flows <- read.csv("gn2-flows-10ge.data", col.names=c("source","dest","proto","sip","dip","sport","dport","packets","bytes")) cor(flows[flows$proto=="TCP",4:9]) tcp <- flows[flows$proto=="TCP",4:9] summary(tcp) tcp.pca <- princomp(tcp, cor=T) tcp.pca plot(tcp.pca) loadings(tcp.pca) scores(tcp.pca) tcp.pc <- predict(tcp.pca) plot(tcp.pc[,1:2]) pary <- read.table("adragr.data", col.names=c("source", "dest", "sip", "dip", "bytes")) akamai <- pary[pary$source=="195.113.232.88", c(2,4,5)] akamai.dist <- dist(akamai[,2:3]) akamai.dend <-hclust(akamai.dist, method="average") plot(akamai.dend)