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Cyclic codes are of interest and importance because
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Cyclic codes are of interest and importance because

• They posses a rich algebraic structure that can be utilized in a variety       

of ways.of ways.

• They have extremely concise specifications.

• They can be efficiently implemented using simple shift registers.

• Many practically important codes are cyclic.• Many practically important codes are cyclic.

Convolution codes allow to encode streams od data (bits).
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IMPORTANT NOTE

In order to  specify a binary code with 2k codewords of  length n one may needIn order to  specify a binary code with 2 codewords of  length n one may need

to write down 

2k

codewords of length n.codewords of length n.

In order to specify a linear binary code with 2k codewords of length n it is sufficientIn order to specify a linear binary code with 2 codewords of length n it is sufficient

to write down 

k

codewords of length n.codewords of length n.

In order to specify a binary cyclic code with 2k codewords of length n it is sufficientIn order to specify a binary cyclic code with 2k codewords of length n it is sufficient

to write down

1

codeword of length n.
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BASICBASIC DEFINITION DEFINITION AND AND EXAMPLESEXAMPLESIV054 BASICBASIC DEFINITION DEFINITION AND AND EXAMPLESEXAMPLES

Definition A code C is cyclic if

(i) C is a linear code; 

IV054

(i) C is a linear code; 

(ii) any cyclic shift of a codeword is also a codeword, i.e. whenever a0,… an -1 ∈ C, 
then also an -1 a0 … an –2 ∈ C.

ExampleExample

(i) Code C = {000, 101, 011, 110} is cyclic.

(ii) Hamming code Ham(3, 2): with the generator matrix(ii) Hamming code Ham(3, 2): with the generator matrix











=
0110100

1010010

1100001

G

is equivalent to a cyclic code.

(iii) The binary linear code {0000, 1001, 0110, 1111} is not a cyclic, but it is 










=

1111000

0110100
G

(iii) The binary linear code {0000, 1001, 0110, 1111} is not a cyclic, but it is 
equivalent to a cyclic code.

(iv) Is Hamming code Ham(2, 3) with the generator matrix

(a) cyclic?










2110

1101
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(a) cyclic?

(b) equivalent to a cyclic code?



FFREQUENCY of CYCLIC CODESREQUENCY of CYCLIC CODESIV054 FFREQUENCY of CYCLIC CODESREQUENCY of CYCLIC CODES

Comparing with linear codes, the cyclic codes are quite scarce. For, 

IV054

Comparing with linear codes, the cyclic codes are quite scarce. For, 

example there are 11 811 linear (7,3) linear binary codes, but only two 

of them are cyclic.

Trivial cyclic codes. For any field F and any integer n >= 3 there are 

always the following cyclic codes of length n over F:always the following cyclic codes of length n over F:

• No-information code - code consisting of just one all-zero codeword.

• Repetition code - code consisting of codewords (a, a, …,a) for a ∈ F.• Repetition code - code consisting of codewords (a, a, …,a) for a ∈ F.

• Single-parity-check code - code consisting of all codewords with 

parity 0.parity 0.

• No-parity code - code consisting of all codewords of length n

For some cases, for example for n = 19 and F = GF(2), the above four 

trivial cyclic codes are the only  cyclic codes.

4Cyclic codes

trivial cyclic codes are the only  cyclic codes.



EXAMPLE of a CYCLIC CODEEXAMPLE of a CYCLIC CODEIV054 EXAMPLE of a CYCLIC CODEEXAMPLE of a CYCLIC CODE

The code with  the generator matrix

IV054

The code with  the generator matrix









= 0111010

0011101

G

has codewords










=
1110100

0111010G

has codewords

c1  = 1011100 c2 = 0101110 c3 =0010111

c1 + c2 = 1110010 c1 + c3 = 1001011 c2 + c3 = 0111001c1 + c2 = 1110010 c1 + c3 = 1001011 c2 + c3 = 0111001

c1 + c2 + c3 = 1100101

and it is cyclic because the right shifts have the following impacts

c1 → c2, c2 → c3, c3 → c1 + c3

c1 + c2 → c2 + c3, c1 + c3 → c1 + c2 + c3, c2 + c3 → c1

c1 + c2 + c3 → c1 + c2

5Cyclic codes

1 + 2 + 3 → 1 + 2



POLYNOMIALS POLYNOMIALS over over GF(GF(qq))IV054 POLYNOMIALS POLYNOMIALS over over GF(GF(qq))

A codeword of a cyclic code is usually denoted

a a …a

IV054

a0 a1…an -1

and to each such a codeword the polynomial

a0 + a1 x + a2 x2 + … + an -1 xn -1a0 + a1 x + a2 x + … + an -1 x

will be associated.

