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• In this chapter we deal with some of the very old or quite old 
cryptosystems that were primarily used in the pre-computer era.cryptosystems that were primarily used in the pre-computer era.

• These cryptosystems are too weak nowadays, too easy to 
break, especially with computers.

• However, these simple cryptosystems give a good illustration • However, these simple cryptosystems give a good illustration 
of several of the important ideas of the cryptography and 
cryptanalysis.
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Cryptology, Cryptosystems Cryptology, Cryptosystems -- secretsecret--key cryptographykey cryptographyIV054 Cryptology, Cryptosystems Cryptology, Cryptosystems -- secretsecret--key cryptographykey cryptography

Cryptology (= cryptography + cryptoanalysis)

IV054

Cryptology (= cryptography + cryptoanalysis)

has more than two thousand years of history.

Basic historical observationBasic historical observation
• People have always had fascination with keeping information away from 
others.others.
• Some people – rulers, diplomats, militaries, businessmen – have always had 
needs to keep some information away from others.

Importance of cryptography nowadays
• Applications:  cryptography is the key tool to make modern information 
transmission secure, and to create secure information society.  transmission secure, and to create secure information society.  
• Foundations: cryptography gave rise to several new key concepts of the 
foundation of informatics: one-way functions, computationally perfect 
pseudorandom generators, zero-knowledge proofs, holographic proofs, pseudorandom generators, zero-knowledge proofs, holographic proofs, 
program self-testing and self-correcting, … 
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Approaches and paradoxes of cryptographyApproaches and paradoxes of cryptographyIV054 Approaches and paradoxes of cryptographyApproaches and paradoxes of cryptography

Sound approaches to cryptography
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Sound approaches to cryptography

• Shannon’s approach based on information theory
• Current approach based on complexity theory
• Very recent approach based on the laws and limitations of quantum physics• Very recent approach based on the laws and limitations of quantum physics

Paradoxes of modern cryptography

• Positive results of modern cryptography are based on negative results of 
complexity theory.complexity theory.

• Computers, that were designed originally for decryption, seem to be now 
more useful for encryption.
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Cryptosystems Cryptosystems -- ciphersciphersIV054 Cryptosystems Cryptosystems -- ciphersciphers

The cryptography deals the problem of sending a message (plaintext, 

IV054

The cryptography deals the problem of sending a message (plaintext, 
cleartext), through a insecure channel, that may be tapped by an adversary
(eavesdropper, cryptanalyst), to a legal receiver. 
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Components of cryptosystems:Components of cryptosystems:IV054 Components of cryptosystems:Components of cryptosystems:IV054

Plaintext-space: P – a set of plaintexts over an alphabet ∑Plaintext-space: P – a set of plaintexts over an alphabet 

Cryptotext-space: C – a set of cryptotexts (ciphertexts) over alphabet  

∑

∆

Key-space: K – a set of keys

Each key k determines an encryption algorithm ek and an decryption 
algorithm d such that, for any plaintext w, e (w) is the corresponding cryptotext algorithm dk such that, for any plaintext w, ek (w) is the corresponding cryptotext 
and

( )( )∈ ( )( )=or

Note: As encryption algorithms we can use also randomized algorithms. 

( )( )wedw kk∈ ( )( ).wedw kk=

Note: As encryption algorithms we can use also randomized algorithms. 
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100 100 –– 42 B.C., CAESAR cryptosystem, Shift cipher42 B.C., CAESAR cryptosystem, Shift cipherIV054 100 100 –– 42 B.C., CAESAR cryptosystem, Shift cipher42 B.C., CAESAR cryptosystem, Shift cipher

CAESAR can be used to encrypt words in any alphabet.                                   
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CAESAR can be used to encrypt words in any alphabet.                                   
In order to encrypt words in English alphabet we use:

Key-space: {0,1,…,25}

An encryption algorithm ek substitutes any letter by the k

letter occurring k positions ahead (cyclically) in the 
alphabet.

A decryption algorithm dk substitutes any letter by the one A decryption algorithm dk substitutes any letter by the one 
occurring k positions backward (cyclically) in the alphabet.
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100 100 –– 42 B.C., CAESAR cryptosystem, Shift cipher42 B.C., CAESAR cryptosystem, Shift cipherIV054 100 100 –– 42 B.C., CAESAR cryptosystem, Shift cipher42 B.C., CAESAR cryptosystem, Shift cipher

Example e (EXAMPLE) = GZCOSNG,

IV054

Example e2(EXAMPLE) = GZCOSNG,
e3(EXAMPLE) = HADPTOH,
e1(HAL) = IBM, 1

e3(COLD) = FROG
ABCDEFGHIJKLMNOPQRSTUVWXYZ

Example Find the plaintext to the following cryptotext obtained by the Example Find the plaintext to the following cryptotext obtained by the 
encryption with CAESAR with k = ?.

Cryptotext: VHFUHW GH GHXA, VHFUHW GH GLHX, Cryptotext: VHFUHW GH GHXA, VHFUHW GH GLHX, 
VHFUHF GH WURLV, VHFUHW GH WRXV.

Numerical version of CAESAR is defined on the set {0, 1, 2,…, 25} by the 
encryption algorithm:

e (i) = (i + k) (mod 26)ek(i) = (i + k) (mod 26)

7Classical (secret-key) cryptosystems



POLYBIOUS cryptosystemPOLYBIOUS cryptosystemIV054 POLYBIOUS cryptosystemPOLYBIOUS cryptosystem

for encryption of  words of the English alphabet without J.

IV054

for encryption of  words of the English alphabet without J.

Key-space: Polybious checkerboards 5×5 with 25 English letters and with 
rows + columns labeled by symbols.rows + columns labeled by symbols.

Encryption algorithm: Each symbol is substituted by the pair of symbols 
denoting the row and the column of the checkerboard in which the symbol is denoting the row and the column of the checkerboard in which the symbol is 
placed.

Example: F G H I J

A A B C D E

B F G H I K

C L M N O PC L M N O P

D Q R S T U

E V W X Y Z

KONIEC --����

Decryption algorithm: ???

E V W X Y Z
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Kerckhoff’s PrincipleKerckhoff’s PrincipleIV054 Kerckhoff’s PrincipleKerckhoff’s Principle

The philosophy of modern cryptoanalysis is embodied in the following 
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The philosophy of modern cryptoanalysis is embodied in the following 
principle formulated in 1883 by Jean Guillaume Hubert Victor Francois 
Alexandre Auguste Kerckhoffs von Nieuwenhof (1835 - 1903).

