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Part I: BackgroundPart I: Background



General Model

• A signature scheme consists of three (or more) 

related operations:related operations:

– key pair generation produces a public/private key pair

– signature operation produces a signature for a – signature operation produces a signature for a 

message with a private key

– verification operation checks a signature with a public 

keykey

• In a scheme with message recovery, verification • In a scheme with message recovery, verification 

operation recovers message from signature

• In a scheme with appendix, both message and • In a scheme with appendix, both message and 

signature must be transmitted



Trapdoor One-Way Functions

• A one-way function f(x) is easy to compute but 

hard to invert:hard to invert:

– easy: x →→→→ f(x)

– hard: f(x) →→→→ x– hard: f(x) →→→→ x

• A trapdoor one-way function has trapdoor 

information f-1 that makes it easy to invert:information f-1 that makes it easy to invert:

– easy: f(x), f-1 →→→→ x = f-1(f(x))

• Many but not all signature schemes are based on • Many but not all signature schemes are based on 

trapdoor OWFs 



RSA Trapdoor OWF

• The RSA function is

f(x) = xe mod nf(x) = xe mod n

where n = pq, p and q are large random primes, 

and e is relatively prime to p-1 and q-1

• This function is conjectured to be a trapdoor OWF• This function is conjectured to be a trapdoor OWF

• Trapdoor is

f-1(x) = xd mod n

where d = e-1 mod lcm(p-1,q-1)where d = e-1 mod lcm(p-1,q-1)



Signatures with a Trapdoor OWF

• Signature operation:

s = σσσσ(M) = f-1(µµµµ(M))s = σσσσ(M) = f-1(µµµµ(M))
– where µµµµ maps from message strings to f-1 inputs

• may be randomized• may be randomized

• invertible for signatures with message recovery

• Verification operation (with appendix):

f(s) =? µµµµ(M)f(s) =? µµµµ(M)
• if randomized, f(s) ∈∈∈∈? µµµµ(M)

• Verification operation (with message recovery):• Verification operation (with message recovery):

M = µµµµ-1(f(s))M = µµµµ (f(s))



Mapping Properties

• Mapping should have similar properties to a hash 

function:function:

– one-way: for random m, hard to find M s.t. µµµµ(M) = m
– collision-resistant: hard to find M1, M2 s.t. µµµµ(M1) = µµµµ(M2)– collision-resistant: hard to find M1, M2 s.t. µµµµ(M1) = µµµµ(M2)

• For message recovery, a “redundancy” function

• May also identify underlying algorithms

– e.g., algorithm ID for underlying hash function

• Should also interact well with trapdoor function

– ideally, mapping should appear “random”– ideally, mapping should appear “random”



Multiplicative Properties of RSA

• RSA function is a multiplicative homomorphism:

for all x, y,for all x, y,

f (xy mod n) = f(x) f(y) mod n

f-1(xy mod n) = f-1(x) f-1(y) mod n

• More generally:• More generally:

f-1(∏∏∏∏ xi mod n) = ∏∏∏∏ (f-1(xi)) mod nf (∏∏∏∏ xi mod n) = ∏∏∏∏ (f (xi)) mod n

• Property is exploited in most forgery attacks on 

RSA signatures, but also enhances recent RSA signatures, but also enhances recent 

security proofs



Part II: Forgery and Part II: Forgery and 

Provable SecurityProvable Security



Signature Forgery

• A forgery is a signature computed without the 

signer’s private keysigner’s private key

• Forgery attacks may involve interaction with the 

signer: a chosen-message attacksigner: a chosen-message attack

• Forgery may produce a signature for a specified 

message, or the message may be output with its message, or the message may be output with its 

signature (existential forgery)



Multiplicative Forgery

• Based on the multiplicative properties of the RSA 

function, iffunction, if

µµµµ(M) = ∏∏∏∏ µµµµ(Mi)^ααααi mod n

then

σσσσ(M) = ∏∏∏∏ σσσσ(M )^αααα mod nσσσσ(M) = ∏∏∏∏ σσσσ(Mi)^ααααi mod n

• Signature for M can thus be forged given the • Signature for M can thus be forged given the 

signatures for M1, …, Ml, under a chosen-message 

attackattack



Small Primes Method

• Suppose µµµµ(M) and µµµµ(M1), …, µµµµ(Ml) can be factored 
into small primesinto small primes