NOTATION: Fq[x] denotes the set of all polynomials over GF(q ). 

deg (f(x )) = the largest m such that xm has a non-zero coefficient in f(x).deg (f(x )) = the largest m such that xm has a non-zero coefficient in f(x).

Multiplication of polynomials If f(x), g(x) ∈ Fq[x], then

deg (f(x) g(x)) = deg (f(x)) + deg (g(x)).deg (f(x) g(x)) = deg (f(x)) + deg (g(x)).

Division of polynomials For every pair of polynomials a(x), b(x) ≠ 0 in Fq[x] there 
exists a unique pair of polynomials q(x), r(x) in Fq[x] such thatq

a(x) = q(x)b(x) + r(x), deg (r(x)) < deg (b(x)).

Example Divide x3 + x + 1 by x2 + x + 1 in F2[x].

Definition Let f(x) be a fixed polynomial in Fq[x]. Two polynomials g(x), h(x) are said 
to be congruent modulo f(x), notation

g(x) ≡ h(x) (mod f(x)),
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g(x) ≡ h(x) (mod f(x)),

if g(x) - h(x) is divisible by f(x).



RING RING of of POLYNOMIALSPOLYNOMIALSIV054 RING RING of of POLYNOMIALSPOLYNOMIALS

The set of polynomials in Fq[x] of degree less than deg (f(x)), with addition and 
multiplication modulo f(x) forms a ring denoted F [x]/f(x). 

IV054

q

multiplication modulo f(x) forms a ring denoted Fq[x]/f(x). 

Example Calculate (x + 1)2 in F2[x] / (x2 + x + 1). It holds

(x + 1)2 = x2 + 2x + 1 ≡ x2 + 1 ≡ x (mod x2 + x + 1).(x + 1)2 = x2 + 2x + 1 ≡ x2 + 1 ≡ x (mod x2 + x + 1).

How many elements has Fq[x] / f(x)?

Result | Fq[x] / f(x) | = q deg (f(x)).Result | Fq[x] / f(x) | = q .

Example Addition and multiplication in F2[x] / (x2 + x + 1)

+ 0 1 x 1 + x • 0 1 x 1 + x

0 0 1 x 1 + x

1 1 0 1 + x x

x x 1 + x 0 1

•
0 0 0 0 0

1 0 1 X 1 + x

x 0 x 1 + x 1

Definition A polynomial f(x) in Fq[x] is said to be reducible if f(x) = a(x)b(x), where 
a(x), b(x) ∈ Fq[x] and

1 + x 1 + x x 1 0 1 + x 0 1 + x 1 x

a(x), b(x) ∈ Fq[x] and

deg (a(x)) < deg (f(x)), deg (b(x)) < deg (f(x)).

If f(x) is not reducible, it is irreducible in Fq[x].

7Cyclic codes

Theorem The ring Fq[x] / f(x) is a field if f(x) is irreducible in Fq[x].



