IV054 Coding, Cryptography and Cryptographic Protocols 2008 – Exercises IX.

- 1. Consider the Shamir's threshold scheme.
 - (a) Prove that $f(x_k) \equiv y_k \pmod{p}$ for $1 \le k \le t$.
 - (b) Let n = 5 and t = 3. Reconstruct the secret if p = 3361 and participants P_2 , P_3 and P_5 have the shares (2,596), (3,1407) and (5,334), respectively.
- 2. Prove correctness of the following identification protocol:
 - (1) Peggy chooses distinct primes p and q, computes n = pq and chooses e such that $gcd(e, \varphi(n)) = 1$. She chooses $x \in \mathbb{Z}_n^*$ and computes $y = x^e \pmod{n}$. Peggy's public key is (n, e, y) and her private key is x.
 - (2) Peggy randomly chooses $r \in \mathbb{Z}_n^*$ and sends $a = r^e \pmod{n}$ to Victor.
 - (3) Victor randomly chooses $b \in \mathbb{Z}_e$ and sends it to Peggy.
 - (4) Peggy computes $c = x^b r \pmod{n}$ and sends it to Victor.
 - (5) Victor accepts if and only if $c^e \equiv y^b a \pmod{n}$.
- 3. Consider Feldman's (k, n)-protocol for secret sharing with verification. Prove that if the dealer is honest, the equality

$$g^{y_i} = \prod_{j=0}^{k-1} (v_j)^{x_i^j} \pmod{p}$$

is satisfied for each $i \in \{1, \ldots, n\}$.

- 4. Peggy and Victor share a bit string k. Peggy identifies herself to Victor using the following protocol:
 - (1) Victor randomly chooses a bit string r and sends it to Peggy.
 - (2) Peggy computes $r \oplus k$ and sends it to Victor.
 - (3) Victor accepts if and only if $k = r \oplus c$ where c is the received bit string.

Is this protocol secure? Explain your reasoning.

- 5. Suppose Alice is using the Schnorr identification scheme where q = 617, p = 4937, t = 9 and $\alpha = 1624$.
 - (a) Verify that α has order q in \mathbb{Z}_p^* .
 - (b) Let Alice's secret exponent be a = 55. Compute v.
 - (c) Suppose that k = 29. Compute γ .
 - (d) Suppose that Bob sends the challenge r = 105. Compute Alice's response y.
 - (e) Perform Bob's calculations to verify y.

- 6. Let E be a block cipher which produces blocks of length k using keys of length k. Consider the following hash function. The message m which is to be hashed is divided into a sequence m_1, m_2, \ldots, m_n of blocks, each of length k. For the sake of simplicity, the length of m is supposed to be a multiple of k. The hash h_n of m is computed in the following way:
 - $h_0 = IV$ (initialization vector)
 - $h_i = E_{m_i}(h_{i-1})$

Let h and m be any hash value and any message, respectively. Propose an attack which extends m with two more blocks in such a way that h is a hash value of the resulting message. The number of decryptions and encryptions of a single block performed by your attack should be $O(2^k)$.