The security of a cryptosystem must not depend The security of a cryptosystem must not depend 
on keeping secret the encryption algorithm. The on keeping secret the encryption algorithm. The 
security should depend only on keeping secret the 
key. key. 
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Requirements for good cryptosystemsRequirements for good cryptosystemsIV054 Requirements for good cryptosystemsRequirements for good cryptosystems

(Sir Francis R. Bacon (1561 - 1626))
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(Sir Francis R. Bacon (1561 - 1626))

1.   Given ek and a plaintext w, it should be easy to compute c = ek(w).
2.   Given dk and a cryptotext c, it should be easy to compute w = dk(c).

3.   A cryptotext e (w) should not be much longer than the plaintext w.

4.   It should be unfeasible to determine w from ek(w) without knowing dk.

5.   The so called avalanche effect should hold: A small change in the plaintext, 

3.   A cryptotext ek(w) should not be much longer than the plaintext w.

5.   The so called avalanche effect should hold: A small change in the plaintext, 
or in the key, should lead to a big change in the cryptotext (i.e. a change of 
one bit of the plaintext should result in a change of all bits of the one bit of the plaintext should result in a change of all bits of the 
cryptotext, each  with the probability close to 0.5).

6.   The cryptosystem should not be closed under composition, i.e. not for 6.   The cryptosystem should not be closed under composition, i.e. not for 
every two keys k1, k2 there is a key k such that

ek (w) = ek1 (ek2 (w)).
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CryptoanalysisCryptoanalysisIV054 CryptoanalysisCryptoanalysis

The aim of cryptoanalysis is to get as much information about the plaintext 
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The aim of cryptoanalysis is to get as much information about the plaintext 

or the key as possible.

Main types of cryptoanalytics attackMain types of cryptoanalytics attack

1.Cryptotexts-only attack. The cryptanalysts get cryptotexts 1.Cryptotexts-only attack. The cryptanalysts get cryptotexts 

c1 = ek(w1),…, cn = ek(wn) and try to infer the key k or as many of the plaintexts 
w1,…, wn as possible.1 n

2.  Known-plaintexts attack (given are some pairs plaintext����cryptotext)

The cryptanalysts know some pairs w, e (w ), 1 <= i <= n, and try to infer k, or The cryptanalysts know some pairs wi, ek(wi), 1 <= i <= n, and try to infer k, or 
at least wn+1 for a new cryptotext many plaintexts ek(wn+1).

3.  Chosen-plaintexts attack (given are cryptotext for some chosen plaintexts)3.  Chosen-plaintexts attack (given are cryptotext for some chosen plaintexts)

The cryptanalysts choose plaintexts w1,…, wn to get cryptotexts ek(w1),…, 

ek(wn), and try to infer k or at least wn+1 for a new cryptotext cn+1 = ek(wn+1).
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CryptoanalysisCryptoanalysisIV054 CryptoanalysisCryptoanalysisIV054

4.  Known-encryption-algorithm attack

The encryption algorithm ek is given and the cryptanalysts try to get the 
decryption algorithm d .decryption algorithm dk.

5.  Chosen-cryptotext attack (given are plaintexts for some chosen cryptotexts)5.  Chosen-cryptotext attack (given are plaintexts for some chosen cryptotexts)

The cryptanalysts know some pairs 

(ci , dk(ci)), 1 ≤ i ≤ n,

where the cryptotexts c have been chosen by the cryptanalysts. The aim is to where the cryptotexts ci have been chosen by the cryptanalysts. The aim is to 
determine the key. (For example, if cryptanalysts get a temporary access to 
decryption machinery.) decryption machinery.) 
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WHAT CAN a BAD EVE DOWHAT CAN a BAD EVE DO??IV054 WHAT CAN a BAD EVE DOWHAT CAN a BAD EVE DO??

Let us assume that a clever Alice sends an encrypted message to Bob. 
What can a bad enemy, called usually Eve (eavesdropper), do?
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What can a bad enemy, called usually Eve (eavesdropper), do?

• Eve can read (and try to decrypt) the message.• Eve can read (and try to decrypt) the message.

• Eve can try to get the key that was used and then decrypt all messages • Eve can try to get the key that was used and then decrypt all messages 
encrypted with the same key.

• Eve can change  the message sent by Alice into another message, in 
such a way that Bob will have the feeling, after he gets the changed such a way that Bob will have the feeling, after he gets the changed 
message, that it was a message from Alice.

• Eve can pretend to be Alice and  communicate with Bob, in such a way 
that Bob thinks he is communicating with Alice.

An eavesdropper can therefore be passive - Eve or active - Mallot.
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Basic goals of broadly understood cryptographyBasic goals of broadly understood cryptographyIV054 Basic goals of broadly understood cryptographyBasic goals of broadly understood cryptography

Confidentiality: Eve should not be able to decrypt the 
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Confidentiality: Eve should not be able to decrypt the 
message Alice sends to Bob.

Data integrity: Bob wants to be sure that Alice's message 
has not been altered by  Eve.

Authentication: Bob wants to be sure that only Alice could 
have sent the message he has received.have sent the message he has received.

Non-repudiation: Alice should not be able to claim that she Non-repudiation: Alice should not be able to claim that she 
did not send messages that she has sent.

Anonymity: Alice does want that Bob finds who send the Anonymity: Alice does want that Bob finds who send the 
message
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HILL cryptosystemHILL cryptosystemIV054 HILL cryptosystemHILL cryptosystem

The cryptosystem presented in this slide was probably never used. In spite of 
that this cryptosystem played an important role in the history of modern 

IV054

that this cryptosystem played an important role in the history of modern 
cryptography.

We describe Hill cryptosystem or a fixed n and the English alphabet.

Key-space: matrices M of degree n with elements from the set {0, 1,…, 25}Key-space: matrices M of degree n with elements from the set {0, 1,…, 25}
such that M-1 mod 26 exist.

Plaintext + cryptotext space: English words of length n.Plaintext + cryptotext space: English words of length n.

