume that I have a machine that outputs random numbers, ie a chain of numbers.
- If I can work out the probability of the next output by only looking at the previous output, it is said to have the Markov property.
- Example: Our machine flips a coin and either adds one to the last output or subtracts one.

1,2,1,0,1,0,-1,-2,-3,-2,-3,-4,-3,-2,-1,0,-1,0,1,2,1,2,3

- We don't care about the whole sequence, just the last output which is 3.
- The next item has a 50% chance that it will be a 4, and a 50% chance that it will be a 2.
- This is a Markov Chain.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	000000000000000000000000000000000000000				

definition

Definition of a Markov Chain

Definition

A Markov Chain is a chain of randomly chosen values where the probability of the next value is entirely determined by the previous value.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	000000000000000000000000000000000000000				

definition

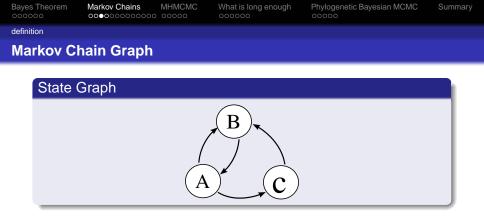
Definition of a Markov Chain

Definition

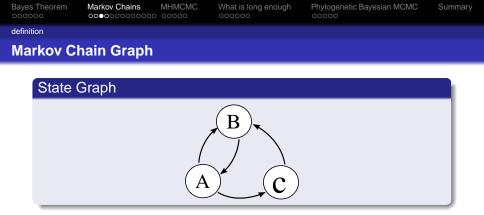
A Markov Chain is a chain of randomly chosen values where the probability of the next value is entirely determined by the previous value.

Rough Math definition

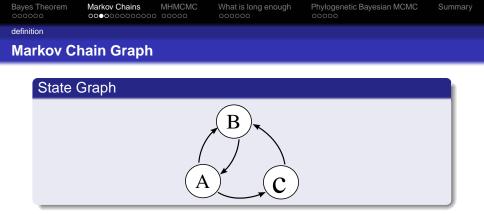
$$\Pr(X_n|X_{n-1},X_{n-2},\ldots)=\Pr(X_n|X_{n-1})$$



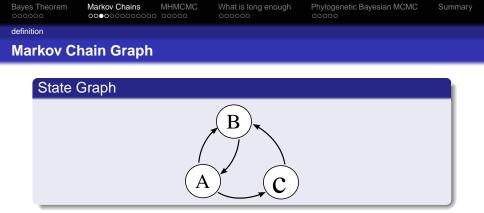
• Simple Markov Chains can be represented as a graph.



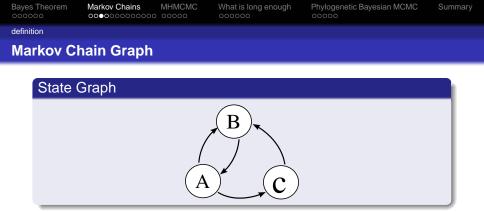
- Simple Markov Chains can be represented as a graph.
- Nodes or circles represent states (the last output).



- Simple Markov Chains can be represented as a graph.
- Nodes or circles represent states (the last output).
- Arrows are transitions between states.

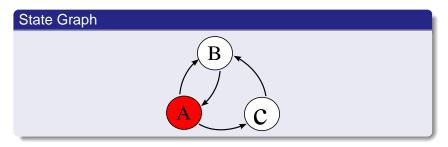


- Simple Markov Chains can be represented as a graph.
- Nodes or circles represent states (the last output).
- Arrows are transitions between states.
- Transitions (Arrows) usually have probabilities on them. That is the probability that this transition will be followed.

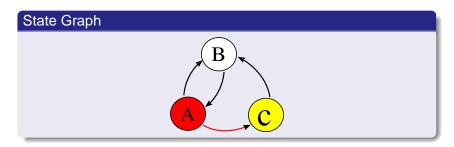


- Simple Markov Chains can be represented as a graph.
- Nodes or circles represent states (the last output).
- Arrows are transitions between states.
- Transitions (Arrows) usually have probabilities on them. That is the probability that this transition will be followed.
- For clarity, when transitions are equiprobable we omit the transition probabilities.

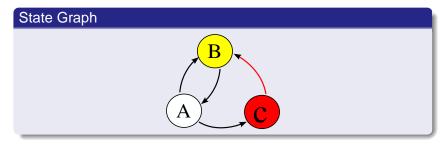
Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
definition					
Markov Ch Example	ain Graph				



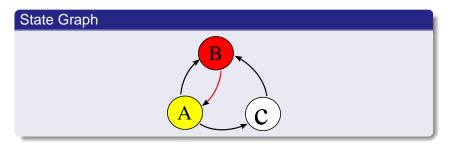
Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
definition					
Markov Ch Example	ain Graph				



Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
definition					
Markov Ch Example	ain Graph				



