Příklad 2.6 with(plots) : with (Student) : with(Student[Calculusl]) : fln(2-x3+4-x2-x) \ J' V x+1 )' fl:=diff(f,x); 2 / 3 2 i _____6x + 8x — 1_______ ln^2x +4x —xj (2x3+4x2-x) (x + 1) (x+1)2 ß:=dijf(f,x$2); _______12x + 8_____________(6x2 + 8x-l)2__________2 (óx2 + 8x-l) (2x3+4x2-x) (x + 1) (2x3+4x2-xf (x + 1) (2x3+4x2-x) (x + l)2 21n(2x3+4x2-x) (x+1)3 s; w N3 I I I I I I I I I I I I I I I I I I I I I I I I ■d) ' ' ' ' i N> — INJ — w — J*. I— Ul DerivativePlotif, x = 0.9 ..5, thickness = 2 ); The Derivativeof f(x)= ln(2*xA3+4*xA2-x)/(x+1) on the Interval[.9, 5] f(x) 1 st derivative lO —I ^ = „ ■sř- (D 0 O O M— CO CO (1) > > O !_ s_ *Ĺ 0 0 C T3 T3 3 CNI A\]:=eval{f,x=\); |ln(5) (1) fl[\]:=eval{fl,x=\); H-^ln(5) (2) f2[\]:=eval(fl,x=\); -|+^ln(5) (3) evfl//(/[l]); 0.8047189560 (4) evalf(fl[l]); 0.8976405220 (5) evalf(fi[l]); -2.277640522 (6) showtangentif, x = 1, x = 0.5 ..5, co/or = [cyan, red], thickness = 2); X