Encoding: For a word w let cw be the column vector of length n of the integer Encoding: For a word w let cw be the column vector of length n of the integer 
codes of symbols of w. (A -> 0, B -> 1, C -> 2, …)

Encryption: c = Mc mod 26Encryption: cc = Mcw mod 26

Decryption: cw = M
-1cc mod 26
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HILL cryptosystemHILL cryptosystemIV054 HILL cryptosystemHILL cryptosystem

Example A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
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Example A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
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SecretSecret--key (symmetric) cryptosystemskey (symmetric) cryptosystemsIV054 SecretSecret--key (symmetric) cryptosystemskey (symmetric) cryptosystems

A cryptosystem is called secret-key cryptosystem if some secret piece of 

IV054

information – the key – has to be agreed first between any two parties that 
have, or want, to communicate through the cryptosystem. Example: CAESAR, 
HILL. Another name is symmetric cryptosystem (cryptography).HILL. Another name is symmetric cryptosystem (cryptography).

Two basic types of secret-key cryptosystems

• substitution based cryptosystems• substitution based cryptosystems

• transposition based cryptosystems

Two basic types of substitution cryptosystemsTwo basic types of substitution cryptosystems

• monoalphabetic cryptosystems – they use a fixed substitution –

CAESAR,  POLYBIOUSCAESAR,  POLYBIOUS

• polyalphabetic cryptosystems– substitution keeps changing during  the                
encryption

A monoalphabetic cryptosystem with letter-by-letter substitution is uniquely 
specified by a permutation of letters. (Number of permutations (keys) is 26!)
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SecretSecret--key cryptosystemskey cryptosystemsIV054 SecretSecret--key cryptosystemskey cryptosystems

Example: AFFINE cryptosystem is given by two integers
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Example: AFFINE cryptosystem is given by two integers
1 ≤ a, b ≤ 25, gcd(a, 26) = 1.

Encryption: e (x) = (ax + b) mod 26Encryption: ea,b(x) = (ax + b) mod 26

Example
a = 3, b = 5, e3,5(x) = (3x + 5) mod 26, 
e3,5(3) = 14, e3,5(15) = 24 - e3,5(D) = 0, e3,5(P) = Y

ZYXWVUTSRQPONMLKJIHGFEDCBA

Decryption: da,b(y) = a-1(y - b) mod 26

252423222120191817161514131211109876543210

ZYXWVUTSRQPONMLKJIHGFEDCBA

Decryption: da,b(y) = a (y - b) mod 26
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CrCryyptanalptanalyysissis’s’sIV054 CrCryyptanalptanalyysissis’s’s

The basic cryptanalytic attack against monoalphabetic substitution cryptosystems 
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The basic cryptanalytic attack against monoalphabetic substitution cryptosystems 
begins with a frequency count: the number of each letter in the cryptotext is 
counted. The distributions of letters in the cryptotext is then compared with some 
official distribution of letters in the plaintext laguage.
The letter with the highest frequency in the cryptotext is likely to be substitute for The letter with the highest frequency in the cryptotext is likely to be substitute for 

the letter with highest frequency in the plaintext language …. The likehood grows 
with the length of cryptotext.
Frequency counts in English:

% % %

E 12.31 L 4.03 B 1.62

Frequency counts in English:
E 12.31 L 4.03 B 1.62

T 9.59 D 3.65 G 1.61

A 8.05 C 3.20 V 0.93

O 7.94 U 3.10 K 0.52

N 7.19 P 2.29 Q 0.20

I 7.18 F 2.28 X 0.20

and for other languages:

I 7.18 F 2.28 X 0.20

S 6.59 M 2.25 J 0.10

R 6.03 W 2.03 Z 0.09

H 5.14 Y 1.88 5.27

70.02 24.71

English % German % Finnish % French % Italian % Spanish %English % German % Finnish %

E 12.31 E 18.46 A 12.06

T 9.59 N 11.42 I 10.59

A 8.05 I 8.02 T 9.76

O 7.94 R 7.14 N 8.64

N 7.19 S 7.04 E 8.11

I 7.18 A 5.38 S 7.83

S 6.59 T 5.22 L 5.86

French % Italian % Spanish %

E 15.87 E 11.79 E 13.15

A 9.42 A 11.74 A 12.69

I 8.41 I 11.28 O 9.49

S 7.90 O 9.83 S 7.60

T 7.29 N 6.88 N 6.95

N 7.15 L 6.51 R 6.25

R 6.46 R 6.37 I 6.25

The 20 most common digrams are (in decreasing order) TH, HE, IN, ER, AN, RE, 
ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS. The six most 
common trigrams: THE, ING, AND, HER, ERE, ENT.

S 6.59 T 5.22 L 5.86

R 6.03 U 5.01 O 5.54

H 5.14 D 4.94 K 5.20

R 6.46 R 6.37 I 6.25

U 6.24 T 5.62 L 5.94

L 5.34 S 4.98 D 5.58
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Cryptoanalysis of a cryptotext encrypted using the AFINE cryptosystem with an 
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Cryptoanalysis of a cryptotext encrypted using the AFINE cryptosystem with an 
encryption algorithm

ea,b(x) = ax + b mod 26

where 0 ≤ a, b ≤ 25, gcd(a, 26) = 1. (Number of keys: 12 × 26 = 312.)where 0 ≤ a, b ≤ 25, gcd(a, 26) = 1. (Number of keys: 12 × 26 = 312.)

Example: Assume that an English plaintext is divided into blocks of 5 letter and 
encrypted by an AFINE cryptosystem (ignoring space and interpunctions) as encrypted by an AFINE cryptosystem (ignoring space and interpunctions) as 
follows:

B H J U H N B U L S V U L R U S L Y X H

O N U U N B W N U A X U S N L U Y J S S

W X R L K G N B O N U U N B W S W X K XW X R L K G N B O N U U N B W S W X K X

H K X D H U Z D L K X B H J U H B N U O

N U M H U G S W H U X M B X R W X K X L

U X B H J U H C X K X A X K Z S W K X X
How to find

the plaintext?