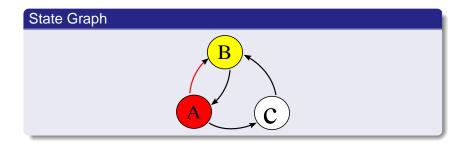
Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary
definition				
Markov Ch Example	ain Graph			



Output

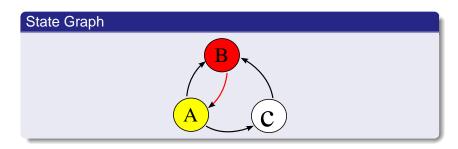
АСВА

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
definition					
Markov Ch Example	ain Graph				



ACBAB

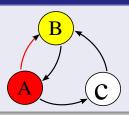
Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
definition					
Markov Ch Example	ain Graph				



Output

ACBABA

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
definition					
Markov Ch Example	ain Graph				



Output

ACBABAB

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
definition					
Markov Ch Example	ain Graph				

Output

ACBABABA

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
definition					
Markov Ch Example	ain Graph				

Output

ACBABABAC

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
definition					
Markov Ch Example	ain Graph				

Output

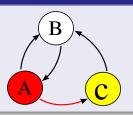
ACBABABACB

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
definition					
Markov Ch Example	ain Graph				

Output

ACBABABACBA

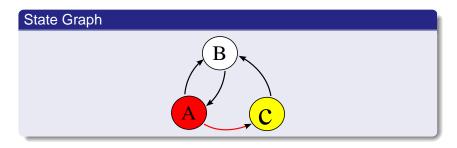
Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
definition					
Markov Ch Example	ain Graph				



Output

ACBABABACBAC

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
definition					
Markov Ch Example	ain Graph				



Output

ACBABABACBAC

• Note that the states can be anything. ie different trees

Bayes Theorem

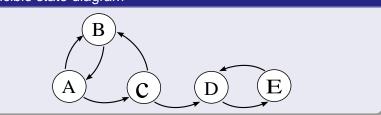
Markov Chains MHMCMC

What is long enough 000000 Phylogenetic Bayesian MCMC Summary

Properties

Extra Markov Chain Properties Irreducibility

Reducible state diagram



Bayes Theorem

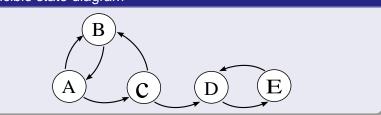
Markov Chains MHMCMC

What is long enough 000000 Phylogenetic Bayesian MCMC Summary

Properties

Extra Markov Chain Properties Irreducibility

Reducible state diagram



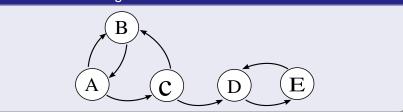
What is long enough 000000

Phylogenetic Bayesian MCMC Summary

Properties

Extra Markov Chain Properties Irreducibility

Reducible state diagram



Definition

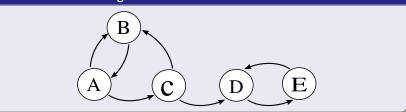
A Markov Chain is Irreducible if and only if the chain can get from any possible state to any other possible state eventually. Bayes Theorem Markov Chains MHMCMC What is long enough Phyloge

Phylogenetic Bayesian MCMC Summary

Properties

Extra Markov Chain Properties Irreducibility

Reducible state diagram



Definition

A Markov Chain is Irreducible if and only if the chain can get from any possible state to any other possible state eventually.

• The above state diagram is NOT irreducible.

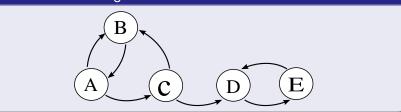
What is long enough

Phylogenetic Bayesian MCMC Summary

Properties

Extra Markov Chain Properties Irreducibility

Reducible state diagram



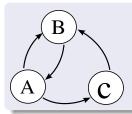
Definition

A Markov Chain is Irreducible if and only if the chain can get from any possible state to any other possible state eventually.

- The above state diagram is NOT irreducible.
- Adding a transition from $D \rightarrow C$ it would make this irreducible

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	000000000000000000000000000000000000000				

Extra Markov Chain Properties Reversibility



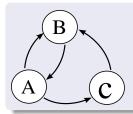
Is this output reversed?

CABCABABABC

• Note that there is no $C \rightarrow B$ transition or $C \rightarrow A$ transition.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	000000000000000000000000000000000000000				

Extra Markov Chain Properties Reversibility



Is this output reversed?

CABCABABABC

- Note that there is no $C \rightarrow B$ transition or $C \rightarrow A$ transition.
- Therefore we can tell that this output sequence is reversed.

Bayes Theorem

Markov Chains MHMCMC 000000000000 00000

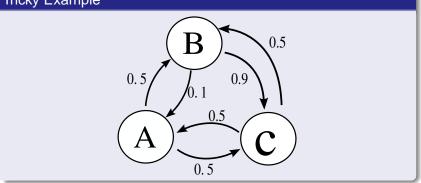
What is long enough

Phylogenetic Bayesian MCMC Summary

Properties

Extra Markov Chain Properties Reversibility

Tricky Example



Is this output reversed?

