IV054 Coding, Cryptography and Cryptographic Protocols

2008 - Exercises V.

- 1. Which of the following pairs is a good choice for the Diffie-Hellman protocol. Explain your reasoning. Omit the fact that the numbers are very small:
 - (a) q = 1, p = 179;
 - (b) q = 2, p = 181;
 - (c) q = 14, p = 197.
- 2. Suppose that Alice wants to send a message 1001111001 to Bob using the Knapsack cryptosystem with X = (3, 6, 10, 22, 43), m = 97 and u = 13.
 - (a) Find Bob's public key X'.
 - (b) What is the cryptotext c computed by Alice?
 - (c) Perform in detail Bob's decryption of c.
- 3. Suppose that the RSA cryptosystem is used. Angela sends $m^e \equiv c \pmod{n}$ to Bert. However, malicious Manfred intercepts c, selects a random $y \in \mathbb{Z}_n$ and sends $cy^e \equiv c' \pmod{n}$ to Bert. Not knowing this, Bert computes $m' = c'^d \pmod{n}$ and sends m' to Angela. How can Manfred retrieve m from m'?
- 4. Let n be an odd number. Consider the following version of the Miller-Rabin primality test. The number n-1 is written as $n-1 = 2^s m$ where m is odd. Then a number $a \in \{1, \ldots, n-1\}$ is chosen and the numbers

$$x_0 = a^m \mod n,$$

$$x_{k+1} = x_k^2 \mod n,$$

where $k \in \{0, ..., s - 1\}$, are computed. Show that if n is prime, then either $x_0 = 1$ or $x_k = n - 1$ for some k < s.

- 5. Suppose that Bob uses the RSA cryptosystem with a large modulus n for which the factorization cannot be found efficiently. Suppose Alice sends a message to Bob by representing each alphabetic character as an integer from the set $\{0, \ldots, 25\}$ and then encrypting each character separately. Describe how Eve can decrypt a message which is encrypted in this way.
- 6. Let (n, e) be a public key for the RSA cryptosystem. Prove that there exists an integer r such that $m \equiv c^{e^r} \mod n$ for every plaintext m and its corresponding ciphertext c.
- 7. Consider the RSA cryptosystem where q is much larger than p. Assume that a message being encrypted is smaller than p so that one can efficiently decrypt a message by computing $m' = c^d \mod p = m$. Show that a single chosen-ciphertext attack is sufficient to break this version of the RSA cryptosystem.