U X B H J U H C X K X A X K Z S W K X X

L K O L J K C X L C M X O N U U B V U L

R R W H S H B H J U H N B X M B X R W X

K X N O Z L J B X X H B N F U B H J U HK X N O Z L J B X X H B N F U B H J U H

L U S W X G L L K Z L J P H U U L S Y X

B J K X S W H S S W X K X N B H B H J U

H Y X W N U G S W X G L L K
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% % %

E 12.31 L 4.03 B 1.62X - 32 J - 11 D - 2

Frequency analysis of plainext and
frequency table for English: 

E 12.31 L 4.03 B 1.62

T 9.59 D 3.65 G 1.61

A 8.05 C 3.20 V 0.93

O 7.94 U 3.10 K 0.52

N 7.19 P 2.29 Q 0.20

I 7.18 F 2.28 X 0.20

X - 32 J - 11 D - 2

U - 30 O - 6 V - 2

H - 23 R - 6 F - 1

B - 19 G - 5 P - 1

L - 19 M - 4 E - 0

N - 16 Y - 4 I - 0

First guess: E = X, T = U

Equations 4a + b = 23 (mod 26)

I 7.18 F 2.28 X 0.20

S 6.59 M 2.25 J 0.10

R 6.03 W 2.03 Z 0.09

H 5.14 Y 1.88 5.27

70.02 24.71

N - 16 Y - 4 I - 0

K - 15 Z - 4 Q - 0

S - 15 C - 3 T - 0

W - 14 A - 2

Equations 4a + b = 23 (mod 26)

19a + b = 20 (mod 26) 

Solutions: a = 5, b = 3Solutions: a = 5, b = 3

Translation table

B H J U H N B U L S V U L R U S L Y X H

O N U U N B W N U A X U S N L U Y J S S

W X R L K G N B O N U U N B W S W X K X

crypto A B C D E F G H I J K L M N O P Q R S T U V W X

plain P K F A V Q L G B W R M H C X S N I D Y T O J E

Y Z

Z U

W X R L K G N B O N U U N B W S W X K X

H K X D H U Z D L K X B H J U H B N U O

N U M H U G S W H U X M B X R W X K X L

U X B H J U H C X K X A X K Z S W K X X

L K O L J K C X L C M X O N U U B V U L

R R W H S H B H J U H N B X M B X R W X

K X N O Z L J B X X H B N F U B H J U H

provides from the above cryptotext the plaintext that starts with KGWTG CKTMO 
OTMIT DMZEG, what does not make a sense.

K X N O Z L J B X X H B N F U B H J U H

L U S W X G L L K Z L J P H U U L S Y X

B J K X S W H S S W X K X N B H B H J U

H Y X W N U G S W X G L L K
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Second guess: E = X, A = H
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Second guess: E = X, A = H

Equations 4a + b = 23 (mod 26)

b = 7 (mod 26) 

Solutions: a = 4 or a = 17 and therefore a=17Solutions: a = 4 or a = 17 and therefore a=17

This gives the translation table

crypto A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

and the following

plaintext from the 
S A U N A I S N O T K NO W N T O B E A

crypto A B C D E F G H I J K L M N O P Q R S T U V W X

plain V S P M J G D A X U R O L I F C Z W T Q N K H E

Y Z

B Y

plaintext from the 

above cryptotext

F I N N I S H I N V E NT I O N B U T T

H E W O R D I S F I N N I S H T H E R E

A R E M A N Y M O R E SA U N A S I N F

I N L A N D T H A N E L S E W H E R E O

N E S A U N A P E R E VE R Y T H R E E

O R F O U R P E O P L EF I N N S K N O

W W H A T A S A U N A I S E L S E W H E

R E I F Y O U S E E A S I G N S A U N A

O N T H E D O O R Y O UC A N N O T B E

S U R E T H A T T H E RE I S A S A U N
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Example of monoalphabetic cryptosystemExample of monoalphabetic cryptosystemIV054 Example of monoalphabetic cryptosystemExample of monoalphabetic cryptosystem

Symbols of the English alphabet will be replaced by squares with or without points 
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Symbols of the English alphabet will be replaced by squares with or without points 
and with or without surrounding lines using the following rule:

For example the plaintext:
WE TALK ABOUT FINNISH SAUNA MANY TIMES LATERWE TALK ABOUT FINNISH SAUNA MANY TIMES LATER

results in the cryptotext:

Garbage in between method: the message (plaintext or cryptotext) is Garbage in between method: the message (plaintext or cryptotext) is 
supplemented by ''garbage letters''.

Richelieu cryptosystemRichelieu cryptosystem
used sheets of card
board with holes.

23Classical (secret-key) cryptosystems
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Playfair cryptosystem
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Playfair cryptosystem
Invented around 1854 by Ch. Wheatstone.Invented around 1854 by Ch. Wheatstone.
Key - a Playfair square is defined by a word w of length at most 25. In w repeated 
letters are then removed, remaining letters of alphabets (except j) are then added 
and resulting word is divided to form an array.
Encryption: of a pair of letters x,y
and resulting word is divided to form an array.
Encryption: of a pair of letters x,y

•If x and y are in the same row (column), then they are replaced by the pair of 
symbols to the right (bellow) them.

•If x and y are in different rows and columns they are replaced by symbols in the 
opposite corners of rectangle created by x and y.

UIZDS
Example: PLAYFAIR is encrypted as LCMNNFCS

Playfair was used in World War I by British army.

 

XCLPR

WYVMB

GNFAH
Playfair was used in World War I by British army.

Playfair square:
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XCLPR
Playfair square:



Polyalphabetic Substitution CryptosystemsPolyalphabetic Substitution CryptosystemsIV054 Polyalphabetic Substitution CryptosystemsPolyalphabetic Substitution Cryptosystems

VIGENERE and AUTOCLAVE 

IV054

VIGENERE and AUTOCLAVE 
cryptosystems

Several polyalphabetic cryptosystems are the following modification of the 
CAESAR cryptosystem.CAESAR cryptosystem.

A 26 ×26 table is first designed with the first row containing a permutation of all 
symbols of alphabet and all columns represent CAESAR shifts starting with 
the\break symbol of the first row.the\break symbol of the first row.

Secondly, for a plaintext w and a key k - a word of the same length as w.

Encryption: the i-th letter of the plaintext - wi is replaced by the letter in the wi-row Encryption: the i-th letter of the plaintext - wi is replaced by the letter in the wi-row 
and ki-column of the table.
VIGENERE cryptosystem: a short keyword p is chosen and

k = Prefix pook = Prefix|w|p
oo

VIGENERE is actually a cyclic version of the CAESAR cryptosystem.

AUTOCLAVE cryptosystem: k = Prefix pw.
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AUTOCLAVE cryptosystem: k = Prefix|w|pw.