FIELD FIELD RRnn,  ,  RRnn == FFqq[[xx]] // ((xx
nn -- 1)1)IV054 FIELD FIELD RRnn,  ,  RRnn == FFqq[[xx]] // ((xx -- 1)1)

Computation modulo xn – 1

IV054

Computation modulo x – 1

Since xn ≡ 1 (mod (xn -1)) we can compute f(x) mod (xn -1) as follows:

In f(x) replace xn by 1, xn +1 by x, xn +2 by x2, xn +3 by x3, …In f(x) replace xn by 1, xn +1 by x, xn +2 by x2, xn +3 by x3, …

Identification of words with polynomialsIdentification of words with polynomials

a0 a1… an -1 ↔ a0 + a1 x + a2 x2 + … + an -1 xn -1

Multiplication by x in R corresponds to a single cyclic shiftMultiplication by x in Rn corresponds to a single cyclic shift

x (a0 + a1 x + … an -1 xn -1) = an -1 + a0 x + a1 x2 + … + an -2 xn -1

8Cyclic codes



Algebraic Algebraic characterizationcharacterization of of cyclic cyclic codescodesIV054 Algebraic Algebraic characterizationcharacterization of of cyclic cyclic codescodes

Theorem A code C is cyclic if C satisfies two conditions 

IV054

Theorem A code C is cyclic if C satisfies two conditions 

(i) a(x), b(x) ∈ C  ⇒ a(x) + b(x) ∈ C

(ii) a(x) ∈ C, r(x) ∈ Rn ⇒ r(x)a(x) ∈ C(ii) a(x) ∈ C, r(x) ∈ Rn ⇒ r(x)a(x) ∈ C

ProofProof

(1) Let C be a cyclic code. C is linear  ⇒ (i) holds. 

(ii) Let a(x) ∈ C, r(x) = r0 + r1x + … + rn -1x
n -1

0 1 n -1

r(x)a(x) = r0a(x) + r1xa(x) + … + rn -1x
n -1a(x)

is in C by (i) because summands are cyclic shifts of a(x). is in C by (i) because summands are cyclic shifts of a(x). 

(2) Let (i) and (ii) hold 

• Taking r(x) to be a scalar the conditions imply linearity of C. 

• Taking r(x) = x the conditions imply cyclicity of C.

9Cyclic codes



CONSTRUCTION CONSTRUCTION of of CYCLIC CYCLIC CODESCODESIV054 CONSTRUCTION CONSTRUCTION of of CYCLIC CYCLIC CODESCODES

Notation If f(x) ∈ Rn, then

IV054

Notation If f(x) ∈ Rn, then

〈f(x)〉 = {r(x)f(x) | r(x) ∈ Rn}

(multiplication is modulo xn -1). 

Theorem For any f(x) ∈ Rn, the set 〈〈〈〈f(x)〉〉〉〉 is a cyclic code (generated by f).

Proof We check conditions (i) and (ii) of the previous theorem.Proof We check conditions (i) and (ii) of the previous theorem.

(i) If a(x)f(x) ∈ 〈f(x)〉 and also b(x)f(x) ∈ 〈f(x)〉, then

a(x)f(x) + b(x)f(x) = (a(x) + b(x)) f(x) ∈ 〈f(x)〉

(ii) If a(x)f(x) ∈ 〈f(x)〉, r(x) ∈ Rn, then

r(x) (a(x)f(x)) = (r(x)a(x)) f(x) ∈ 〈f(x)〉.

Example C = 〈1 + x2 〉, n = 3, q = 2.

We have to compute r(x)(1 + x2) for all r(x) ∈ R3.

R = {0, 1, x, 1 + x, x2, 1 + x2, x + x2, 1 + x + x2}.R3 = {0, 1, x, 1 + x, x2, 1 + x2, x + x2, 1 + x + x2}.

Result C = {0, 1 + x, 1 + x2, x + x2}

C = {000, 011, 101, 110}

10Cyclic codes

C = {000, 011, 101, 110}



CharacterizationCharacterization theorem theorem forfor cyclic cyclic codescodesIV054 CharacterizationCharacterization theorem theorem forfor cyclic cyclic codescodes

We show that all cyclic codes C have the form C = 〈f(x)〉 for some f(x) ∈ Rn.

IV054

n

Theorem Let C be a non-zero cyclic code in Rn. Then 

• there exists unique monic polynomial g(x) of the smallest degree such that

• C = 〈g(x)〉• C = 〈g(x)〉
• g(x) is a factor of xn -1.

Proof Proof 

(i) Suppose g(x) and h(x) are two monic polynomials in C of the smallest degree. 

