IV054 Coding, Cryptography and Cryptographic Protocols

2008 – Exercises VI.

- 1. Assume that the ciphertext c = (512, 303) was obtained using the ElGamal cryptosystem with the following parameters: p = 941, q = 2, x = 14 and r = 9. Find the plaintext.
- 2. Consider probability distributions p_0 , p_1 over $\{0, 1\}^n$ where $n \in \mathbb{N}$. Let A be a polynomial time algorithm with inputs from $\{0, 1\}^n$ and outputs from $\{0, 1\}$ which has the property

$$Pr(A(p_0) = 1) - Pr(A(p_1) = 1) \ge \epsilon,$$

where $\epsilon > 0$ and $A(p_i)$ denotes the result of a computation of A for an input chosen according to the distribution p_i . Alice and Bob decided to play the following game:

- (a) Alice chooses randomly and uniformly a bit $b \in \{0, 1\}$.
- (b) Alice chooses a string x according to the distribution p_b and sends it to Bob.
- (c) Bob returns a bit $b' \in \{0, 1\}$.
- (d) Bob wins if b = b'.

Suppose that Bob is able to use the algorithm A. Show that he can win with probability greater than $\frac{1}{2}$.

- 3. Suppose that an adversary Eve can solve the Diffie-Hellman problem (i.e. given α^x and α^y she can compute α^{xy} (modulo p)). Show that Eve can then easily break the ElGamal encryption scheme.
- 4. Let $n \in \mathbb{N}$ and $s \in \{0,1\}^n$. Let further $G : \{0,1\}^n \to \{0,1\}^m$ be a pseudorandom generator and $\circ : \{0,1\} \times \{0,1\} \to \{0,1\}$. Finally, let \circ_n be an extension of \circ to bit strings of length n obtained by applying \circ bitwise.

Consider the encryption scheme with $P = C = \{0, 1\}^m$ and $K = \{0, 1\}^n$. The encryption e of a message p using a secret key k is defined as $e(p, k) = G(k) \circ_m p$.

- (a) Suppose that \circ is the \oplus operation. Decide whether this encryption scheme is secure against a chosen plaintext attack. Explain your reasoning.
- (b) Is there any other function $\circ' : \{0,1\} \times \{0,1\} \rightarrow \{0,1\}$ which can be used as \circ ? What is its necessary property?
- 5. Assume that the Shanks' algorithm is used to compute

 $\log_5 71 \pmod{167}$.

Show the computation steps.

- 6. Consider a prime p and an integer 1 < a < p 1.
 - (a) Suppose that there is n such that $n^2 \equiv a \pmod{p}$. Show that a is not a primitive root (mod p).
 - (b) Suppose that there is no n such that $n^2 \equiv a \pmod{p}$ and that $\frac{p-1}{2}$ is a prime. Show that a is a primitive root (mod p).
- 7. Let $f(n) = \frac{1}{\binom{2n}{n}}$ and $g(n) = \frac{1}{\binom{n+42}{n}}$. Decide which of these functions is negligible.