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INTRODUCTIONINTRODUCTIONIV054 INTRODUCTIONINTRODUCTION

• Transmission of classical information in time and space is nowadays very easy 
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• Transmission of classical information in time and space is nowadays very easy 

(through noiseless channel).

It took centuries, and many ingenious developments and discoveries (writing, book 

printing, photography, movies, telegraph, telephone, radio transmissions,TV,  -printing, photography, movies, telegraph, telephone, radio transmissions,TV,  -

sounds recording – records, tapes, discs) and the idea of the digitalisation of all 

forms of information to discover fully this property of information.

Coding theory develops methods to protect information against a noise.

• Information is becoming an increasingly valuable commodity for both individuals • Information is becoming an increasingly valuable commodity for both individuals 

and society.

Cryptography develops methods how to ensure secrecy of information and privacy 

of users.of users.

• A very important property of information is that it is often very easy to make 

unlimited number of copies of information.unlimited number of copies of information.

Steganography develops methods to hide important information in innocently 

looking information (and that can be used to protect intellectual properties).
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The history of cryptography is the story of centuries-old battles
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The history of cryptography is the story of centuries-old battles
between codemakers (ciphermakers) and codebreakers 
(cipherbreakers), an intellectual arms race that has had a 
dramatic impact on the course of history.dramatic impact on the course of history.

The ongoing battle between codemakers and codebreakers The ongoing battle between codemakers and codebreakers 
has inspired a whole series of remarkable scientific 
breakthroughts.

History is full of ciphers. They have decided the outcomes of 
battles and led to the deaths of kings and queens.battles and led to the deaths of kings and queens.

Security of communication and data and privacy of users are of 
key importance for information society. Cryptography, broadlykey importance for information society. Cryptography, broadly
understood, is an important tool to achieve such a goal.
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ABSTRACTABSTRACT
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ABSTRACTABSTRACT

Coding theory - theory of error correcting codes - is one of the most interesting and 
applied part of mathematics and informatics.applied part of mathematics and informatics.

All real communication systems that work with digitally represented data, as CD 
players, TV, fax machines, internet, satellites, mobiles, require to use error 
correcting codes because all real channels are, to some extent, noisy – due to correcting codes because all real channels are, to some extent, noisy – due to 
interference caused by environment

� Coding theory problems  are therefore among the very basic and most frequent� Coding theory problems  are therefore among the very basic and most frequent
problems of storage and transmission of information.

� Coding theory results allow to create reliable systems out of unreliable systems 
to store and/or to transmit information.to store and/or to transmit information.

� Coding theory methods are often  elegant applications of very basic concepts 
and methods of (abstract) algebra.

This first chapter presents and illustrates the very basic problems, concepts, 
methods and results of coding theory.
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Coding Coding -- basic conceptsbasic conceptsIV054 Coding Coding -- basic conceptsbasic concepts

Without coding theory and error-correcting codes there would be no deep-space 
travel and pictures, no satellite TV, no compact disc, no … no … no ….

IV054

travel and pictures, no satellite TV, no compact disc, no … no … no ….

Error-correcting codes are used to correct messages when they are transmitted 
through  noisy channels.

Error correcting frameworkError correcting framework

ExampleExample

A code C over an alphabet Σ is a subset of Σ* - (C ⊂ Σ*).
A q -nary code is a code over an alphabet of q -symbols.A q -nary code is a code over an alphabet of q -symbols.

A binary code is a code over the alphabet {0,1}.

Examples of codes C1 = {00, 01, 10, 11} C2 = {000, 010, 101, 100}
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CHANNELCHANNELIV054 CHANNELCHANNEL

is any physical medium through which information is transmitted.
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is any physical medium through which information is transmitted.

(Telephone lines and the atmosphere are examples of channels.)

NOISENOISENOISENOISE

may be caused by sunspots, lighting, meteor showers, random radio disturbance, 

poor typing, poor hearing, ….

TRANSMISSION GOALSTRANSMISSION GOALS

1. Fast encoding of information.1. Fast encoding of information.

2. Easy transmission of encoded messages.

3. Fast decoding of received messages.

4. Reliable correction of errors introduced in the channel.

5. Maximum transfer of information per unit time.

BASIC METHOD OF FIGHTING ERRORSBASIC METHOD OF FIGHTING ERRORS: REDUNDANCY!!!: REDUNDANCY!!!