Then the polynomial g(x) - h(x) ∈ C and it has a smaller degree and a multiplication 
by a scalar makes out of it a monic polynomial. If g(x) ≠ h(x) we get a contradiction. by a scalar makes out of it a monic polynomial. If g(x) ≠ h(x) we get a contradiction. 

(ii) Suppose a(x) ∈ C.

ThenThen

a(x) = q(x)g(x) + r(x) (deg r(x) < deg g(x))

and

r(x) = a(x) - q(x)g(x) ∈ C.r(x) = a(x) - q(x)g(x) ∈ C.

By minimality

r(x) = 0

and therefore a(x) ∈ 〈g(x)〉. 

11Cyclic codes

and therefore a(x) ∈ 〈g(x)〉. 



CharacterizationCharacterization theorem theorem forfor cyclic cyclic codescodesIV054 CharacterizationCharacterization theorem theorem forfor cyclic cyclic codescodesIV054

(iii) Clearly,(iii) Clearly,

xn –1 = q(x)g(x) + r(x)   with   deg r(x) < deg g(x)

and therefore r(x) ≡ -q(x)g(x) (mod xn -1) and

r(x) ∈ C ⇒ r(x) = 0 ⇒ g(x) is a factor of xn -1.

GENERATOR POLYNOMIALSGENERATOR POLYNOMIALS

Definition If for a cyclic code C it holdsDefinition If for a cyclic code C it holds

C = 〈〈〈〈g(x)〉〉〉〉,

then g is called the generator polynomial for the code C.then g is called the generator polynomial for the code C.

12Cyclic codes



HOW HOW TO TO DESIGN DESIGN CYCLIC CYCLIC CODES?CODES?IV054 HOW HOW TO TO DESIGN DESIGN CYCLIC CYCLIC CODES?CODES?

The last claim of the previous theorem gives a recipe how to get all cyclic codes of 

IV054

The last claim of the previous theorem gives a recipe how to get all cyclic codes of 

the given length n. 

Indeed, all we need to do is to find all factors of

xn -1.xn -1.

Problem: Find all binary cyclic codes of length 3. 

Solution: SinceSolution: Since

x3 – 1 =          (x + 1)(x2 + x + 1)

both  factors are irreducible in GF(2)

we have the following generator polynomials and codes. 

Generator polynomials Code in R3 Code in V(3,2)3

1 R3 V(3,2)

x + 1 {0, 1 + x, x + x2, 1 + x2} {000, 110, 011, 101}

x2 + x + 1 {0, 1 + x + x2} {000, 111}x2 + x + 1 {0, 1 + x + x2} {000, 111}

x3 – 1 ( = 0) {0} {000}

13Cyclic codes



Design Design ofof generator generator matricesmatrices for for cyclic cyclic codescodesIV054 Design Design ofof generator generator matricesmatrices for for cyclic cyclic codescodes

Theorem Suppose C is a cyclic code of codewords of length n with the generator polynomial

IV054

g(x) = g0 + g1x + … + grx
r.

Then dim (C) = n - r and a generator matrix G1 for C is





 rgggg 0...000...210















= r

r

r

gggg

gggg

gggg

G

......

0...0...00

0...00...0

0...000...

210

210

210

1

Proof

(i) All rows of G1 are linearly independent.










 rgg ...0...00...00

......

0

(i) All rows of G1 are linearly independent.

(ii) The n - r rows of G represent codewords

g(x), xg(x), x2g(x),…, xn -r -1g(x)
(*)

(iii) It remains to show that every codeword in C can be expressed as a linear combination of 
vectors from (*).

Inded, if a(x) ∈ C, then

a(x) = q(x)g(x).

Since deg a(x) < n  we have  deg q(x) < n - r. 

Hence
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q(x)g(x) = (q0 + q1x + … + qn -r -1x
n -r -1)g(x)

= q0g(x) + q1xg(x) + … + qn -r -1x
n -r -1g(x).



EXAMPLEEXAMPLEIV054 EXAMPLEEXAMPLE

The task is to determine all ternary codes of length 4 and  generators for them.