Polyalphabetic Substitution CryptosystemsPolyalphabetic Substitution CryptosystemsIV054 Polyalphabetic Substitution CryptosystemsPolyalphabetic Substitution Cryptosystems

VIGENERE and AUTOCLAVE cryptosystems

IV054

Example:Example:

Keyword: H A M B U R G
Plaintext: I N J E D E M M E N S C H E N G E S I C H T E S T E H T S E I N E GPlaintext: I N J E D E M M E N S C H E N G E S I C H T E S T E H T S E I N E G
Vigenere-key: H A M B U R G H A M B U R G H A M B U R G H A M B U R G H A M B U R
Autoclave-key: H A M B U R G I N J E D E M M E N S C H E N G E S I C H T E S T E H
Vigerere-cryp.: P N V F X V S T E Z T W Y K U G Q T C T N A E E V Y Y Z Z E U O Y X

26Classical (secret-key) cryptosystems

Vigerere-cryp.: P N V F X V S T E Z T W Y K U G Q T C T N A E E V Y Y Z Z E U O Y X
Autoclave-cryp.: P N V F X V S U R W W F L Q Z K R K K J L G K W L M J A L I A G I N



CRYPTOANALYSISCRYPTOANALYSIS of cryptotexts producedof cryptotexts produced by VINEGAR cryptosystemby VINEGAR cryptosystemIV054 CRYPTOANALYSISCRYPTOANALYSIS of cryptotexts producedof cryptotexts produced by VINEGAR cryptosystemby VINEGAR cryptosystem

1.Task 1 -- to find the length of the key

IV054

1.Task 1 -- to find the length of the key

Kasiski method (1852) - invented also by Charles Babbage (1853).
Basic observation If a subword of a plaintext is repeated at a distance Basic observation If a subword of a plaintext is repeated at a distance 
that is a multiple of the length of the key, then the corresponding subwords 
of the cryptotext are the same.

Example, cryptotext:

CHRGQPWOEIRULYANDOSHCHRIZKEBUSNOFKYWROPDCHRKGAXBNRHROAKERBKSCHRIWKCHRGQPWOEIRULYANDOSHCHRIZKEBUSNOFKYWROPDCHRKGAXBNRHROAKERBKSCHRIWK

Substring ''CHR'' occurs in positions 1, 21, 41, 66: expected keyword length is 
therefore 5.

Method. Determine the greatest common divisor of the distances between 
identical subwords (of length 3 or more) of the cryptotext.
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identical subwords (of length 3 or more) of the cryptotext.



CRYPTOANALYSISCRYPTOANALYSIS of cryptotexts producedof cryptotexts produced by VINEGAR cryptosystemby VINEGAR cryptosystemIV054 CRYPTOANALYSISCRYPTOANALYSIS of cryptotexts producedof cryptotexts produced by VINEGAR cryptosystemby VINEGAR cryptosystem

Friedman methodLet n be the number of 

IV054

Friedman methodLet ni be the number of 
occurrences of the  i-th letter in the 
cryptotext. cryptotext. 
Let l be the length of the keyword. Let l be the length of the keyword. 
Let n be the length of the cryptotext. Let n be the length of the cryptotext. 
Then it holds

( )
( )
( )∑ −

−
+−− ==

26

1

1

065.0038.01
027.0    , 

nn

nn

nIn
n iiIl

Once the length of the keyword is found it is easy to 
determine the key using the statistical method of analyzing 

( ) ( )∑
=

−+−−
1

1065.0038.01

i

nnnIn

determine the key using the statistical method of analyzing 

monoalphabetic cryptosystems.
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Derivation of the  Friedman methodDerivation of the  Friedman methodIV054 Derivation of the  Friedman methodDerivation of the  Friedman method

1. Let ni be the number of occurrences of i-th alphabet symbol in a text of length n.

IV054

1. Let ni be the number of occurrences of i-th alphabet symbol in a text of length n.
The probability that if one selects a pair of symbols from the text, then they are the 
same is

( ) ( )
( )∑

−
=∑= =

261
2

26

1
nn in

i ii

I

and it is called the index of coincides.

( )
( )

( )
( )∑ =−

−
=∑= =

26

11

1

2

21

inn

nn

n

i
i ii

I

2. Let pi be the probability that a randomly chosen symbol is the i -th symbol of the 
alphabet. The probability that two randomly chosen symbol are the same isalphabet. The probability that two randomly chosen symbol are the same is

For English text one has
∑

=

26

1

2

i

ip

065.0
26

2 =∑ p

For randomly chosen text:

065.0
1

2 =∑
=i

ip

∑∑ ==
26

2

26
2 038.0

26

1
ip

Approximately

∑∑
==

==
1

2
1

038.0
26ii

ip

∑=
26

2

ipI
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Derivation of the  Friedman methodDerivation of the  Friedman methodIV054 Derivation of the  Friedman methodDerivation of the  Friedman method

Assume that a cryptotext is organized into l columns headed by the letters of the 
keyword

IV054

keyword
letters Sl S1 S2 S3 . . . Sl

x1 x2 x3 . . . Xl

xl+1 xl+2 xl+3 X

xl+1 xl+2 xl+3 . . . x3l

First observation Each column is obtained using the CAESAR cryptosystem.
Probability that two randomly chosen letters are the same in

xl+1 xl+2 xl+3 . . . x3l
. . . .

Probability that two randomly chosen letters are the same in
- the same column is 0.065.
- different columns is 0.038.

The number of pairs of letters in the same column: ( ) ( )lnnnnl 1
−=−⋅The number of pairs of letters in the same column:

The number of pairs of letters in different columns:

( ) ( )
l

lnn

l
n

l
nl

22
1

−=−⋅

( ) ( )
l

lnn

l

nll

22

1 2

2

2 −− =⋅The number of pairs of letters in different columns:

The expect number A of pairs of equals letters is

ll 22 2 =⋅

( ) ( )
038.0065.0

2

1

2

2

⋅+⋅= −−
l

ln

l

lnn
A

Since

one gets the formula for l from the previous slide.

( ) ( ) ( )[ ]065.0038.0027.0
1

1

2

1 −+== −− nlI
nl

A
nn
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one gets the formula for l from the previous slide.



ONE-TIME PAD cryptosystem – Vernam’s cipherIV054 ONE-TIME PAD cryptosystem – Vernam’s cipher

Binary case:

IV054

Binary case:

plaintext w

key k are binary words of the same length

cryptotext ccryptotext c

Encryption: c = w ⊕ kEncryption: c = w ⊕ k

Decryption: w = c ⊕ k

Example:

w = 101101011w = 101101011

k = 011011010

c = 110110001c = 110110001

What happens if the same key is used twice or 3 times for encryption? 

c1 = w1 ⊕ k, c2 = w2 ⊕ k, c3 = w3 ⊕ kc1 = w1 ⊕ k, c2 = w2 ⊕ k, c3 = w3 ⊕ k

c1 ⊕ c2 = w1 ⊕ w2

c1 ⊕ c3 = w1 ⊕ w3
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c1 ⊕ c3 = w1 ⊕ w3

c2 ⊕ c3 = w2 ⊕ w3



Perfect secret cryptosystemsIV054 Perfect secret cryptosystems

By Shanon, a cryptosystem is perfect if the knowledge of the cryptotext provides no 

IV054

By Shanon, a cryptosystem is perfect if the knowledge of the cryptotext provides no 
information whatsoever about its plaintext (with the exception of its length).