0 is encoded as 00000 and 1 is encoded as 11111.
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IMPORTANCE of ERROR-CORRECTING CODESIV054 IMPORTANCE of ERROR-CORRECTING CODESIV054

In a good cryptosystem a change of a single bit of the In a good cryptosystem a change of a single bit of the 

cryptotext should change so many bits of the plaintext cryptotext should change so many bits of the plaintext cryptotext should change so many bits of the plaintext cryptotext should change so many bits of the plaintext 

obtained from the cryptotext that the plaintext gets obtained from the cryptotext that the plaintext gets 

uncomprehensible.uncomprehensible.uncomprehensible.uncomprehensible.

Methods to detect and correct errors when cryptotexts Methods to detect and correct errors when cryptotexts Methods to detect and correct errors when cryptotexts Methods to detect and correct errors when cryptotexts 

are transmitted are therefore much needed.are transmitted are therefore much needed.

Also many nonAlso many non--cryptographic applications require errorcryptographic applications require error--

correcting codes. For example, mobiles, CDcorrecting codes. For example, mobiles, CD--players,…players,…correcting codes. For example, mobiles, CDcorrecting codes. For example, mobiles, CD--players,…players,…
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BASIC IDEAIV054 BASIC IDEA

The details of techniques used to protect information 
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The details of techniques used to protect information 

against noise in practice are sometimes rather 

complicated, but basic principles are easily understood.complicated, but basic principles are easily understood.

The key idea is that in order to protect a message The key idea is that in order to protect a message 

against a noise, we should encode the message by 

adding some redundant information to the message.adding some redundant information to the message.

In such a case, even if the message is corrupted by a 

noise, there will be enough redundancy in the encoded noise, there will be enough redundancy in the encoded 

message to recover- to decode the message 

completely.
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EXAMPLEIV054 EXAMPLE

In case of:  encoding

IV054

In case of:  encoding

0→000       1 →111

the probability of the bit error p ≤ , and the majority voting decoding
2

1

000, 001, 010, 100 → 000,      111, 110, 101, 011 → 111

the probability of an erroneous decoding (if there are 2 or 3 errors) isthe probability of an erroneous decoding (if there are 2 or 3 errors) is

pppppp <−=+− 3232 23)1(3 pppppp <−=+− 3232 23)1(3
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EXAMPLE: EXAMPLE: Coding of a path avoiding an enemy territoryIV054 EXAMPLE: EXAMPLE: Coding of a path avoiding an enemy territory

Story Alice and Bob share an identical map (Fig. 1) gridded as shown in Fig.1. Only 

IV054

Story Alice and Bob share an identical map (Fig. 1) gridded as shown in Fig.1. Only 

Alice knows the route through which Bob can reach her avoiding the enemy 

territory. Alice wants to send Bob the following information about the safe route he 

should take.should take.

NNWNNWWSSWWNNNNWWN

Three ways to encode the safe route from 

Bob to Alice are:

1. C = {00, 01, 10, 11}1. C1 = {00, 01, 10, 11}

Any error in the code word

000001000001011111010100000000010100

would be a disaster.

2. C2 = {000, 011, 101, 110}

A single error in encoding each of symbols N, W, S, E can be detected.A single error in encoding each of symbols N, W, S, E can be detected.

3. C3 = {00000, 01101, 10110, 11011}

A single error in decoding each of symbols N, W, S, E can be corrected.

11Basics of coding theory
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Basic terminologyBasic terminologyIV054 Basic terminologyBasic terminology

Block code - a code with all words of the same length.
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Block code - a code with all words of the same length.

Codewords - words of some code.

Basic assumptions about channelsBasic assumptions about channels

1. Code length preservation Each output codeword of a channel has the same 

length as the input codeword. length as the input codeword. 

2.  Independence of  errors The probability of any one symbol being affected in 

transmissions is the same.transmissions is the same.

Basic strategy for  decodingBasic strategy for  decodingBasic strategy for  decodingBasic strategy for  decoding

For decoding we use the so-called maximal likehood principle, or nearest neighbor

decoding strategy, or majority voting decoding strategy which says that the 

receiver should  decode  a word w' as that codeword w that is  the closest one to receiver should  decode  a word w' as that codeword w that is  the closest one to 

w'.