Factorization of x4 - 1 over GF(3) has the form

IV054

Factorization of x4 - 1 over GF(3) has the form

x4 - 1 = (x - 1)(x3 + x2 + x + 1) = (x - 1)(x + 1)(x2 + 1)

Therefore there are 23 = 8 divisors of x4 - 1 and each generates a cyclic code.

Generator polynomial Generator matrix

1 I4





− 0011

x-1



















−
−

−

0011

1100

0110

0011

x + 1

x2 + 1 

















0101

1100

0110

0011

  

x2 + 1

(x - 1)(x + 1) = x2 - 1









−
−










1010

0101

1010

0101
  

(x - 1)(x2 + 1) = x3 - x2 + x - 1 [ -1 1 -1 1 ]

(x + 1)(x2 + 1) [ 1 1 1 1 ]





 − 1010
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(x + 1)(x + 1) [ 1 1 1 1 ]

x4 - 1 = 0 [ 0 0 0 0 ]



CheckCheck polynomialspolynomials andand parity checkparity check matrices for cyclic codesmatrices for cyclic codesIV054 CheckCheck polynomialspolynomials andand parity checkparity check matrices for cyclic codesmatrices for cyclic codes

Let C be a cyclic [n,k]-code with the generator polynomial g(x) (of degree n - k). By 

the last theorem g(x) is a factor of xn - 1. Hence

IV054

the last theorem g(x) is a factor of xn - 1. Hence

xn - 1 = g(x)h(x)

for some h(x) of degree k (where h(x) is called the check polynomial of C). for some h(x) of degree k (where h(x) is called the check polynomial of C). 

Theorem Let C be a cyclic code in Rn with a generator polynomial g(x) and a check 

polynomial h(x). Then an c(x) ∈ Rn is a codeword of C if c(x)h(x) ≡ 0 – (this and polynomial h(x). Then an c(x) ∈ Rn is a codeword of C if c(x)h(x) ≡ 0 – (this and 

next congruences are all modulo xn – 1). 

Proof Note, that g(x)h(x) = xn  - 1 ≡ 0

(i) c(x) ∈ C ⇒ c(x) = a(x)g(x) for some a(x) ∈ Rn

⇒ c(x)h(x) = a(x) g(x)h(x) ≡ 0.

≡ 0≡ 0

(ii) c(x)h(x) ≡ 0

c(x) = q(x)g(x) + r(x), deg r(x) < n – k = deg g(x)c(x) = q(x)g(x) + r(x), deg r(x) < n – k = deg g(x)

c(x)h(x) ≡ 0 ⇒ r(x)h(x) ≡ 0 (mod xn  - 1)

Since deg (r(x)h(x)) < n – k + k = n, we have r(x)h(x) = 0 in F[x] and therefore
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r(x) = 0 ⇒ c(x) = q(x)g(x) ∈ C.



POLYNOMIALPOLYNOMIAL REPRESENTATION of DUAL CODESREPRESENTATION of DUAL CODESIV054 POLYNOMIALPOLYNOMIAL REPRESENTATION of DUAL CODESREPRESENTATION of DUAL CODES

Since dim (〈h(x)〉) = n - k = dim (C⊥) we might easily be fooled to think that the 

check polynomial h(x) of the code C generates the dual code C⊥.

IV054

check polynomial h(x) of the code C generates the dual code C⊥.

Reality is “slightly different'':

Theorem Suppose C is a cyclic [n,k]-code with the check polynomialTheorem Suppose C is a cyclic [n,k]-code with the check polynomial

h(x) = h0 + h1x + … + hkx
k,

then

(i) a parity-check matrix for C is







 − 01

0......0

0...0...

hhh

hhh kk














=

0

01

...0...00

....

0......0

hh

hhh
H

k

k

(ii) C⊥ is the cyclic code generated by the polynomial

 0...0...00 hhk

i.e. the reciprocal polynomial of h(x).

( ) k

kk xhxhhxh 01 ...+++= −
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i.e. the reciprocal polynomial of h(x).