It  follows from Shannon's results that perfect secrecy is possible if the key-space is 
as large as the plaintext-space. In addition, a key has to be as long as plaintext and as large as the plaintext-space. In addition, a key has to be as long as plaintext and 
the same key should not be used twice.

An example of a perfect cryptosystem ONE-TIME PAD cryptosystem (Gilbert S. An example of a perfect cryptosystem ONE-TIME PAD cryptosystem (Gilbert S. 
Vernam (1917) - AT&T + Major Joseph Mauborgne).

If used with the English alphabet, it is simply a polyalphabetic substitution 
cryptosystem of VIGENERE with the key being a randomly chosen English word of cryptosystem of VIGENERE with the key being a randomly chosen English word of 
the same length as the plaintext.

Proof of perfect secrecy: by the proper choice of the key any plaintext of the Proof of perfect secrecy: by the proper choice of the key any plaintext of the 
same length could provide the given cryptotext.

Did we gain something? The problem of secure communication of the plaintext got 
transformed to the problem of secure communication of the key of the same length.transformed to the problem of secure communication of the key of the same length.

Yes: 1. ONE-TIME PAD cryptosystem is used in critical applications

2. It suggests an idea how to construct practically secure cryptosystems.
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2. It suggests an idea how to construct practically secure cryptosystems.



Transposition CryptosystemsIV054 Transposition Cryptosystems

The basic idea is very simple: permutate the plaintext to get the cryptotext. Less 

IV054

The basic idea is very simple: permutate the plaintext to get the cryptotext. Less 
clear it is how to specify and perform efficiently  permutations.

One idea: choose n, write plaintext into rows, with n symbols in each row and then 
read it by columns to get cryptotext.read it by columns to get cryptotext.

Example

ESTHETSETH

CISEGNEHCS

NEMMEDEJNI

Cryptotexts obtained by transpositions, called anagrams, were popular among 

ONOEJOTETH

CIHCSEGENI

ESTHETSETH

Cryptotexts obtained by transpositions, called anagrams, were popular among 
scientists of 17th century. They were used also to encrypt scientific findings.

Newton wrote to Leibnitz

a7c2d2e14f2i7l3m1n8o4q3r2s4t8v12x1

what stands for: ”data aequatione quodcumque fluentes quantitates involvente, 
fluxiones invenire et vice versa”fluxiones invenire et vice versa”

Example a2cdef3g2i2jkmn8o5prs2t2u3z

Solution:
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Solution:



KEYWORD CAESAR cryptosystem1IV054 KEYWORD CAESAR cryptosystem1

Choose an integer 0 < k < 25 and a string, called keyword, with at 
most 25 different letters.

IV054

most 25 different letters.

The keyword is then written bellow the English alphabet letters, The keyword is then written bellow the English alphabet letters, 
beginning with the k-symbol, and the remaining letters are written in 
the alphabetic order after the keyword.

Example: keyword: HOW MANY ELKS, k = 8

80

JIGFDCBSKLEYNAMWOHZXVUTRQP

ZYXWVUTSRQPONMLKJIHGFEDCBA

80

JIGFDCBSKLEYNAMWOHZXVUTRQP
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KEYWORD CAESAR cryptosystemIV054 KEYWORD CAESAR cryptosystem

ExerciseDecrypt the following cryptotext encrypted using the 

IV054

ExerciseDecrypt the following cryptotext encrypted using the 
KEYWORD CAESAR and determine the keyword and k
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KEYWORD CAESAR cryptosystemIV054 KEYWORD CAESAR cryptosystem

Step 1. Make the

frequency counts:

IV054

Number Number Number

U 32 X 8 W 3

C 31 K 7 Y 2

frequency counts:
C 31 K 7 Y 2

Q 23 N 7 G 1

F 22 E 6 H 1

V 20 M 6 J 0

P 15 R 6 L 0

T 15 B 5 O 0

I 14 Z 5 S 0I 14 Z 5 S 0

A 8 D 4 7=2.90%

180=74.69% 54=22.41%

Step 2. Cryptotext contains two one-letter words T and Q. They must be A and I. 
Since T occurs once and Q three times it is likely that T is I and Q is A.Since T occurs once and Q three times it is likely that T is I and Q is A.

The three letter word UPC occurs 7 times and all  other 3-letter words occur only 
once. Henceonce. Hence

UPC is likely to be THE.

Let us now decrypt the remaining letters in the high frequency group: F,V,I

From the words TU, TF ⇒ F=S 

From UV ⇒ V=O

From VI ⇒ I=NFrom VI ⇒ I=N

The result after the remaining guesses
ZYXWVUTSRQPONMLKJIHGFEDCBA
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DGCBOTI?FEH?UR?Y?NMKSPWEVL

ZYXWVUTSRQPONMLKJIHGFEDCBA



UNICITY DISTANCE of CRYPTOSYSTEMSUNICITY DISTANCE of CRYPTOSYSTEMS

Redundancy of natural languages is of the key importance for Redundancy of natural languages is of the key importance for 
cryptanalysis.

Would all letters of a 26-symbol alphabet have the same probability, a 
character would carry lg 26 = 4.7 bits of Information.character would carry lg 26 = 4.7 bits of Information.
The estimated average amount of information carried per letter 
in a meaningful English text is 1.5 bits.in a meaningful English text is 1.5 bits.

The unicity distance of a cryptosystem is the minimum number The unicity distance of a cryptosystem is the minimum number 
of cryptotext (number of letters) required to a computationally 
unlimited adversary to recover the unique encryption key.

Empirical evidence indicates that if any simple cryptosystem is 
applied to a meaningful English message, then about 25 applied to a meaningful English message, then about 25 
cryptotext characters is enough for an experienced 
cryptanalyst to recover the plaintext.
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cryptanalyst to recover the plaintext.