12Basics of coding theory



Hamming distanceHamming distanceIV054 Hamming distanceHamming distance

The intuitive concept of “closeness'' of two words is well formalized through Hamming distance
h(x, y) of words x, y.
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h(x, y) of words x, y.

For two words x, y

h(x, y) = the number of symbols words x and y differ.

Example: h(10101, 01100) = 3, h(fourth, eighth) = 4Example: h(10101, 01100) = 3, h(fourth, eighth) = 4

Properties of Hamming distanceProperties of Hamming distance
(1) h(x, y) = 0 ⇔ x = y(1) h(x, y) = 0 ⇔ x = y

(2) h(x, y) = h(y, x)

(3) h(x, z) ≤ h(x, y) + h(y, z) triangle inequality

An important parameter of codes C is their minimal distance.An important parameter of codes C is their minimal distance.

h(C) = min {h(x, y) | x,y ∈ C, x ≠ y},

because h(C) is the smallest number of errors needed to change one codeword into another.

Theorem Basic error correcting theoremTheorem Basic error correcting theorem

(1) A code C can detect up to s errors if h(C) ≥ s + 1.

(2) A code C can correct up to t errors if h(C) ≥ 2t + 1.

Proof (1) Trivial. 

(2) Suppose h(C) ≥ 2t + 1. Let a codeword x is transmitted and a word y is recceived with h(x,
y) ≤ t. If x' ≠ x is a codeword, then h(y,x’) ≥ t + 1 because otherwise h(y,x’) < t + 1 and therefore 
h(x, x') ≤ h(x, y) + h(y, x') < 2t + 1 what contradicts the assumption h(C) ≥ 2t + 1.
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Binary symmetric channelBinary symmetric channelIV054 Binary symmetric channelBinary symmetric channel

Consider a transition of binary symbols such that each symbol has probability of 
error p < 1/2.

IV054

error p < 1/2.

Binary symmetric channelBinary symmetric channel

If n symbols are transmitted, then the probability of t errors is

( ) ( ).1 ntnt pp
−−

In the case of binary symmetric channels, the ”nearest neighbour decoding
strategy” is also “maximum likelihood decoding strategy''.

( ) ( ).1 n

t

tnt pp
−−

Example Consider C = {000, 111} and the nearest neighbour decoding strategy.

Probability that the received word is decoded correctly

as 000 is (1 - p)3 + 3p(1 - p)2,as 000 is (1 - p)3 + 3p(1 - p)2,

as 111 is (1 - p)3 + 3p(1 - p)2.

Therefore Perr (C) = 1 - ((1 - p)3 + 3p(1 - p)2)Therefore Perr (C) = 1 - ((1 - p) + 3p(1 - p) )

is probability of erroneous decoding.

Example If p = 0.01, then Perr (C) = 0.000298 and only one word in 3555 will reach 
the user with an error.

14Basics of coding theory
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POWER of PARITY BITSPOWER of PARITY BITSIV054 POWER of PARITY BITSPOWER of PARITY BITS

Example Let all 211 of binary words of length 11 be codewords.

IV054

Example Let all 2 of binary words of length 11 be codewords.

Let the probability p of a bit  error be 10 -8.

Let bits be transmitted at the rate 107 bits per second.

The probability that a word is transmitted incorrectly is approximately

( ) .
10

11
111

8

10 ≈− pp

Therefore of words per second are transmitted incorrectly.

One wrong word is transmitted every 10 seconds, 360 erroneous words every hour 

and 8640 words every day without being detected!

10
1.0

11
10

10

11
7

8 =⋅

and 8640 words every day without being detected!

Let now one parity bit be added.

Any single error can be detected!!!

The probability of at least two errors is:

( ) ( ) ( )( )
16

21012

2

1112

10

66
111211 ≈−≈−−−− ppppp

97 −⋅≈⋅Therefore approximately words per second are transmitted with an 

undetectable error.

Corollary One undetected error occurs only every 2000 days! (2000 ≈ 109/(5.5 ×

10
9

12
10

10

66 105.5
7

16

−⋅≈⋅
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Corollary One undetected error occurs only every 2000 days! (2000 ≈ 10 /(5.5 ×
86400).)