POLYNOMIALPOLYNOMIAL REPRESENTATION of DUAL CODESREPRESENTATION of DUAL CODESIV054 POLYNOMIALPOLYNOMIAL REPRESENTATION of DUAL CODESREPRESENTATION of DUAL CODES

Proof A polynomial c(x) = c0 + c1x + … + cn -1x
n –1 represents a code from C if   

IV054

Proof A polynomial c(x) = c0 + c1x + … + cn -1x represents a code from C if   

c(x)h(x) = 0. For c(x)h(x) to be 0 the coefficients at xk,…, xn -1 must be zero, i.e.

0...   

0...    0110

=+++
=+++ −

hchchc

hchchc kkk

0...

..                              ..       

0...   

0111

01121

=+++

=+++

−−−−−

+−

hchchc

hchchc

nkknkkn

kkk

Therefore, any codeword c0 c1… cn -1 ∈ C is orthogonal to the word hk hk -1…h000…0 

and to its cyclic shifts.

Rows of the matrix H are therefore in C⊥. Moreover, since h = 1, these row-vectors 

0... 0111 =+++ −−−−− hchchc nkknkkn

Rows of the matrix H are therefore in C⊥. Moreover, since hk = 1, these row-vectors 

are linearly independent. Their number is n - k = dim (C⊥). Hence H is a generator 

matrix for C⊥, i.e. a parity-check matrix for C.

In order to show that C⊥ is a cyclic code generated by the polynomial

it is sufficient to show that        is a factor of xn -1.

( ) k

kk xhxhhxh 01 ...+++= −

( )xhit is sufficient to show that        is a factor of xn -1.

Observe that                       and since h(x -1)g(x -1) = (x -1)n -1

we have that xkh(x -1)xn -kg(x -1) = xn(x –n -1) = 1 – xn

( )

( )xh
( ) ( )1−= xhxxh k
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and therefore        is indeed a factor of xn -1.( )xh



ENCODING with CYCLIC CODESENCODING with CYCLIC CODES IIIV054 ENCODING with CYCLIC CODESENCODING with CYCLIC CODES II

Encoding using a cyclic code can be done by a multiplication of two polynomials - a 

message polynomial and the generating polynomial for the cyclic code.

IV054

message polynomial and the generating polynomial for the cyclic code.

Let C be an (n,k)-code over an field F with the generator polynomial 

g(x) = g +     g x + … + g x r -1 of degree r = n - k.g(x) = g0 +     g1 x + … + gr –1 x
r -1 of degree r = n - k.

If a message vector m is represented by a polynomial m(x) of degree k and m is 

encoded byencoded by

m ⇒ c = mG,

then the following relation between m(x) and c(x) holds

c(x) = m(x)g(x).

Such an encoding can be realized by the shift register shown in Figure below, 

where input is the k-bit message to be encoded followed by n - k 0' and the output where input is the k-bit message to be encoded followed by n - k 0' and the output 

will be the encoded message.

Shift-register encodings of cyclic codes. Small circles represent multiplication by 

the corresponding constant, ⊕ nodes represent modular addition, squares are 

19Cyclic codes

the corresponding constant, ⊕ nodes represent modular addition, squares are 

delay elements



Hamming Hamming codescodes as as cycliccyclic codescodesIV054 Hamming Hamming codescodes as as cycliccyclic codescodes

Definition (Again!) Let r be a positive integer and let H be an r * (2r -1) 

IV054

Definition (Again!) Let r be a positive integer and let H be an r * (2 -1) 

matrix whose columns are distinct non-zero vectors of V(r,2). Then the 

code having H as its parity-check matrix is called binary Hamming 

code denoted by Ham (r,2).code denoted by Ham (r,2).

It can be shown that binary Hamming codes are equivalent to cyclic 

codes.codes.

Theorem The binary Hamming code Ham (r,2) is equivalent to a cyclic Theorem The binary Hamming code Ham (r,2) is equivalent to a cyclic 

code. 

Definition If p(x) is an irreducible polynomial of degree r such that x is a Definition If p(x) is an irreducible polynomial of degree r such that x is a 

primitive element of the field F[x] / p(x), then p(x) is called a primitive 

polynomial.

Theorem If p(x) is a primitive polynomial over GF(2) of degree r, then 

the cyclic code 〈p(x)〉 is the code Ham (r,2). 