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	00000000000000				

Extra Markov Chain Properties Reversibility

Is this output reversed?

ABCABCBCBCBCABCBCABA

• The transition $B \rightarrow A$ is much less likely than $B \rightarrow C$ in the forward direction.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	000000000000000000000000000000000000000				

Extra Markov Chain Properties Reversibility

Is this output reversed?

- The transition B → A is much less likely than B → C in the forward direction.
- In this example there are 7 B → C transitions and only 1 B → A transition in the forward direction.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	000000000000000000000000000000000000000				

Extra Markov Chain Properties Reversibility

Is this output reversed?

- The transition B → A is much less likely than B → C in the forward direction.
- In this example there are 7 B → C transitions and only 1 B → A transition in the forward direction.
- Conversely there are 4 B → C transitions and 4 B → A transitions in the reverse direction.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	000000000000000000000000000000000000000	00000			

Extra Markov Chain Properties Reversibility

Is this output reversed?

- The transition B → A is much less likely than B → C in the forward direction.
- In this example there are 7 B → C transitions and only 1 B → A transition in the forward direction.
- Conversely there are 4 B → C transitions and 4 B → A transitions in the reverse direction.
- It seems we can guess that this output is not reversed.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	000000000000000000000000000000000000000				

Extra Markov Chain Properties Reversibility

Is this output reversed?

- The transition B → A is much less likely than B → C in the forward direction.
- In this example there are 7 B → C transitions and only 1 B → A transition in the forward direction.
- Conversely there are 4 B → C transitions and 4 B → A transitions in the reverse direction.
- It seems we can guess that this output is not reversed.
- But we stick to simple definitions for this course.

Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary
Properties				

Extra Markov Chain Properties Reversibility

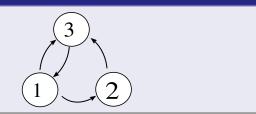
Definition

A Markov Chain is reversible if we cannot detect whether or not the chain is running in "reverse". That is the output is statistically identicle in both directions.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	000000000000000000000000000000000000000				

Extra Markov Chain Properties Aperiodic

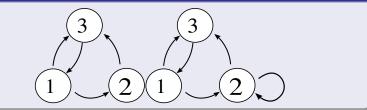
Periodic-Aperiodic



Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	000000000000000000000000000000000000000				

Extra Markov Chain Properties Aperiodic

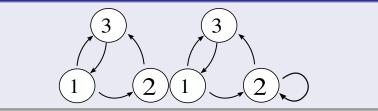
Periodic-Aperiodic



Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	000000000000000000000000000000000000000				

Extra Markov Chain Properties Aperiodic

Periodic-Aperiodic



Definition

A Markov Chain is periodic if there is some fixed "cycle" of states, and it is aperiodic otherwise.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	000000000000000000000000000000000000000	00000			

Extra Markov Chain Properties

Why do we care?

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	000000000000000000000000000000000000000	00000			

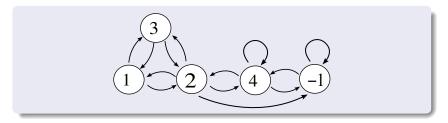
Extra Markov Chain Properties

Why do we care?

• If a MCMC chain has these 3 properties (reversible, irreducible and aperiodic), then it is also ergodic.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	000000000000000000000000000000000000000	00000			

Extra Markov Chain Properties Stationary distribution



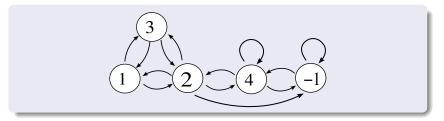
output

1 3 2 4 4 2 1 2 -1 -1 4 2 3 1 3 2 4 4 4 -1 -1 -1 4 2 3 1 2 3 -1

• We can calculate statistics on the output, like mean and standard deviation. Also we can plot histograms etc.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	000000000000000000000000000000000000000	00000			

Extra Markov Chain Properties Stationary distribution



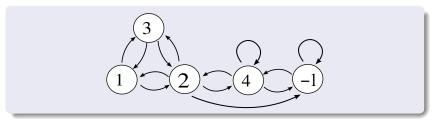
output

1 3 2 4 4 2 1 2 -1 -1 4 2 3 1 3 2 4 4 4 -1 -1 -1 4 2 3 1 2 3 -1

- We can calculate statistics on the output, like mean and standard deviation. Also we can plot histograms etc.
- Consider the distribution of the output.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	00000000000000000				

Extra Markov Chain Properties Stationary distribution



output

1 3 2 4 4 2 1 2 -1 -1 4 2 3 1 3 2 4 4 4 -1 -1 -1 4 2 3 1 2 3 -1

- We can calculate statistics on the output, like mean and standard deviation. Also we can plot histograms etc.
- Consider the distribution of the output.
- What about the start state. That is if the chain is started in state 1, will the distribution be different from starting in 2.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	0000000000000				

Extra Markov Chain Properties Ergodic

Definition

If we can start from any state, and if we take samples for long enough, and we end up with the same distribution, that distribution is the stationary distribution of the Markov Chain, and the Markov Chain is said to be ergodic