– Desmedt-Odlyzko (1986); Rivest (1991 in PKCS #1)

• Then the exponents αααα can be determined by • Then the exponents ααααi can be determined by 
relationships among the prime factorizations

• Requires many messages if µµµµ maps to large • Requires many messages if µµµµ maps to large 

integers, but effective if µµµµ maps to small integers

• Limited applicability to example schemes



Recent Generalization

• Consider µµµµ(M), µµµµ(M1), …, µµµµ(Ml) mod n, and also 
allow a fixed factorallow a fixed factor

– Coron-Naccache-Stern (1999)

• Effective if µµµµ maps to small integers mod n times • Effective if µµµµ maps to small integers mod n times 

a fixed factor

• Broader applicability to example schemes:• Broader applicability to example schemes:

– ISO 9796-2 [CNS99]

– ISO 9796-1 [Coppersmith-Halevi-Jutla (1999)]

– recovery of private key for Rabin-Williams variants 

[Joye-Quisquater (1999)][Joye-Quisquater (1999)]



Integer Relations Method

• What if the equation

µµµµ(M) = f(t) ∏∏∏∏ µµµµ(M )^ααααµµµµ(M) = f(t) ∏∏∏∏ µµµµ(Mi)^ααααi
could be solved without factoring?could be solved without factoring?

• Effective for weak µµµµ:
– ISO 9796-1 with three chosen messages [Grieu (1999)]– ISO 9796-1 with three chosen messages [Grieu (1999)]



Reduction Proofs

• A reduction proof shows that inverting the 

function f “reduces” to signature forgery: given a function f “reduces” to signature forgery: given a 

forgery algorithm F, one can construct an 

inversion algorithm I

• “Provable security”:

– inversion hard →→→→ forgery hard– inversion hard →→→→ forgery hard

• “Tight” proof closely relates hardness of 

problemsproblems



Random Oracle Model

• In the random oracle model, certain functions are 

considered “black boxes”: forgery algorithm considered “black boxes”: forgery algorithm 

cannot look inside

– e.g., hash functions

• Model enables reduction proofs for generic 

forgery algorithms — inversion algorithm embeds forgery algorithms — inversion algorithm embeds 

input to be inverted in oracle outputs

• Multiplicative property can enhance the proof• Multiplicative property can enhance the proof



Part III: Example Part III: Example 

Signature SchemesSignature Schemes



Overview

• Several popular approaches to RSA signatures

• Approaches differ primarily in the mapping µµµµ• Approaches differ primarily in the mapping µµµµ

• Some differences also in key generation

• Some also support Rabin-Williams (even 

exponent) signaturesexponent) signatures

• There are many other signature schemes based 

on factoring (e.g., Fiat-Shamir, GQ, Micali, GQ2); on factoring (e.g., Fiat-Shamir, GQ, Micali, GQ2); 

focus here is on those involving the RSA function



Schemes with Appendix

• Basic scheme

• ANSI X9.31• ANSI X9.31

• PKCS #1 v1.5

• Bellare-Rogaway FDH

• Bellare-Rogaway PSS• Bellare-Rogaway PSS



Basic Scheme

• µµµµ(M) = Hash(M) 

• Pedagogical design• Pedagogical design

• Insecure against multiplicative forgery for typical 

hash sizes

• (Hopefully) not widely deployed• (Hopefully) not widely deployed



ANSI X9.31
(Digital Signatures Using Reversible Public-Key (Digital Signatures Using Reversible Public-Key 

Cryptography for the Financial Services Industry, 1998)

• µµµµ(M) = 6b bb … bb ba || Hash(M) || 3x cc

where x = 3 for SHA-1, 1 for RIPEMD-160where x = 3 for SHA-1, 1 for RIPEMD-160

• Ad hoc design

• Resistant to multiplicative forgery

– some moduli are more at risk, but still out of range– some moduli are more at risk, but still out of range