20Cyclic codes

the cyclic code 〈p(x)〉 is the code Ham (r,2). 



Hamming Hamming codescodes as as cycliccyclic codescodesIV054 Hamming Hamming codescodes as as cycliccyclic codescodes

Example Polynomial x3 + x + 1 is irreducible over GF(2) and x is 

IV054

Example Polynomial x + x + 1 is irreducible over GF(2) and x is 

primitive element of the field F2[x] / (x3 + x + 1). 

F2[x] / (x3 + x + 1) =F2[x] / (x + x + 1) =

{0, x, x2, x3 = x + 1, x4 = x2 + x, x5 = x2 + x + 1, x6 = x2 + 1}

The parity-check matrix for a cyclic version of Ham (3,2)The parity-check matrix for a cyclic version of Ham (3,2)





 1101001

















=
1110100

0111010

1101001

H
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PROOF PROOF ofof THEOREMTHEOREMIV054 PROOF PROOF ofof THEOREMTHEOREM

The binary Hamming code Ham (r,2) is equivalent to a cyclic code.

IV054

It is known from algebra that if p(x) is an irreducible polynomial of degree r, then 
the ring F2[x] / p(x) is a field of order 2r.

In addition, every finite field has a primitive element. Therefore, there exists an 
α

In addition, every finite field has a primitive element. Therefore, there exists an 
element α of F2[x] / p(x) such that

F2[x] / p(x) = {0, 1, α, α2,…, α2r –2}.

Let us identify an element a0 + a1 + … ar -1x
r -1 of F2[x] / p(x) with the column vectorLet us identify an element a0 + a1 + … ar -1x
r -1 of F2[x] / p(x) with the column vector

(a0, a1,…, ar -1)
T

and consider the binary r * (2r -1) matrix

H = [ 1  α α2  … α2^r –2 ].H = [ 1  α α2  … α2^r –2 ].

Let now C be the binary linear code having H as a parity check matrix.

Since the columns of H are all distinct non-zero vectors of V(r,2), C = Ham (r,2).Since the columns of H are all distinct non-zero vectors of V(r,2), C = Ham (r,2).

Putting n = 2r -1 we get

C = {f0 f1 … fn -1 ∈ V(n, 2) | f0 + f1 α + … + fn -1 αn –1  = 0 (2)

= {f(x) ∈ R | f(α) = 0 in F [x] / p(x)} (3)= {f(x) ∈ Rn | f(α) = 0 in F2[x] / p(x)} (3)

If f(x) ∈ C and r(x) ∈ Rn, then r(x)f(x) ∈ C because

r(α)f(α) = r(α) • 0 = 0

22Cyclic codes

and therefore, by one of the previous theorems, this version of Ham (r,2) is cyclic.



BCH BCH codes codes and and ReedReed--SolomonSolomon codescodesIV054 BCH BCH codes codes and and ReedReed--SolomonSolomon codescodes

To the most important cyclic codes for applications belong BCH codes and Reed-
Solomon codes.

IV054

Solomon codes.

Definition A polynomial p is said to be minimal for a complex number x in Zq if p(x) 
= 0 and p is irreducible over Zq.= 0 and p is irreducible over Zq.

Definition A cyclic code of codewords of length n over Zq, q = pr, p is a prime, is 
called BCH codeBCH code11 of distance d if its generator g(x) is the least common multiple of 
the minimal polynomials forthe minimal polynomials for

ω l, ω l +1,…, ω l +d –2

for some l, where

ω is the primitive n-th root of unity.ω is the primitive n-th root of unity.

If n = qm - 1 for some m, then the BCH code is called primitiveprimitive. 

Definition A ReedReed--SolomonSolomon code is a primitive BCH code with n = q - 1.Definition A ReedReed--SolomonSolomon code is a primitive BCH code with n = q - 1.

Properties:

• Reed-Solomon codes are self-dual.

1BHC stands for Bose and Ray-Chaudhuri and Hocquenghem who discovered 

• Reed-Solomon codes are self-dual.