ANAGRAMS - EXAMPLESIV054 ANAGRAMS - EXAMPLES

German:

IV054

German:

IRI BRÄTER, GENF Briefträgerin

FRANK PEKL, REGEN …

PEER ASSSTIL, MELK …PEER ASSSTIL, MELK …

INGO DILMR, PEINE …

EMIL REST, GERA …

KARL SORDORT, PEINE …

English:
algorithms logarithms
antagonist stagnation
compressed decompress
coordinate decoration
creativity reactivity
deductions discounted
descriptor predictors
impression permission
introduces reductions
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STREAM  CRYPTOSYSTEMSSTREAM  CRYPTOSYSTEMS

Two basic types of cryptosystems are:Two basic types of cryptosystems are:

• Block cryptosystems (Hill cryptosystem,…) – they are used
to encrypt simultaneously blocks of plaintext.to encrypt simultaneously blocks of plaintext.

• Stream cryptosystems (CAESAR, ONE-TIME PAD,…) – they
encrypt plaintext letter by letter, or block by block, using an encryption that encrypt plaintext letter by letter, or block by block, using an encryption that 
may vary during the encryption process.

Stream cryptosystems are more appropriate in some applicationsStream cryptosystems are more appropriate in some applications
(telecommunication), usually are simpler to implement (also in hardware), 
usually are faster and  usually have no error propagation (what is of 
importance when transmission errors are highly probable).importance when transmission errors are highly probable).

Two basic types of stream cryptosystems: secret key cryptosystems
(ONE-TIME PAD) and public-key cryptosystems (Blum-Goldwasser)(ONE-TIME PAD) and public-key cryptosystems (Blum-Goldwasser)
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Block versus stream cryptosystemsIV054 Block versus stream cryptosystems

In block cryptosystems the same key is used to encrypt arbitrarily long 

IV054

In block cryptosystems the same key is used to encrypt arbitrarily long 
plaintext – block by block - (after dividing each long plaintext w into a 
sequence of subplaintexts (blocks)  w1w2w3 ).1 2 3

In stream cryptosystems each block is encryptyd using a different key

• The fixed key k is used to encrypt all blocks. In such a• The fixed key k is used to encrypt all blocks. In such a
case the resulting cryptotext has the form

c = c1c2c3… = ek(w1) ek(w2) ek(w3)…c = c1c2c3… = ek(w1) ek(w2) ek(w3)…

• A stream of keys is used to encrypt subplaintexts. The 
basic idea is to generate a key-stream K=k ,k ,k ,… and basic idea is to generate a key-stream K=k1,k2,k3,… and 
then to compute the cryptotext as follows

c = c c c …  = e (w ) e (w ) e (w ).
40Classical (secret-key) cryptosystems

c = c1c2c3 …  = ek1(w1) ek2(w2) ek3(w3).



CRYPTOSYSTEMS WITH STREAMS OF KEYSIV054 CRYPTOSYSTEMS WITH STREAMS OF KEYSIV054

Various techniques are used to compute a sequence of keys. For Various techniques are used to compute a sequence of keys. For 
example, given a key k

ki = fi (k, k1, k2, …, ki-1)

In such a case encryption and decryption processes generate the
following sequences:

Encryption: To encrypt the plaintext w1w2w3 … the sequence 

k , c , k , c , k , c , … k1, c1, k2, c2, k3, c3, … 

of keys and sub-cryptotexts is computed.

Decryption: To decrypt the cryptotext c1c2c3  … the sequence

k1, w1, k2, w2, k3, w3, … k1, w1, k2, w2, k3, w3, … 

of keys and subplaintexts is computed.
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EXAMPLESIV054 EXAMPLES

A keystream is called synchronous if it is independent of the plaintext.

IV054

A keystream is called synchronous if it is independent of the plaintext.

KEYWORD VIGENERE cryptosystem can be seen as an example of a 
synchronous keystream cryptosystem.

Another type of the binary keystream cryptosystem is specified by an initial
sequence of keys k1, k2, k3 … km

and a initial sequence of binary constants b1, b2, b3 … bm-1and a initial sequence of binary constants b1, b2, b3 … bm-1

and the remaining keys are computed using the rule

∑
−

++ =
1

2 mod
m

jijmi kbk

A keystrem is called periodic with period p if ki+p = ki for all i. 

∑
=

++ =
0

2 mod
j

jijmi kbk

Example Let the keystream be generated by the rule

ki+4 = ki ⊕ ki+1

If the initial sequence of keys is (1,0,0,0), then we get the following keystream:If the initial sequence of keys is (1,0,0,0), then we get the following keystream:

1,0,0,0,1,0,0,1,1,0,1,0 1,1,1, …

of period 15.
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of period 15.



PERFECT SECRECY - BASIC CONCEPTSIV054 PERFECT SECRECY - BASIC CONCEPTS

Let P, K and C be sets of plaintexts, keys andcryptotexts.

IV054

Let P, K and C be sets of plaintexts, keys andcryptotexts.

Let pK(k) be the probability that the key k is chosen from K and let a priory 
probability that plaintext w is chosen is pp(w).

( ) ( ){ }∈=∈If for a key , then for the probability PC(y) that c is the
cryptotext that is transmitted it holds

( ) ( ){ }P|   K, ∈=∈ wwekCk k

( ) ( ) ( )( ).∑= cdpkpcp

For the conditional probability p (c|w) that c is the cryptotext if w is the plaintext it 

( ) ( ) ( )( )
( ){ }

.
|

∑
∈

=
kCck

kPKC cdpkpcp

For the conditional probability pc(c|w) that c is the cryptotext if w is the plaintext it 
holds

( ) ( )
( ){ }

.|
|

∑
=

=
cdwk

KC kpwcp

Using  Bayes' conditional probability formula p(y)p(x|y) = p(x)p(y|x) we get for 
probability p (w|c) that w is the plaintext if c is the cryptotext the expression

( ){ }|

∑
= cdwk k

probability pP(w|c) that w is the plaintext if c is the cryptotext the expression

( ) ( )( ){ }
( ) ( )( )( ){ }

.|

∑
∑=

∈

=

KPK

ckdwk KP

cdpkp

kpwP

Pp
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PERFECT SECRECY - BASIC RESULTSIV054 PERFECT SECRECY - BASIC RESULTS

Definition A cryptosystem has perfect secrecy if

IV054

(That is, the a posteriori probability that the plaintext is w,given that the cryptotext is 

( ) ( ) C. and P allfor  | ∈∈= cwwpcwp PP

(That is, the a posteriori probability that the plaintext is w,given that the cryptotext is 
c is obtained, is the same as a priori probability that the plaintext is w.)
Example CAESAR cryptosystem has perfect secrecy if any of the26 keys is used 
with the same probability to encode any symbol of the plaintext.with the same probability to encode any symbol of the plaintext.
Proof Exercise.
An analysis of perfect secrecy: The condition pP(w|c) = pP(w) is for all w∈P and 
c∈C equivalent to the condition pC(c|w) = pC(c).c∈C equivalent to the condition pC(c|w) = pC(c).