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	00000000000000				

Extra Markov Chain Properties Ergodic

Definition

If we can start from any state, and if we take samples for long enough, and we end up with the same distribution, that distribution is the stationary distribution of the Markov Chain, and the Markov Chain is said to be ergodic

Definition

If a Markov Chain is reversible, irreducible and aperiodic then it is also ergodic.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	0000000000000000	00000			

Extra Markov Chain Properties Ergodic

Definition

If we can start from any state, and if we take samples for long enough, and we end up with the same distribution, that distribution is the stationary distribution of the Markov Chain, and the Markov Chain is said to be ergodic

Definition

If a Markov Chain is reversible, irreducible and aperiodic then it is also ergodic.

• So we can know that a chain will converge to the stationary distribution without testing every state.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	0000000000000000	00000			

Extra Markov Chain Properties Ergodic

Definition

If we can start from any state, and if we take samples for long enough, and we end up with the same distribution, that distribution is the stationary distribution of the Markov Chain, and the Markov Chain is said to be ergodic

Definition

If a Markov Chain is reversible, irreducible and aperiodic then it is also ergodic.

- So we can know that a chain will converge to the stationary distribution without testing every state.
- Usually the symbol π denotes the stationary distribution.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
	000000000000000000000000000000000000000	00000			

Extra Markov Chain Properties Ergodic

Definition

If we can start from any state, and if we take samples for long enough, and we end up with the same distribution, that distribution is the stationary distribution of the Markov Chain, and the Markov Chain is said to be ergodic

Definition

If a Markov Chain is reversible, irreducible and aperiodic then it is also ergodic.

- So we can know that a chain will converge to the stationary distribution without testing every state.
- Usually the symbol π denotes the stationary distribution.
- Note that we have not said anything about how many samples we need to get an accurate distribution.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Sum

Outline

- Bayes TheoremBayes Theorem
- 2 Markov Chains
 - definition
 - Properties
- 3
 - MHMCMC
 - Algorithm
 - Examples
- What is long enough
 Its all about the dis
 - Hats
- 5 Phylogenetic Bayesian MCMC
 - In practice
 - Priors

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
		•••••			

Metropolis Hastings MCMC

Algorithm

• Start in state X_n

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
		••••			

Metropolis Hastings MCMC

- Start in state X_n
- Randomly generate some new state X' from X

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
		00000			

Metropolis Hastings MCMC

- Start in state X_n
- Randomly generate some new state X' from X
- Calculate the acceptance probability based on the posterior density.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
		00000			

Metropolis Hastings MCMC

- Start in state X_n
- Randomly generate some new state X' from X
- Calculate the acceptance probability based on the posterior density.
- Accept the new state with that probability.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
		00000			

Metropolis Hastings MCMC

- Start in state X_n
- Randomly generate some new state X' from X
- Calculate the acceptance probability based on the posterior density.
- Accept the new state with that probability.
- If we accept, then $X_{n+1} = X'$, otherwise $X_{n+1} = X_n$.

Bayes Theorem	Markov Chains N		Phylogenetic Bayesian MCMC	Summary
Algorithm				

 If our new state generation step can get to any valid state eventually (with non zero probability), then the chain is irreducible.

Bayes Theorem	Markov Chains	MHMCMC ○●○○○	What is long enough	Phylogenetic Bayesian MCMC	Summary
Algorithm					

- If our new state generation step can get to any valid state eventually (with non zero probability), then the chain is irreducible.
- If it's possible to generate X' from X and X from X' then the chain can be reversible.

Bayes Theorem	Markov Chains MHM0	Phylogenetic Bayesian MCMC	Summary
Algorithm			

- If our new state generation step can get to any valid state eventually (with non zero probability), then the chain is irreducible.
- If it's possible to generate X' from X and X from X' then the chain can be reversible.
- The acceptance probability is chosen so that the chain will be reversible and aperiodic.

Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary
Algorithm				

- If our new state generation step can get to any valid state eventually (with non zero probability), then the chain is irreducible.
- If it's possible to generate X' from X and X from X' then the chain can be reversible.
- The acceptance probability is chosen so that the chain will be reversible and aperiodic.
- Therefore the chain is ergodic with stationary distribution π.

Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary
Algorithm				

- If our new state generation step can get to any valid state eventually (with non zero probability), then the chain is irreducible.
- If it's possible to generate X' from X and X from X' then the chain can be reversible.
- The acceptance probability is chosen so that the chain will be reversible and aperiodic.
- Therefore the chain is ergodic with stationary distribution π.

The Key Idea

The stationary distribution is the posterior distribution of interest. That is the MHMCMC chain is sampling the Bayesian posterior distribution.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples					
Example					

• Start with tree T = (a, b|c, d).