TWOTWO--DIMENSIONAL PARITY CODEDIMENSIONAL PARITY CODEIV054 TWOTWO--DIMENSIONAL PARITY CODEDIMENSIONAL PARITY CODE

The two-dimensional parity code arranges the data into a two-dimensional

IV054

The two-dimensional parity code arranges the data into a two-dimensional

array and then to each row (column) parity bit is attached.

Example Binary string

10001011000100101111

is represented and encoded as follows

000110

010001

00110

10001

011110

010010

000110

        
10010

00110
→

Question How much better is two-dimensional encoding than one-dimensional

011011

011110
11110

Question How much better is two-dimensional encoding than one-dimensional

encoding?
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Notation and ExamplesNotation and ExamplesIV054 Notation and ExamplesNotation and Examples

Notation:Notation: An (n,M,d) - code C is a code such that
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Notation:Notation: An (n,M,d) - code C is a code such that

• n - is the length of codewords.

• M - is the number of codewords.• M - is the number of codewords.

• d - is the minimum distance in C.

ExExample:ample:

C = {00, 01, 10, 11} is a (2,4,1)-code.C1 = {00, 01, 10, 11} is a (2,4,1)-code.

C2 = {000, 011, 101, 110} is a (3,4,2)-code.

C = {00000, 01101, 10110, 11011} is a (5,4,3)-code.C3 = {00000, 01101, 10110, 11011} is a (5,4,3)-code.

Comment: A good (n,M,d) code has small n and large M and d.

17Basics of coding theory



Examples from deep space travelsExamples from deep space travelsIV054 Examples from deep space travelsExamples from deep space travels

ExExampleampless (Transmission of photographs from the deep space)
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ExExampleampless (Transmission of photographs from the deep space)

• In  1965-69 Mariner 4-5 took the first photographs of another planet 

- 22 photos. Each photo was divided into 200 × 200 elementary 

squares - pixels. Each pixel was assigned 6 bits representing 64 levels 

of brightness. Hadamard code was used.

Transmission rate: 8.3 bits per second.

• In 1970-72 Mariners 6-8 took such photographs that each picture • In 1970-72 Mariners 6-8 took such photographs that each picture 

was broken into 700 × 832 squares. Reed-Muller (32,64,16) code was 

used.

Transmission rate was 16200 bits per second. (Much better pictures)

18Basics of coding theory



HADAMARD CODEHADAMARD CODEIV054 HADAMARD CODEHADAMARD CODE

In Mariner 5, 6-bit pixels were encoded using 32-bit long Hadamard 
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In Mariner 5, 6-bit pixels were encoded using 32-bit long Hadamard 

code that could correct up to 7 errors.

Hadamard code has 64 codewords. 32 of them are represented by the Hadamard code has 64 codewords. 32 of them are represented by the 

32 × 32 matrix H = {hIJ}, where 0 ≤ i, j ≤ 31 and

( ) 441100 ...
1

bababa
h

+++−=

where i and j have binary representations

i = a a a a a , j = b b b b b

( ) 4411001ijh −=

i = a4a3a2a1a0, j = b4b3b2b1b0.

The remaing 32 codewords were represented by the matrix -H.The remaing 32 codewords were represented by the matrix -H.

Decoding was quite simple.
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CODE RATECODE RATEIV054 CODE RATECODE RATE

For q-nary (n,M,d)-code we define code rate, or information rate, R, by

IV054

For q-nary (n,M,d)-code we define code rate, or information rate, R, by

.
lg

n

M
R

q=

The code rate represents the ratio of the number of needed input data 

symbols to the number of transmitted code symbols.

n

Code rate (6/32 for Hadamard code), is an important parameter for real 

implementations, because it shows what fraction of the bandwidth is implementations, because it shows what fraction of the bandwidth is 

being used to transmit actual data.
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The ISBNThe ISBN--codecodeIV054 The ISBNThe ISBN--codecode

Each recent book has International Standard Book Number which is a 10-digit 
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Each recent book has International Standard Book Number which is a 10-digit 

codeword produced by the publisher with the following structure:

l p m w = x1 … x10

language publisher number weighted check sumlanguage publisher number weighted check sum

0 07 709503 0

such that ( )11  mod 0
10

≡∑ ix

The publisher has to put X into the 10-th position if x10 = 10.

