IV054 Coding, Cryptography and Cryptographic Protocols

2008 – Exercises VIII.

- 1. Factor n = 923 using the elliptic curve $E : y^2 = x^3 + 2x + 9 \pmod{n}$ and the point P = (0, 3). Show the computation steps.
- 2. Let P be a point on an elliptic curve $E: y^2 = x^3 + ax + b \pmod{n}$ where n > 1. Prove that there exist $i, j \in \mathbb{N}, i \neq j$, such that iP = jP.
- 3. (a) Factorize $2^{29} 1$ using the second Pollard ρ -algorithm with $f(x) = x^2 + 1$. (b) Use the Pollard's p - 1 method to factor n = 8549 with a = 50 and b = 17.
- 4. For a modulus n, an exponent e is called a universal exponent if $x^e \equiv 1 \pmod{n}$ for all x with gcd(x, n) = 1.

Universal Exponent Factorization Method Let e be a universal exponent for n and set $e = 2^b m$ where $b \ge 0$ and m is odd. Execute the following steps.

- (i) Choose a random a such that 1 < a < n-1. If gcd(a, n) > 1, then we have a factor of n, and we terminate the algorithm. Otherwise go to step (ii).
- (ii) Let $x_0 \equiv a^m \pmod{n}$. If $x_0 \equiv 1 \pmod{n}$, then go to step (i). Otherwise, compute $x_j \equiv x_{j-1}^2 \pmod{n}$ for all $j = 1, \ldots, b$.
 - If $x_i \equiv -1 \pmod{n}$, then go to step (i).
 - If $x_j \equiv 1 \pmod{n}$, but $x_{j-1} \not\equiv 1 \pmod{n}$, then $gcd(x_{j-1} 1, n)$ is a nontrivial factor of n so we can terminate the algorithm.
- (a) Use the algorithm above to factor n = 76859539 with the universal exponent e = 12807000.
- (b) Find a universal exponent for $n = 2^{a+2}$. Justify your answer.
- 5. Let n > 0 be an integer. Show that n is a prime if and only if for any $k \in \{1, 2, \ldots, n-1\} \binom{n}{k}$ is divisible by n.
- 6. Consider the elliptic curve $E: y^2 = x^3 + 568x + 1350 \pmod{1723}$ and the point X = (524, 1413). Compute the point 144X.
- 7. Consider the eliptic curve $E: y^2 = x^3 + x + 3 \pmod{11}$.
 - (a) Find a group isomorphic to the eliptic curve E.
 - (b) Suppose that Alice and Bob use E in the elliptic version of the ElGamal scheme.

Alice chooses Q = (9,9) and a secret number k. Then she computes P = k(9,9) = (6,7) and makes P public. Bob chooses a message M, a random number r and sends $Y_1 = rQ = (5,10)$ and $Y_2 = M + rP = (1,4)$ to Alice. Your task is to find M.