Output (a, b|c, d)

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples					
Example					

- Start with tree T = (a, b|c, d).
- Generate a new tree from *T* by a branch swap (*b* = *c*).
 T' = (*a*, *c*|*b*, *d*)

(a, b|c, d)

Bayes Theorem	Markov Chains	What is long enough ০০০০০০	Phylogenetic Bayesian MCMC	Summary
Examples				
Example				

- Start with tree T = (a, b|c, d).
- Generate a new tree from *T* by a branch swap ($b \rightleftharpoons c$). T' = (a, c|b, d)
- Calculate acceptance probability and then accept/reject. We reject this time.

Output

(a, b|c, d)

Bayes Theorem	Markov Chains	MHMCMC ○○●○○	What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples					
Example					

- Start with tree T = (a, b|c, d).
- Generate a new tree from *T* by a branch swap ($b \rightleftharpoons c$). T' = (a, c|b, d)
- Calculate acceptance probability and then accept/reject. We reject this time.
- The new state is T = (a, b|c, d) which we output.

Output

(a,b|c,d) (a,b|c,d)

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples					
Example					

- Start with tree T = (a, b|c, d).
- Generate a new tree from *T* by a branch swap ($b \rightleftharpoons c$). T' = (a, c|b, d)
- Calculate acceptance probability and then accept/reject. We reject this time.
- The new state is T = (a, b|c, d) which we output.
- The next generated state is T' = (a, d|b, c) (b ⇒ d) and this time we accept.

Output(a,b|c,d)

Bayes Theorem	Markov Chains	MHMCMC 0000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples					
Example					

- Start with tree T = (a, b|c, d).
- Generate a new tree from *T* by a branch swap ($b \rightleftharpoons c$). T' = (a, c|b, d)
- Calculate acceptance probability and then accept/reject. We reject this time.
- The new state is T = (a, b|c, d) which we output.
- The next generated state is T' = (a, d|b, c) (b ⇒ d) and this time we accept.
- The new state is T = (a, d|b, c)

Output

(a,b|c,d) (a,b|c,d) (a,d|b,c)

Bayes Theorem	Markov Chains	MHMCMC 0000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples					
Example					

- Start with tree T = (a, b|c, d).
- Generate a new tree from *T* by a branch swap ($b \rightleftharpoons c$). T' = (a, c|b, d)
- Calculate acceptance probability and then accept/reject. We reject this time.
- The new state is T = (a, b|c, d) which we output.
- The next generated state is T' = (a, d|b, c) (b ⇒ d) and this time we accept.
- The new state is T = (a, d|b, c)
- We continue T' = (a, c | b, d) ($c \rightleftharpoons d$), and accept.

Output

$$(a,b|c,d)$$
 $(a,b|c,d)$ $(a,d|b,c)$ $(a,c|b,d)$

Bayes Theorem	Markov Chains MH	MCMC What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples				
Die examp	ole			

$$\Pr(k|i,s) = \frac{1}{s^i} \sum_{n=0}^{\lfloor \frac{k-i}{s} \rfloor} (-1)^n \binom{i}{n} \binom{k-sn-1}{i-1}$$

Die MHMCMC

Formula looks too complicated!

Bayes Theorem	Markov Chains MH	MCMC What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples				
Die examp	ole			

$$\Pr(k|i,s) = \frac{1}{s^i} \sum_{n=0}^{\lfloor \frac{k-i}{s} \rfloor} (-1)^n \binom{i}{n} \binom{k-sn-1}{i-1}$$

Die MHMCMC

- Formula looks too complicated!
- Use a simple MHMCMC instead.

Bayes Theorem	Markov Chains MH	MCMC What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples				
Die examp	ole			

$$\Pr(k|i,s) = \frac{1}{s^i} \sum_{n=0}^{\lfloor \frac{k-i}{s} \rfloor} (-1)^n \binom{i}{n} \binom{k-sn-1}{i-1}$$

Die MHMCMC

- Formula looks too complicated!
- Use a simple MHMCMC instead.
- Just pick one die at random and re-throw.

Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples				
Die examp	ble			

$$\Pr(k|i,s) = \frac{1}{s^i} \sum_{n=0}^{\lfloor \frac{k-i}{s} \rfloor} (-1)^n {i \choose n} {k-sn-1 \choose i-1}$$

Die MHMCMC

- Formula looks too complicated!
- Use a simple MHMCMC instead.
- Just pick one die at random and re-throw.
- This is reversible and the acceptance ratio is 1. i.e we always accept.

Bayes Theorem	Markov Chains	MHMCMC ○○○○●	What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples					
Die examp	le				

Bayes Theorem	Markov Chains	MHMCMC 0000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples					
Die examp	le				

Output	
36	

Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples				
Die examp	le			

Output

Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples				
Die examp	le			

Output

Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples				
Die examp	le			

Output

Bayes Theorem	Markov Chains		What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples					
Die example					

Output

Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples	-			
Die examp	ole			

3 die

Output

3611910812

Bayes Theorem Markov	00000000 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Examples Die example				

3 die

Output

36119108129

Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC

Outline

- Bayes TheoremBayes Theorem
- 2 Markov Chains
 - definition
 - Properties
- 3 MHMCMC
 - Algorithm
 - Examples
- What is long enough
 - Its all about the die
 - Hats

Phylogenetic Bayesian MCMC

- In practice
- Priors

Bayes Theorem	Markov Chains	What is long enough ●ooooo	Phylogenetic Bayesian MCMC	Summary
Its all about the die				
More Die				

• By changing just one dice at each step, the sum can never change by more than 5 from step to step.