The ISBN code is designed to detect: (a) any single error (b) any double error 

( )11  mod 0
1

≡∑
=i

iix

The ISBN code is designed to detect: (a) any single error (b) any double error 

created by a transposition

Single error detectionSingle error detectionSingle error detectionSingle error detection

Let X = x1… x10 be a correct code and let

Y = x1… xJ-1 yJ xJ+1 … x10 with yJ = xJ + a, a ≠ 0

( )11  mod 0
10

1

10

1

≠+=∑∑
==

jaixiy
i

i

i

i

1 J-1 J J+1 10 J J

In such a case:
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The ISBNThe ISBN--codecodeIV054 The ISBNThe ISBN--codecode

Transposition detectionTransposition detection
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Transposition detectionTransposition detection

Let xJ and xk be exchanged.

1010

( ) ( )

( )( ) ( ) . and  if     11  mod 0          

10

1

10

1

kj

i

i

i

i

xxjkxxjk

xkjxjkixiy

≠≠≠−−=

−+−+=∑∑
==

( )( ) ( ) . and  if     11  mod 0          kjkj xxjkxxjk ≠≠≠−−=
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Equivalence of codesEquivalence of codesIV054 Equivalence of codesEquivalence of codes

Definition Two q -ary codes are called equivalent if one can be obtained from the 
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Definition Two q -ary codes are called equivalent if one can be obtained from the 
other by a combination of operations of the following type:

(a) a permutation of the positions of the code.

(b) a permutation of symbols appearing in a fixed position.(b) a permutation of symbols appearing in a fixed position.

Question: Let a code be displayed as an M × n matrix. To what correspond 
operations (a) and (b)?

Claim: Distances between codewords are unchanged by operations (a), (b). Claim: Distances between codewords are unchanged by operations (a), (b). 
Consequently, equivalent codes have the same parameters (n,M,d) (and correct 
the same number of errors).

Examples of equivalent codesExamples of equivalent codes













210000
0000000100

( ) ( )
















































































102

021

210

   

222

111

000

  2     

01011

11101

10110

00000

   

00011

11111

11000

00100

  1

Lemma Any q -ary (n,M,d) -code over an alphabet {0,1,…,q -1} is equivalent to an 
(n,M,d) -code which contains the all-zero codeword 00…0.


102222

0101100011
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(n,M,d) -code which contains the all-zero codeword 00…0.

Proof Trivial.



The main coding theory problemThe main coding theory problemIV054 The main coding theory problemThe main coding theory problem

A good (n,M,d) -code has small n, large M and large d.
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A good (n,M,d) -code has small n, large M and large d.

The main coding theory problem is to optimize one of the parameters n, M, d

for given values of the other two.

Notation:Notation: Aq (n,d) is the largest M such that there is an q -nary (n,M,d) -code. 

ThTheoremeorem (a) Aq (n,1) = qn;ThTheoremeorem (a) Aq (n,1) = q ;

(b) Aq (n,n) = q. 

ProofProofProofProof

(a) obvios;

(b) Let C be an q -nary (n,M,n) -code. Any two distinct codewords of C differ in 

all n positions. Hence symbols in any fixed position of M codewords have to be all n positions. Hence symbols in any fixed position of M codewords have to be 

different ⇒ Aq (n,n) ≤ q. Since the q -nary repetition code is (n,q,n) -code, we 

get Aq (n,n) ≥ q. get Aq (n,n) ≥ q. 
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EXAMPLEEXAMPLEIV054 EXAMPLEEXAMPLE

ExExampleample Proof that A2 (5,3) = 4. 

IV054

ExExampleample Proof that A2 (5,3) = 4. 

(a) Code C3 is a (5,4,3) -code, hence A2 (5,3) ≥ 4.

(b) Let C be a (5,M,3) -code with M > 4.(b) Let C be a (5,M,3) -code with M > 4.

• By previous lemma we can assume that 00000 ∈ C. 

• C has to contain at most one codeword with at least four 1's. (otherwise d• C has to contain at most one codeword with at least four 1's. (otherwise d

(x,y) ≤ 2 for two such codewords x, y) 

• Since 00000 ∈ C there can be no codeword in C with one or two 1. • Since 00000 ∈ C there can be no codeword in C with one or two 1. 

• Since d = 3 C cannot contain three codewords with three 1's.

