
Secure Messaging, Key management
Global Platform
Publicly available specifications [GP03] for smart card managements covering issues of smart
card life cycles, installation of applets, remote card management and secure communication
between smart card and user application.

a. Card Manager and Security domain
The Card Manager is the card component responsible for all card administration and card
system service functions:

Command Dispatch:
- Application selection
- (Optional) Logical channel management
- Command dispatching

Card Content Management
- Content verification
- Content loading
- Content installation
- Content removal

Security Management
- Security Domain locking
- Application locking
- Card locking
- Card termination
- Application privilege usage
- Security Domain privilege usage
- Tracing and event logging

The Issuer Security Domain is card component (more independent security domains can be
present) that contains keys that the Card Issuer uses in support of cryptographic operations for
the Card Issuer's Applications. These Security Domains are privileged applications
established on a GlobalPlatform card to represent Application Providers who require a level
of key separation from the Card Issuer.
Security domain is used when some card management operation is required after the card
issued to card holder (e.g. upload and installation of applet, card locking, …). Keys carried by
this Security domain are used to verify authenticity and integrity of request (Load File) and to
provide confidentiality of transferred data. A Load File may contain one or more DAP (Data
Authentication Pattern) Blocks that allow an entity other than the loading entity to verify the
authenticity and the integrity of the Load File Data Block.

b. Smart card life cycles
The smart card passes various logical life cycle states between manufacture and final
destruction. These life cycle states define which operations can be performed with the card.
The following card Life Cycle States shall apply:

1. OP_READY –card is ready for uploading of key diversification data, any application
and issuer specific structures.
2. INITIALIZED – card is fully prepared but not yet issued to card holder.
3. SECURED – card is issued to card holder. Card management is possible only throw
Security domain in secure sense (installation of signed applets etc.).
4. CARD_LOCKED – card is locked due to some security policy and no data
management can be performed. Card can be locked by Security domain and later unlocked
as well (switch back to SECURED state).
5. TERMINATED – card is logically “destroyed“ due to card expiration or detection of
the severe security thread.

The card Life Cycle States OP_READY and INITIALIZED are intended for use during the
Pre-Issuance phases of the card’s life. The states SECURED, CARD_LOCKED and
TERMINATED are intended for use during the Post-Issuance
phase of the card although it is possible to terminate the card at any point during its life.

c. GP APDU commands
Following APDU commands are defined to manage content of the smart card:

• DELETE – delete uniquely identifiable object (e.g. JavaCard applet)
• STORE_DATA – upload content of single data object
• GET_DATA - used to retrieve a single data object
• SET_STATUS – set Life Cycle status
• GET_STATUS – return Life Cycle status
• INSTALL – initiate installation, typically (JavaCard) applet
• LOAD – upload file from PC to smart card, e.g. JavaCard cap file
• PUT_KEY – update value of specified key

d. Secure Messaging – Secure channel protocol
Secure messaging stands for the process, which should lead to mutual authentication of the
smart card and PC and optional creation of the authenticated encrypted tunnel between smart
card and PC. Details of the process are described in Open Platform specifications [GP03].

Mutual authentication and computation of session keys consist from two phases (two APDU
commands exchanged with smart card):

1. INITIALIZE UPDATE
2. EXTERNAL AUTHENTICATE

First phase (INITIALIZE UPDATE): PC application sends 8-bytes block of random data to
smart card (called host random or host challenge). Smart card generates its own 8-bytes
random block (card random/challenge). Using host and card challenge forms derivation data
and encrypt them using card specific static encryption key (static ENC key - created during
key diversification process). Result of this operation is the session key (session ENC key).

figure 1 Generation of the derivation data

figure 2 Generation of session ENC key

Session key is used for computation of the authentication card cryptogram. Cryptogram is
computed using MAC operation. Input data are concatenated card challenge and host
challenge padded by the block ('80 00 00 00 00 00 00 00'). Cryptogram is send together with
card challenge back to PC.

Second phase (EXTERNAL AUTHENTICATE): PC application checks card cryptogram
send by card and computes its own cryptogram (host cryptogram). Algorithm for the host
cryptogram computation is again based on 3DES in CBC mode.

figure 3 Algorithm for MAC computation

In case of the equivalence of the received and computed card cryptograms, host cryptogram
is send back to card together with MAC of whole APDU command (EXTERNAL
AUTHENTICATE).

Algorithm for host cryptogram is same with swapped host and card challenge.
Session encryption and MAC keys are then used to create confidential authenticated tunnel
between smart card and PC application for all subsequent APDU commands.

Secure channel
Secure channel is vital component for the most of the security related applications that
involves smart cards. Basically, it should provide establishment of robust channel with
confidentiality and integrity between smart card (user applet, Card Manager) and second
entity (typically PC application, server-side application). Various issues should be taken in to
account.

Usage scenario and expected attackers
The general analysis of the system and appropriate properties of the secure channel should be
based on the usage scenario and the abilities of the expected attackers. Following questions
should be

1. What are the sensitive objects (keys, data, functions)?
2. What are these sensitive objects used for and what is the data flow of these objects?
3. What are the capabilities of the attackers (funding, tools, knowledge)?
4. What are the points where an attacker can observe the system (dump of exchanged

messages, debugging, ...)?
5. Which parts of the system must be trusted to obtain required functionality (less the

better)?