• Widely standardized

– IEEE P1363, ISO/IEC 14888-3

– US NIST FIPS 186-1

• ANSI X9.31 requires “strong primes”



PKCS #1 v1.5
(RSA Encryption Standard, 1991)(RSA Encryption Standard, 1991)

• µµµµ(M) = 00 01 ff … ff 00 || HashAlgID || Hash(M)

• Ad hoc design• Ad hoc design

• Resistant to multiplicative forgery

– moduli near 2k are more at risk, but still out of range

• Widely deployed• Widely deployed

– SSL certificates

– S/MIME– S/MIME

• To be included in IEEE P1363a; PKCS #1 v2.0 

continues to support itcontinues to support it



ANSI X9.31 vs. PKCS #1 v1.5

• Both are deterministic

• Both include a hash function identifier• Both include a hash function identifier

• Both are ad hoc designs

– both resist [CNS99]/[CHJ99] attacks

• Both support RSA and RW primitives• Both support RSA and RW primitives

– see IEEE P1363a contribution on PKCS #1 signatures 

for discussionfor discussion

• No patents have been reported to IEEE P1363 or 

ANSI X9.31 for these mappingsANSI X9.31 for these mappings



Bellare-Rogaway FDH
(Full Domain Hashing, ACM CCCS ’93)(Full Domain Hashing, ACM CCCS ’93)

• µµµµ(M) = 00 || Full-Length-Hash(m)

• Provably secure design• Provably secure design

• To be included in IEEE P1363a



Bellare-Rogaway PSS
(Probabilistic Signature Scheme, Eurocrypt ’96)(Probabilistic Signature Scheme, Eurocrypt ’96)

• µµµµ(M) = 00 || H || G(H) ⊕⊕⊕⊕ [salt || 00 … 00]

where H = Hash(salt, M), salt is random, and G is where H = Hash(salt, M), salt is random, and G is 

a mask generation function

• Provably secure design

• To be included in IEEE P1363a; ANSI X9.31 to be • To be included in IEEE P1363a; ANSI X9.31 to be 

revised to include it

Note: The format above is as specified in PKCS #1 v2.1 

d1, and is subject to change.d1, and is subject to change.



FDH vs. PSS

• FDH is deterministic, PSS is probabilistic

• Both provably secure• Both provably secure

– same paradigm as Optimal Asymmetric Encryption 

Padding (OAEP)Padding (OAEP)

• PSS has tighter security proof, is less dependent 

on security of hash functionon security of hash function

• PSS-R variant supports message recovery, partial • PSS-R variant supports message recovery, partial 

message recovery

• PSS is patent pending (but generously licensed)• PSS is patent pending (but generously licensed)



Schemes with Message Recovery

• Basic scheme

• ISO/IEC 9796-1• ISO/IEC 9796-1

• ISO/IEC 9796-2

• Bellare-Rogaway PSS-R



Basic Scheme

• µµµµ(M) = M

• Another pedagogical design (“textbook RSA”)• Another pedagogical design (“textbook RSA”)

• Insecure against various forgeries, including 

σσσσexistential forgery (M = f(σσσσ))

• Again, hopefully not widely deployed• Again, hopefully not widely deployed



ISO/IEC 9796-1
(Digital Signature Scheme Giving Message Recovery, 1991)(Digital Signature Scheme Giving Message Recovery, 1991)

• µµµµ(M) = s*(ml-1) s’(ml-2) ml-1 ml-2

s(ml-3) s(ml-4) ml-3 ml-4 ...s(ml-3) s(ml-4) ml-3 ml-4 ...

s(m3) s(m2) m3 m2

s(m1) s(m0) m0 61 0 0

where mi is the ith nibble of M and s*, s’ and s are 

fixed permutationsfixed permutations

• Ad hoc design with significant rationale

• Not resistant to multiplicative forgery [CHJ99], 

[Grieu 1999][Grieu 1999]