• Since M ≥ 4 there have to be in C two codewords with three 1's. (say 11100, • Since M ≥ 4 there have to be in C two codewords with three 1's. (say 11100, 

00111), the only possible codeword with four or five 1's is then 11011.
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Design of one code from another oneDesign of one code from another oneIV054 Design of one code from another oneDesign of one code from another one

ThTheoremeorem Suppose d is odd. Then a binary (n,M,d) -code exists iff a binary 
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ThTheoremeorem Suppose d is odd. Then a binary (n,M,d) -code exists iff a binary 

(n +1,M,d +1) -code exists. 

ProofProof Only if case: Let C be a binary code (n,M,d) -code. LetProofProof Only if case: Let C be a binary code (n,M,d) -code. Let

Since parity of all codewords in C´ is even, d(x´,y´) is even for all

( ){ } 2mod    , ...   ... C´
11111 ∑ =++ =∈= n

i innnn xxCxxxxx

Since parity of all codewords in C´ is even, d(x´,y´) is even for all

x´,y´ ∈ C´.

Hence d(C´) is even. Since d ≤ d(C´) ≤ d +1 and d is odd,Hence d(C´) is even. Since d ≤ d(C´) ≤ d +1 and d is odd,

d(C´) = d +1.

Hence C´ is an (n +1,M,d +1) -code.Hence C´ is an (n +1,M,d +1) -code.

If case: Let D be an (n +1,M,d +1) -code. Choose code words x, y of D such 

that d(x,y) = d +1.that d(x,y) = d +1.

Find a position in which x, y differ and delete this position from all codewords 

of D. Resulting code is an (n,M,d) -code.
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A corollaryA corollaryIV054 A corollaryA corollary

Corollary:Corollary:

IV054

Corollary:Corollary:

If d is odd, then A2 (n,d) = A2 (n +1,d +1).

If d is even, then A2 (n,d) = A2 (n -1,d -1).If d is even, then A2 (n,d) = A2 (n -1,d -1).

ExExample ample A2 (5,3) = 4⇒ A2 (6,4) = 4

(5,4,3) -code ⇒ (6,4,4) –code(5,4,3) -code ⇒ (6,4,4) –code

0 0 0 0 0

0 1 1 0 10 1 1 0 1

1 0 1 1 0 by adding check.

1 1 0 1 11 1 0 1 1
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A sphere and its contentsA sphere and its contentsIV054 A sphere and its contentsA sphere and its contents

Notation Fq
n – is a set of all words of length n over alphabet {0,1,2,…,q -1}

IV054

Notation Fq – is a set of all words of length n over alphabet {0,1,2,…,q -1}

Definition For any codeword u ∈ Fq
n and any integer r ≥ 0 the sphere of radius

r and centre u is denoted byr and centre u is denoted by

S (u,r) = {v ∈ Fq
n | d (u,v) ≤ r }.

ThTheoremeorem A sphere of radius r in Fq
n, 0 ≤ r ≤ n containsThTheoremeorem A sphere of radius r in Fq , 0 ≤ r ≤ n contains

words.

( ) ( )( ) ( )( ) ( )( )rn

r

nnn qqq 1...11
2

210 −++−+−+
words.

ProofProof Let u be a fixed word in Fq
n. The number of words that differ from u in m

position isposition is

( )( ) .1
mn

m q −

28Basics of coding theory



General upper boundsGeneral upper boundsIV054 General upper boundsGeneral upper bounds

ThTheoremeorem (The sphere-packing or Hamming bound)

IV054

ThTheoremeorem (The sphere-packing or Hamming bound)

If C is a q -nary (n,M,2t +1) -code, then

(1)( ) ( )( ) ( )( ){ } ntnnn qqqM ≤−++−+  1...1 (1)

ProofProof Any two spheres of radius t centred on distinct codewords have no 

codeword in common. Hence the total number of words in M spheres of radius 

( ) ( )( ) ( )( ){ } ntn

t

nn qqqM ≤−++−+  1...1 10

codeword in common. Hence the total number of words in M spheres of radius 

t centred on M codewords is given by the left side (1). This number has to be 

less or equal to q n.less or equal to q .

A code which achieves the sphere-packing bound from (1), i.e. such a code 

that equality holds in (1), is called a perfect code.that equality holds in (1), is called a perfect code.