Confidentiality and integrity of command data
Data exchanged between smart card and PC can be intercepted and modified on binary level
in various levels (USB, PC/SC). Therefore, exchanged data should be encrypted and integrity-
protected by cryptographic manners.

• Both incoming and response apdu should be protected.
• Integrity should protect also apdu header, not only data part.
• Key for encryption and MAC computation should be different otherwise potential

threat from data mismatch exists.
• Header semantics should be protected as well (see Resilience against traffic analysis).
• Long term secrets should be used only for session keys derivation and not for

ordinary usage.
• Proper response in case of corruption – when corrupted command is detected, channel

should be closed and relevant information should be stored into on-card security log.
• Vadenay’s attack against padding should be taken in account – V. attack allows to

decrypt data without knowledge of respective keys, if the information about data
correctness from decryption oracle is available to an attacker.

Replay attack
Defense against the replay attack is an important measure, as an attacker can usually easily
capture, block and replace commands between card and PC. Therefore, same apdu command
(on encrypted level) received two times must be rejected and logged. The protection measure
must be able to detect replay a) within actual session, b) between different parallel sessions
and c) from previous sessions. Both incoming and response apdu should be protected. The

replay attack can be prevented by the combination of the derivation of unique session keys
and freshness nonce. Both card and PC must contribute into resulting derivation data,
otherwise one party can force session keys to be same by setting same derivation data.
Freshness nonce can be either sequence counter or (probably better) hash stream starting from
derivation data and updated each time a new command is send (both incoming and response).

Atomicity of critical operations
The critical operations should be atomic both on code level (e.g., two variables are either
changed both or none of them – use JCSystem.beginTransaction()) and on logical operations
level (e.g., if command should either encrypt or decrypt mode supplied data with specified
key than mode, key and data should be ideally send within same command). When using
transactions, be aware of Rollback attack, where an attacker cut power inside the transaction –
all changes are then restored back to original values including the security usage counters –
which might be undesirable.

Robustness against side channel attacks (power analysis, fault attacks)
The side channel attacks prove to be a severe threat against the security of smart cards. The
threat mitigation involves both the card manufacturer (cryptographic coprocessor) and
developer of applet. Typically, if the coprocessor is flawed and can be attacked by the
assumed attacker (cryptographic keys can be extracted) than this version of the card should
not be used (even when techniques that are able to limit attackers success still might exists –
e.g., key derivation technique proposed by Kocher, limitation of number of packets encrypted
by the same key etc.). Second layer that can be attacked is the applet code itself and data that
are manipulated. Typically, single instructions of the processor can be observed and thus
reverse engineering can be employed by an attacker to obtain parts of original code back.
To prevent fault attacks, operation might be executed twice and results should be compared. If
the results mismatch than nothing should be given on output. CRT version of RSA should not
be used as is highly vulnerable by the fault attack.
Measures against side channel attacks might be quite specific for given card – therefore the
particular measures should not confuse original code – the clarity and correctness of the code
before the measures are applied is very important! Write nice and correct code first and then
add reasonable measures against side channel attacks.

Robustness against incorrect attempts
Depending on the usage scenario, data send to and received from the card might be corrupted
either by transmission error or by an attacker. During mutual authentication, the challenge
should change next time if the response cryptogram is not correct (do not allow multiple tries
for same challenge). The secure channel should be closed when unexpected data are received.

Resilience against traffic analysis
Length of commands, frequency etc. can help an attacker a lot when building mental model of
applet/protocol functionality. As the dump of the communication between valid card and
application is relatively easy to obtain (USB dumper, PC/SC logger, virtual reader),
transcription of the correct communication provides lot of information about process, even
when the data itself are encrypted.
Following defense measures can be employed:

1. Internal semantics of the commands can be hidden into uniform structure with
fixed length (maximum length of the command) and same header. The
differentiation between logical functions inside applet are then given by nested
internal header that is stored in encrypted part of apdu command (basic apdu
header itself cannot be encrypted). An attacker without knowledge of encryption
keys thus sees only the commands with same length and basic header.

2. Still an attacker can induce some knowledge from the order of the commands. E.g.
he can assume that first two commands provide mutual authentication and third
one the “secret” function he likes to attack. To counter this threat, dummy traffic
must be introduced. Parameter in nested header will carry the information if the
command is valid or dummy one and card will behave respectively. If an attacker
is able to use power analysis to observe applet behavior, the dummy command
should induce the same sequence of instructions as the valid one – but over the
dummy internal values.

[GP03] GlobalPlatform,

http://www.globalplatform.org/showpage.asp?code=specifications

http://www.globalplatform.org/showpage.asp?code=specifications

	Secure Messaging, Key management
	Global Platform
	a. Card Manager and Security domain
	b. Smart card life cycles
	c. GP APDU commands
	 DELETE – delete uniquely identifiable object (e.g. JavaCard applet)

	d. Secure Messaging – Secure channel protocol
	Secure channel
	Usage scenario and expected attackers
	Confidentiality and integrity of command data
	Replay attack
	Atomicity of critical operations
	Robustness against side channel attacks (power analysis, fault attacks)
	Robustness against incorrect attempts
	Resilience against traffic analysis