Bayes Theorem	Markov Chains	What is long enough ●○○○○○	Phylogenetic Bayesian MCMC	Summary
Its all about the die				
More Die				

- By changing just one dice at each step, the sum can never change by more than 5 from step to step.
- If we have 100 die and start at all ones, it will take a long time to get to the "equilibrium".

Bayes Theorem	Markov Chains	What is long enough ●○○○○○	Phylogenetic Bayesian MCMC	Summary
Its all about the die				
More Die				

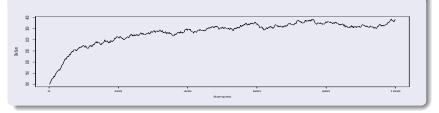
- By changing just one dice at each step, the sum can never change by more than 5 from step to step.
- If we have 100 die and start at all ones, it will take a long time to get to the "equilibrium".
- On the other hand we could roll every die at each step.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough ●○○○○○	Phylogenetic Bayesian MCMC	Summary
Its all about the die					
More Die					

- By changing just one dice at each step, the sum can never change by more than 5 from step to step.
- If we have 100 die and start at all ones, it will take a long time to get to the "equilibrium".
- On the other hand we could roll every die at each step.
- In this case we get to equilibrium in just a single step but must generate 100 random numbers per step.

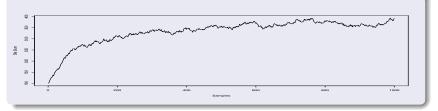
Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough o●oooo	Phylogenetic Bayesian MCMC	Summary
Its all about the die					
More Die					

100 die, rolling 1 dice per step

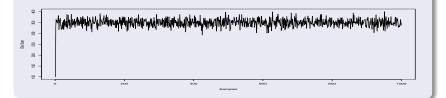


Bayes Theorem	Markov Chains	What is long enough ⊙●○○○○	Phylogenetic Bayesian MCMC	Summary
Its all about the die				
More Die				

100 die, rolling 1 dice per step



100 die, rolling all per step



Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough oo●ooo	Phylogenetic Bayesian MCMC	Summary
Its all about the die					
Effective S	ample Size	•			

• Both chains were 1000 MCMC samples long, but each sample is not independent of the other.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough oo●ooo	Phylogenetic Bayesian MCMC	Summary			
Its all about the die								
Effective Sample Size								

- Both chains were 1000 MCMC samples long, but each sample is not independent of the other.
- Its clear that the second case gives better results.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough oo●ooo	Phylogenetic Bayesian MCMC	Summary				
Its all about the die									
Effective S	Effective Sample Size								

- Both chains were 1000 MCMC samples long, but each sample is not independent of the other.
- Its clear that the second case gives better results.
- Effective sample size is the estimated number of independent samples and is calculated with the Integrated autocorrelation time. (in tracer for example)

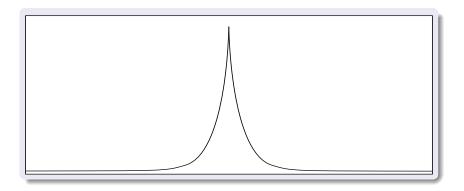
Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough oo●ooo	Phylogenetic Bayesian MCMC	Summary
Its all about the die					
Effective S	ample Size	•			

- Both chains were 1000 MCMC samples long, but each sample is not independent of the other.
- Its clear that the second case gives better results.
- Effective sample size is the estimated number of independent samples and is calculated with the Integrated autocorrelation time. (in tracer for example)
- Due to the correlations between samples we don't really need every sample from the MCMC chain and instead only collect every 100'th sample or so.

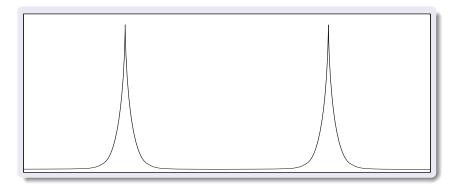
Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough oo●ooo	Phylogenetic Bayesian MCMC	Summary
Its all about the die					
Effective S	ample Size	•			

- Both chains were 1000 MCMC samples long, but each sample is not independent of the other.
- Its clear that the second case gives better results.
- Effective sample size is the estimated number of independent samples and is calculated with the Integrated autocorrelation time. (in tracer for example)
- Due to the correlations between samples we don't really need every sample from the MCMC chain and instead only collect every 100'th sample or so.
- Performance should be measured in the number of effective samples per CPU cycle.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough ○○○●○○	Phylogenetic Bayesian MCMC	Summary
Hats					
Witch's Ha	t				



Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough ○○○○●○	Phylogenetic Bayesian MCMC	Summary
Hats					
Witch's Ha	t				



- Consider all non tree like signals.
- Recombination, Horizontal Gene Transfer and other effects could contribute to a lot of witch's hats.