23Cyclic codes

1BHC stands for Bose and Ray-Chaudhuri and Hocquenghem who discovered 
these codes.



CONVOLUTION CODESIV054 CONVOLUTION CODES

Very often it is important to encode an infinite stream or several streams of data 

IV054

Very often it is important to encode an infinite stream or several streams of data 

– say of bits.

Convolution codes, with simple  encoding and decoding, are quite a simpleConvolution codes, with simple  encoding and decoding, are quite a simple

generalization of linear codes and have encodings as cyclic codes.

An (n,k) convolution code (CC) is defined by an k x n generator matrix,

entries of which are polynomials over F2.

For example,

]1,1[ 22

1 +++= xxxG

is the generator matrix for a (2,1) convolution code CC1 and

]1,1[1 +++= xxxG

 ++ xx 101







 ++
=

x

xx
G

1

1

0

0

1
2
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is the generator matrix for a (3,2) convolution code CC2



ENCODING of FINITE POLYNOMIALSIV054 ENCODING of FINITE POLYNOMIALS

An (n,k) convolution code with a k x n generator matrix G can be used to encode a

IV054

An (n,k) convolution code with a k x n generator matrix G can be used to encode a

k-tuple of plain-polynomials (polynomial input information)

I=(I (x), I (x),…,I (x))I=(I0(x), I1(x),…,Ik-1(x))

to get an n-tuple of crypto-polynomialsto get an n-tuple of crypto-polynomials

C=(C0(x), C1(x),…,Cn-1(x))

As follows

C= I . G

25Cyclic codes



EXAMPLESEXAMPLES

EXAMPLE 1EXAMPLE 1

(x3 + x + 1).G1 = (x3 + x + 1) . (x2 + 1, x2 + x + 1](x + x + 1).G1 = (x + x + 1) . (x + 1, x + x + 1]

= (x5 + x2 + x  + 1, x5 + x4 + 1)

EXAMPLE 2
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ENCODING of INFINITE INPUT STREAMSIV054 ENCODING of INFINITE INPUT STREAMS

The way infinite streams are encoded using convolution codes will be

IV054

The way infinite streams are encoded using convolution codes will be

Illustrated on the code CC1.

An input stream I = (I0, I1, I2,…) is mapped into the output stream

C= (C00, C10, C01, C11…) defined by

C0(x) = C00 + C01x + … = (x
2 + 1) I(x)

and

C1(x) = C10 + C11x + … = (x
2 + x + 1) I(x).

The first multiplication can be done by the first shift register from the next The first multiplication can be done by the first shift register from the next 

figure; second multiplication can be performed by the second shift register 

on the next slide and it holds

C0i = Ii + Ii+2,      C1i = Ii + Ii-1 + Ii-2.

That is the output streams C0 and C1 are obtained by convolving the input

stream with polynomials of G

27Cyclic codes

stream with polynomials of G1’



ENCODINGIV054 ENCODING
The The first shift registerfirst shift register

IV054

⊕⊕⊕⊕⊕⊕⊕⊕
outputoutput

1      x        x1      x        x22

inputinput

1      x        x1      x        x

will multiply the input stream by xwill multiply the input stream by x22+1 and the +1 and the second shift registersecond shift register

⊕⊕⊕⊕⊕⊕⊕⊕
outputoutput

1      x        x1      x        x22

inputinput

1      x        x1      x        x

will multiply the input stream by will multiply the input stream by xx22+x+1.+x+1.
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ENCODING and DECODINGIV054 ENCODING and DECODING

The following shiftThe following shift--register will therefore be an encoder for the register will therefore be an encoder for the 

code code CCCC

IV054

⊕⊕⊕⊕⊕⊕⊕⊕ CC0000,C,C0101,C,C0202

code code CCCC11

⊕⊕⊕⊕⊕⊕⊕⊕

1       x        x1       x        x22II Output streamsOutput streams

⊕⊕⊕⊕⊕⊕⊕⊕ CC1010,C,C1111,C,C1212

For encoding of the convolution codes so called For encoding of the convolution codes so called 

Viterbi algorithmViterbi algorithm

Is used.Is used.
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