– may still be appropriate if applied to a hash value

• Moderately standardized• Moderately standardized



ISO/IEC 9796-2
(Digital Signature Scheme Giving Message Recovery —(Digital Signature Scheme Giving Message Recovery —

Mechanisms Using a Hash Function, 1997)

• µµµµ(M) = 4b bb bb …  bb ba || M || Hash(M) || bc

or 6a || M’ || Hash(M) || bcor 6a || M’ || Hash(M) || bc

where M’ is part of the message

– this assumes modulus length is multiple of 8– this assumes modulus length is multiple of 8

– general format allows hash algorithm ID

• Ad hoc design

– hash provides some structure

• Not resistant to multiplicative forgery if hash 

value is 64 bits or less [CNS99]value is 64 bits or less [CNS99]

– may still be appropriate for larger hash values

• Newly standardized• Newly standardized



Bellare-Rogaway PSS-R
(Probabilistic Signature Scheme with Recovery, 1996)(Probabilistic Signature Scheme with Recovery, 1996)

• µµµµ(M) = 00 || H || G(H) ⊕⊕⊕⊕ [salt || 00 … 01 || M]

where H = Hash(salt, M), salt is random, and G is where H = Hash(salt, M), salt is random, and G is 

a mask generation function

• Provably secure design

• To be included in IEEE P1363a; ISO/IEC 9796-2 to • To be included in IEEE P1363a; ISO/IEC 9796-2 to 

be revised to include it

Note: The format above is as specified in IEEE P1363a D1, 

and is subject to change.and is subject to change.



Part IV: Standards Part IV: Standards 

StrategyStrategy



Standards vs. Theory vs. Practice

• ANSI X9.31 is widely standardized

• PSS is widely considered secure• PSS is widely considered secure

• PKCS #1 v1.5 is widely deployed

• How to harmonize?• How to harmonize?

• (Related question for signature schemes with • (Related question for signature schemes with 

message recovery)



Challenges

• Infrastructure changes take time

– particularly on the user side– particularly on the user side

• ANSI X9.31 is more than just another encoding 

method, also specifies “strong primes”method, also specifies “strong primes”

– a controversial topic

• Many communities involved

– formal standards bodies, IETF, browser vendors, 

certificate authoritiescertificate authorities



Prudent Security

• What if a weakness were found in ANSI X9.31 or 

PKCS #1 v1.5 signatures?PKCS #1 v1.5 signatures?

– no proof of security, though designs are well motivated, 

supported by analysis

– would be surprising — but so were vulnerabilities in 

ISO/IEC 9796-1,-2

• PSS embodies “best practices,” prudent to 

improve over timeimprove over time



Proposed Strategy

• Short term (1-2 years): Support both PKCS #1 

v1.5 and ANSI X9.31 signatures for v1.5 and ANSI X9.31 signatures for 

interoperability

– e.g., in IETF profiles, FIPS validation

• NIST intends to allow PKCS #1 v1.5 in FIPS 186-2 for 

an 18-month transition period

• Long term (2-5 years): Move toward PSS

– not necessarily, but perhaps optionally with “strong – not necessarily, but perhaps optionally with “strong 

primes”

– upgrade in due course — e.g., with AES algorithm, new – upgrade in due course — e.g., with AES algorithm, new 

hash functions



Standards Work

• IEEE P1363a will include PSS, PSS-R

– also FDH, PKCS #1 v1.5 signatures– also FDH, PKCS #1 v1.5 signatures

• PKCS #1 v2.1 d1 includes it

• ANSI X9.31 will be revised to include PSS

• ISO/IEC 9796-2 will be revised to include PSS-R• ISO/IEC 9796-2 will be revised to include PSS-R

• Coordination is underway



Conclusions

• Several signature schemes based on RSA 

algorithmalgorithm

– varying attributes: standards, theory, practice

• Recent forgery results on certain schemes, • Recent forgery results on certain schemes, 

security proofs on others

• PSS a prudent choice for long-term security, • PSS a prudent choice for long-term security, 

harmonization of standards