Bayes Theorem	Markov Chains	What is long enough ○○○○○●	Phylogenetic Bayesian MCMC	Summary
Hats				

• Check Effective Sample Size.

	Markov Chains	What is long enough ○○○○○●	Phylogenetic Bayesian MCMC	Summary
Hats				

- Check Effective Sample Size.
- Choose the correct sample intervals.

Bayes Theorem	Markov Chains M		Phylogenetic Bayesian MCMC	Summary
Hats				

- Check Effective Sample Size.
- Choose the correct sample intervals.
- Check Burn in. It should be small enough that it does not matter if you include it.

	Markov Chains		Phylogenetic Bayesian MCMC	Summary
Hate				

- Check Effective Sample Size.
- Choose the correct sample intervals.
- Check Burn in. It should be small enough that it does not matter if you include it.
- Not all moves are equal. How long depends on many things

Bayes Theorem	Markov Chains N	What is long enough	Phylogenetic Bayesian MCMC	Summary
11-1-				

- Check Effective Sample Size.
- Choose the correct sample intervals.
- Check Burn in. It should be small enough that it does not matter if you include it.
- Not all moves are equal. How long depends on many things
- Multiple runs from random starting locations

Bayes Theorem	Markov Chains	MHMCMC	what is long enough	Phylc

Outline

- Bayes TheoremBayes Theorem
- 2 Markov Chains
 - definition
 - Properties
- 3 MHMCMC
 - Algorithm
 - Examples
- What is long enough
 Its all about the die
 Hats
- Phylogenetic Bayesian MCMC
 - In practice
 - Priors

$\Pr(T, M|D) \propto \Pr(D|T, M) \Pr(T, M)$

- The likelihood is L(T, D, M) = Pr(D|T, M)
- T is the tree.
- *D* is the DNA/Protein etc sequence data.
- *M* is the model parameters, like GTR.

Warning

Trees Make Life Difficult

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
In practice					

Moves and why you care about irreducibility

• Many programs have a huge set of options.

Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary
In prosting				

- Many programs have a huge set of options.
- It is often possible to have moves that are not reversible or irreducible.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC ○●○○○	Summary
In practice					

It is often possible to have moves that are not reversible or

Hence will not properly sample the posterior distribution.

Moves and why you care about irreducibility

irreducible.

Many programs have a huge set of options.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
				0000	

In practice

- Many programs have a huge set of options.
- It is often possible to have moves that are not reversible or irreducible.
- Hence will not properly sample the posterior distribution.
- It may not be possible to get to the parts of the state space that are of interest.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
				0000	

In practice

- Many programs have a huge set of options.
- It is often possible to have moves that are not reversible or irreducible.
- Hence will not properly sample the posterior distribution.
- It may not be possible to get to the parts of the state space that are of interest.
- The wrong choice of moves could make the chain run very slowly.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
				0000	

In practice

- Many programs have a huge set of options.
- It is often possible to have moves that are not reversible or irreducible.
- Hence will not properly sample the posterior distribution.
- It may not be possible to get to the parts of the state space that are of interest.
- The wrong choice of moves could make the chain run very slowly.
- Examples of real output.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
In practice					
Aside: Hot	and Cold	chains			

• Have more than one chain.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
In practice					
Aside: Ho	t and Cold	chains			

- Have more than one chain.
- Each extra chain is heated. With only one chain that is not.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
In practice					
Aside: Hot	and Cold	chains			

- Have more than one chain.
- Each extra chain is heated. With only one chain that is not.
- We swap states between chains at each step or as frequently as desired.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary	
In practice						
Aside: Hot and Cold chains						

- Have more than one chain.
- Each extra chain is heated. With only one chain that is not.
- We swap states between chains at each step or as frequently as desired.
- Only collect samples from the cold chain. ie the only chain with the correct distribution.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
In practice					
Aside: Hot	and Cold	chains			

- Have more than one chain.
- Each extra chain is heated. With only one chain that is not.
- We swap states between chains at each step or as frequently as desired.
- Only collect samples from the cold chain. ie the only chain with the correct distribution.
- The idea is that we won't get stuck.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
In practice					
Aside: Hot	and Cold	chains			

- Have more than one chain.
- Each extra chain is heated. With only one chain that is not.
- We swap states between chains at each step or as frequently as desired.
- Only collect samples from the cold chain. ie the only chain with the correct distribution.
- The idea is that we won't get stuck.
- Generally not as effective as just developing some better moves.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Priors					
Priors					

• Huge topic!

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC ○○○●○	Summary
Priors					
Priors					

• Huge topic!

• Without proper priors, the posterior density may not even exist!

Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary
Priors				
Priors				

- Huge topic!
- Without proper priors, the posterior density may not even exist!
- Priors do not need to be highly informed to be effective. e.g root height.

Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary
Priors				
Priors				

- Huge topic!
- Without proper priors, the posterior density may not even exist!
- Priors do not need to be highly informed to be effective. e.g root height.
- Informative priors can make analysis possible by restricting the state space

Bayes Theorem	Markov Chains		Phylogenetic Bayesian MCMC	Summary
Priors				
Priors				

- Huge topic!
- Without proper priors, the posterior density may not even exist!
- Priors do not need to be highly informed to be effective. e.g root height.
- Informative priors can make analysis possible by restricting the state space
- Priors should be considered with respect to the hypothesis that will be tested.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC ○○○○●	Summary
Priors					
Priors-Ru	les				

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Priors					
Priors-Ru	les				

• Even if all the branch lengths in a topology are infinitely long the likelihood is still finite.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC ○○○○●	Summary
Priors					
Priors-Ru	les				

- Even if all the branch lengths in a topology are infinitely long the likelihood is still finite.
- Infinitely long branches do not make sense.

Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary
Priors				
Priors-Rul	es			

- Even if all the branch lengths in a topology are infinitely long the likelihood is still finite.
- Infinitely long branches do not make sense.
- Yule priors, coalescent priors and exponential priors are common.

Bayes Theorem	Markov Chains	MHMCMC	What is long enough	Phylogenetic Bayesian MCMC	Summary
Priors					
Priors-Rul	es				

- Even if all the branch lengths in a topology are infinitely long the likelihood is still finite.
- Infinitely long branches do not make sense.
- Yule priors, coalescent priors and exponential priors are common.
- For rooted topologies, a simple bounded uniform prior is sufficient.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC ○○○○●	Summary
Priors					
Priors-Rul	es				

- Even if all the branch lengths in a topology are infinitely long the likelihood is still finite.
- Infinitely long branches do not make sense.
- Yule priors, coalescent priors and exponential priors are common.
- For rooted topologies, a simple bounded uniform prior is sufficient.
- Even if the max root height is 100 expected substitutions per site, the posterior can now be normalized.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Rules of th	umb				

Do more than one run. I recommend about 10 or so if possible.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Rules of th	umb				

- Do more than one run. I recommend about 10 or so if possible.
- Each run should always start from a random starting point. Never use an NJ tree or any other "good" starting point.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Rules of th	umb				

- Do more than one run. I recommend about 10 or so if possible.
- Each run should always start from a random starting point. Never use an NJ tree or any other "good" starting point.
- Burn in should be less than a tenth of the full run. In general if the statistics are affected by the amount of burn in, it wasn't run long enough.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Rules of th	umb				

- Do more than one run. I recommend about 10 or so if possible.
- Each run should always start from a random starting point. Never use an NJ tree or any other "good" starting point.
- Burn in should be less than a tenth of the full run. In general if the statistics are affected by the amount of burn in, it wasn't run long enough.
- More parameters will always take longer. Don't use more parameters than are needed.

Bayes Theorem	Markov Chains	MHMCMC 00000	What is long enough	Phylogenetic Bayesian MCMC	Summary
Rules of th	umb				

- Do more than one run. I recommend about 10 or so if possible.
- Each run should always start from a random starting point. Never use an NJ tree or any other "good" starting point.
- Burn in should be less than a tenth of the full run. In general if the statistics are affected by the amount of burn in, it wasn't run long enough.
- More parameters will always take longer. Don't use more parameters than are needed.
- Check your priors!

Bayes Theorem	Markov Chains	What is long enough 000000	Phylogenetic Bayesian MCMC	Summary

• Bayesian inference is not maximum likelihood.

• Other points to consider.

Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary

- Bayesian inference is not maximum likelihood.
- It is not a black box. Care must be taken to get the chain setup correctly, and when interpreting the results.

• Other points to consider.

Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary

- Bayesian inference is not maximum likelihood.
- It is not a black box. Care must be taken to get the chain setup correctly, and when interpreting the results.
- Run the chain long enough! This is the most common mistake.
- Other points to consider.

Bayes Theorem				Summary
000000	000000000000000000000000000000000000000	00000	000000	

- Bayesian inference is not maximum likelihood.
- It is not a black box. Care must be taken to get the chain setup correctly, and when interpreting the results.
- Run the chain long enough! This is the most common mistake.
- Other points to consider.
 - Generally slower than ML. (bootstrapped)

Bayes Theorem				Summary
000000	000000000000000000000000000000000000000	00000	000000	

- Bayesian inference is not maximum likelihood.
- It is not a black box. Care must be taken to get the chain setup correctly, and when interpreting the results.
- Run the chain long enough! This is the most common mistake.
- Other points to consider.
 - Generally slower than ML. (bootstrapped)
 - Support values are easier to interpret.

Bayes Theorem	Markov Chains	What is long enough	Phylogenetic Bayesian MCMC	Summary

- Bayesian inference is not maximum likelihood.
- It is not a black box. Care must be taken to get the chain setup correctly, and when interpreting the results.
- Run the chain long enough! This is the most common mistake.
- Other points to consider.
 - Generally slower than ML. (bootstrapped)
 - Support values are easier to interpret.
 - Can incorporate prior information easily.