Let us now assume that pC(c) > 0 for all c∈C.

Fix w∈P. For each c∈C we have pC(c|w) = pC(c) > 0. Hence, for each c€C there Fix w∈P. For each c∈C we have pC(c|w) = pC(c) > 0. Hence, for each c€C there 
must exists at least one key k such that ek(w) = c. Consequently, |K| >= |C| >= |P|.

In a special case |K| = |C| = |P|. the following nice characterization of the perfect 
secrecy can be obtained:secrecy can be obtained:
Theorem A cryptosystem in which |P| = |K| = |C| provides  perfect secrecy if and 
only if every key is used with the same probability and for every w∈P and every 
c€C there is a unique key k such that e (w) = c.
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c€C there is a unique key k such that ek(w) = c.
Proof Exercise.



PRODUCT CRYPTOSYSTEMSIV054 PRODUCT CRYPTOSYSTEMS

A cryptosystem S = (P, K, C, e, d) with the sets of plaintexts P, keys K and 
cryptotexts C and encryption (decryption) algorithms e (d) is called endomorphic if 

IV054

cryptotexts C and encryption (decryption) algorithms e (d) is called endomorphic if 
P = C.

If S1 = (P, K1, P, e
(1), d (1)) and S2 = (P, K2, P, e 

(2), d (2)) are endomorphic 1 1 2 2

cryptosystems, then the product cryptosystem is

S1 ⊗ S2 = (P, K1 ⊗ K2, P, e, d),

where encryption is performed  by the procedurewhere encryption is performed  by the procedure

e( k1, k2 )(w) = ek2(ek1(w))

and decryption by the procedureand decryption by the procedure

d( k1, k2 )(c) = dk1(dk2(c)).

Example (Multiplicative cryptosystem):

Encryption: ea(w) = aw mod p; decryption: da(c) = a
-1c mod 26.

If M denote the multiplicative cryptosystem, then clearly CAESAR × M is actually 
the AFFINE cryptosystem.the AFFINE cryptosystem.

Exercise Show that also M ⊗ CAESAR is actually the AFFINE cryptosystem.
Two cryptosystems S1 andS2 are called commutative if S1 ⊗ S2 = S2 ⊗ S1.

⊗
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A cryptosystem S is called idempotent if S ⊗ S = S.



IV054 EXERCISES
• For the following pairs plaintext-cryptotext determine which cryptosystem was 
used:

IV054 EXERCISES

used:
- COMPUTER - HOWEWVER THE EST UNDERESTIMATES ZANINESS YOUR JUDICIOUS
WISDOM

- SAUNA AND LIFE – RMEMHCZZTCEZTZKKDA A spy group received info about the - SAUNA AND LIFE – RMEMHCZZTCEZTZKKDA A spy group received info about the 
arrival of a new member. Thesecret police succeeded in learning the message 
and knew that it wasencrypted using the HILL cryptosystem with a matrix of 
degree 2. It also learned that the code ``10 3 11 21 19 5'' stands for the name degree 2. It also learned that the code ``10 3 11 21 19 5'' stands for the name 
ofthe spy and ``24 19 16 19 5 21'', for the city, TANGER, the spy should come 
from. What is the name of the spy?

• Decrypt the following cryptotexts. (Not all plaintexts are in English.) -• Decrypt the following cryptotexts. (Not all plaintexts are in English.) -
WFLEUKZFEKZFEJFWTFDGLKZEX
- DANVHEYD SEHHGKIIAJ VQN GNULPKCNWLDEA - DHAJAHDGAJDI AIAJ AIAJDJEH
DHAJAHDGAJDI AIDJ AIBIAJDJ\DHAJAHDGAJDI AIAJ DIDGCIBIDH DHAJAHDGAJDI
AIAJ DICIDJDHAIAJ DICIDJDH
- KLJPMYHUKV LZAL ALEAV LZ TBF MHJPS

• Find the largest possible word in Czech language such that its nontrivial 
encoding by CAESAR is  again a meaningful Czech word.encoding by CAESAR is  again a meaningful Czech word.

• Find the longest possible meaningful word in a European language such that 
some of its non-trivial encoding by CAESAR is again ameaningful word in a 
European language (For example: e (COLD) = FROG).
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EXERCISES IVIV054 EXERCISES IV

• Decrypt the following cryptotext obtained by encryption with an AFFINE 

IV054

• Decrypt the following cryptotext obtained by encryption with an AFFINE 
cryptosystem:
KQEREJEBCPPCJCRKIEACUZBKRVPKRBCIBQCARBJCVFCUPKRIOFKPACUZQEPBK
RXPEIIEABDKPBCPFCDCCAFIEABDKPBCPFEQPKAZBKRHAIBKAPCCIBURCCDKDCC
JCIDFUIXPAFFERBICZDFKABICBBENEFCUPJCVKABPCYDCCDPKBCOCPERKIVKSCPIJCIDFUIXPAFFERBICZDFKABICBBENEFCUPJCVKABPCYDCCDPKBCOCPERKIVKSCPI
CBRKIJPKAI

• Suppose we are told that the plaintext “FRIDAY'' yields the cryptotext “PQCFKU'' 
with a HALL cryptosystem. Determine the encryption matrix.with a HALL cryptosystem. Determine the encryption matrix.

• Suppose we are told that the plaintext “BREATHTAKING”' yieldsthe cryptotext 
“RUPOTENTOSUP'' with a HILL cryptosystem. Determine the encryption matrix.

• Decrypt the following cryptotext, obtained using the AUTOKLAVE cryptotext • Decrypt the following cryptotext, obtained using the AUTOKLAVE cryptotext 
(using exhaustive search ?)

MALVVMAFBHBUQPTSOXALTGVWWRG

• Design interesting cryptograms in (at least) one of the languages: Czech, French, • Design interesting cryptograms in (at least) one of the languages: Czech, French, 
Spanish, Chines?

• Show that each permutation cryptosystem is a special case of the HILL 
cryptosystem.cryptosystem.

• How many 2 × 2 matrices are there that are invertible over Zp, where p is a prime.
• Invent your own interesting and quite secure cryptosystem.

47Classical (secret-key) cryptosystems