Singleton bound:  If C is an q-ary (n,M,d) code, then 

1+−≤ dnqM
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A general upper bound on A general upper bound on AAqq ((nn,,dd))IV054 A general upper bound on A general upper bound on AAqq ((nn,,dd))

ExExampleample An (7,M,3) -code is perfect if

IV054

ExExampleample An (7,M,3) -code is perfect if

i.e. M = 16

An example of such a code: 

( ) ( )( ) 77

1

7

0 2  =+M

An example of such a code: 

C4 = {0000000, 1111111, 1000101, 1100010, 0110001, 1011000, 0101100, 

0010110, 0001011, 0111010, 0011101, 1001110, 0100111, 1010011,0010110, 0001011, 0111010, 0011101, 1001110, 0100111, 1010011,

1101001, 1110100}

Table of A2(n,d) from 1981
n d = 3 d = 5 d = 7n d = 3 d = 5 d = 7

5 4 2 -

6 8 2 -

7 16 2 2

8 20 4 28 20 4 2

9 40 6 2

10 72-79 12 2

11 144-158 24 4

12 256 32 4

13 512 64 8

14 1024 128 16

15 2048 256 32

16 2560-3276 256-340 36-37
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LOWER BOUND forLOWER BOUND for AAqq ((nn,,dd))IV054 LOWER BOUND forLOWER BOUND for AAqq ((nn,,dd))

The following lower bound for Aq (n,d) is known as Gilbert-Varshanov bound:

IV054

The following lower bound for Aq (n,d) is known as Gilbert-Varshanov bound:

TheoremTheorem Given d ≤ n, there exists a q -ary (n,M,d) -code with

≥
nq

M

and therefore
( )( )∑

−

=
−

≥
1

0
1  

d

j

jn

j q

q
M

( )
nq( ) ( )( )∑

−

=
−

≥
1

0
1  

,
d

j

jn

j

n

q

q

q
dnA
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Error DetectionError DetectionIV054 Error DetectionError DetectionIV054

Error detection is much more modest aim than error correction.Error detection is much more modest aim than error correction.

Error detection is suitable in the cases that channel is so good that Error detection is suitable in the cases that channel is so good that 

probability of error is small and if an error is detected, the receiver 

can ask to renew the transmission.

For example, two main requirements for many telegraphy

codes used to be:codes used to be:

• Any two codewords had to have distance at least 2;

• No codeword could be obtained from another codeword• No codeword could be obtained from another codeword

by transposition of two adjacent letters.
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Pictures of Saturn taken by VoyagerPictures of Saturn taken by VoyagerIV054 Pictures of Saturn taken by VoyagerPictures of Saturn taken by VoyagerIV054

Pictures of Saturn taken by Voyager, in 1980, had 800 × 800 pixels 

with 8 levels of brightness.

Since pictures were in color, each picture was transmitted three 

times; each time through different color filter. The full color picture times; each time through different color filter. The full color picture 

was represented by 

3 × 800 × 800 × 8 = 13360000 bits.3 × 800 × 800 × 8 = 13360000 bits.

To transmit pictures Voyager used the Golay code G .To transmit pictures Voyager used the Golay code G24.
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General coding problemGeneral coding problemIV054 General coding problemGeneral coding problem

Important problems of information theory are how to define formally such concepts 

as information and how to store or transmit information efficiently.

IV054

as information and how to store or transmit information efficiently.

Let X be a random variable (source) which takes any value x with probability p(x). 

The entropy of X is defined byThe entropy of X is defined by

and it is considered to be the information content of X.

( ) ( ) ( )xpxpXS
x

 lg∑−=

In a special case of a binary variable X which takes on the value 1 with probability 

p and the value 0 with probability 1 – p

S(X) = H(p) = -p lg p - (1 - p)lg(1 - p)S(X) = H(p) = -p lg p - (1 - p)lg(1 - p)

Problem: What is the minimal number of bits needed to transmit n values of X?

Basic idea: To encode more probable outputs of X by shorter binary words.

Example (Morse code - 1838)

a .- b -… c -.-. d -.. e . f ..-. g --.a .- b -… c -.-. d -.. e . f ..-. g --.

h …. i .. j .--- k -.- l .-.. m -- n -.

o --- p .--. q --.- r .-. s … t - u ..-
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Shannon's noisless coding theoremShannon's noisless coding theoremIV054 Shannon's noisless coding theoremShannon's noisless coding theorem

Shannon's noiseless coding  theorem says that in order to transmit n values of X,

IV054

Shannon's noiseless coding  theorem says that in order to transmit n values of X,
we need, and it is sufficient, to use nS(X) bits.

More exactly, we cannot do better than the bound nS(X) says, and we can reach 
the bound nS(X) as close as desirable.the bound nS(X) as close as desirable.

ExExampleample Let a source X produce the value 1 with probability p = ¼

and the value 0 with probability 1 - p = ¾

Assume we want to encode blocks of the outputs of X of length 4.

By Shannon's theorem we need 4H (¼) = 3.245 bits per blocks (in average)

A simple and practical method known as Huffman code requires in this case 3.273 
bits per a 4-bit message.

mess. code mess. code mess. code mess. Codemess. code mess. code mess. code mess. Code

0000 10 0100 010 1000 011 1100 11101

0001 000 0101 11001 1001 11011 1101 111110

0010 001 0110 11010 1010 11100 1110 1111010010 001 0110 11010 1010 11100 1110 111101

0011 11000 0111 1111000 1011 111111 1111 1111001

Observe that this is a prefix code - no codeword is a prefix of another codeword.
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Design of Huffman codeDesign of Huffman codeIV054 Design of Huffman codeDesign of Huffman code

Given a sequence of n objects, x1,…,xn with probabilities p1 ≥ … ≥ pn.

IV054

Given a sequence of n objects, x1,…,xn with probabilities p1 ≥ … ≥ pn.

Stage 1 Stage 1 -- shrinking of the sequence.shrinking of the sequence.

• Replace x n -1, x n with a new object y n -1 with probability p n -1 + p n and rearrange 
sequence so one has again non-increasing probabilities.sequence so one has again non-increasing probabilities.

• Keep doing the above step till the sequence shrinks to two objects.

Stage 2 Stage 2 -- extending the codeextending the code - Apply again and again the following method.

If C = {c1,…,cr} is a prefix optimal code for a source S r, then C' = {c'1,…,c'r +1} is an If C = {c1,…,cr} is a prefix optimal code for a source S r, then C' = {c'1,…,c'r +1} is an 

optimal code for Sr +1, where

c'i = ci 1 ≤ i ≤ r – 1

c' = c 1
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Design of Huffman codeDesign of Huffman codeIV054 Design of Huffman codeDesign of Huffman codeIV054

Stage 2Stage 2 Apply again and again the following method:

If C = {c1,…,cr} is a prefix optimal code for a source S r, then C' = {c'1,…,c'r +1} is an 

optimal code for Sr +1, where

c' = c 1 ≤ i ≤ r – 1c'i = ci 1 ≤ i ≤ r – 1

c'r = cr1

c'r+1 = cr0.c'r+1 = cr0.
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A BIT OF HISTORYA BIT OF HISTORYIV054 A BIT OF HISTORYA BIT OF HISTORY

The subject of error-correcting codes arose originally as a response to 

IV054

The subject of error-correcting codes arose originally as a response to 

practical problems in the reliable communication of digitally encoded 

information.

The discipline was initiated in the paper

Claude Shannon: A mathematical theory of communicationClaude Shannon: A mathematical theory of communication, Bell Claude Shannon: A mathematical theory of communicationClaude Shannon: A mathematical theory of communication, Bell 

Syst.Tech. Journal V27, 1948, 379-423, 623-656

Shannon's paper started the scientific discipline information theory

and error-correcting codes are its part.

Originally, information theory was a part of electrical engineering.

Nowadays, it is an important part of mathematics and also of

informatics.
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A BIT OF HISTORYA BIT OF HISTORYIV054 A BIT OF HISTORYA BIT OF HISTORY

SHANNON's VIEWSHANNON's VIEW

IV054

SHANNON's VIEWSHANNON's VIEW

In the introduction to his seminal paper ”A mathematical theory of 

communication” Shannon wrote:communication” Shannon wrote:

The fundamental problem of communication is that of reproducing at The fundamental problem of communication is that of reproducing at 

one point either exactly or approximately a message selected at 

another point.

39Basics of coding theory


