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Chapter 7: Digital signatures Chapter 7: Digital signatures 

Digital signatures are one of the most important inventions/applications  of modern 
cryptography.

The problem is how can a user sign a message such that everybody (or the 
intended addressee only) can verify the digital signature and the signature is good 
enough also for legal purposes.
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Example: Assume that each user A uses a public-key cryptosystem (eA,dA).

Signing a message w by a user A, so that any user can verify the signature;

dA(w)

Signing a message w by a user A so that only user B can verify the signature;

eB(dA(w))

Sending a message w, and a signed message digest of w, obtained by using a 
hash function h:

(w, dA(h(w)))

Example Assume Alice succeeds to factor the integer  Bob used, as modulus, to 
sign his will, using RSA, 20 years ago. Even  the key has already expired, Alice can 
rewrite Bob's will, leaving fortune to her, and date it 20 years ago.

Moral: It may pay of to factor a single integers using many years of many 
computers power.
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DDigital signatures igital signatures –– basic goalsbasic goals

Digital sigantures should be such that each user should be able to verify signatures 

of other users, but that should give him/her no information how to sign a  message 

on behind of other users.

An important difference from a handwritten signature is that digital signature of a 

message is always intimately connected with the message, and for different 

messages is different, whereas the handwritten signature is adjoined to the message

and always looks the same.

Technically, a digital signature signing is performed by a signing algorithm and a 

digital signature it is verified by a verification algorithm.

A copy of a digital (classical) signature is identical (usually distinguishable) to (from) 

the origin. A care has therefore to be made that a classical signature is not misused.

This chapter contains some of the main techniques for design and verification of 

digital signatures (as well as some attacks to them).
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Digital signaturesDigital signatures

If only signature (but not the encryption of the message) are of importance, then it 
suffices that Alice sends to Bob

(w, dA(w))

Caution: Signing a message w by A for B by

eB(dA(w))

is O.K., but the symmetric solution, with encoding first:

c = dA(eB(w))

is not good.
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An active enemy, the tamperer, can intercept the message, then can compute

dT(eA(c)) = dT(eB(w))

and can  send the outcome  to Bob, pretending that it is from him/tamperer (without 
being able to decrypt/know the message).

Any public-key cryptosystem in which the plaintext and cryptotext spaces are the 
same can be used for digital signature.
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Digital Signature Schemes IDigital Signature Schemes I

Digital signatures are basic tools for authentication and non­reputation of messages.

A digital signature scheme allows anyone to verify signature of any sender S without 

providing any information how to generate signatures of S.

A Digital Signature Scheme (M, S, Ks, Kv) is given by: 

– M ­ a set of messages to be signed 

– S ­ a set of possible signatures

– Ks ­ a set of private keys for signing

– Kv ­ a set of public keys for verification

Moreover, it is required that:

– For each k from Ks, there exists a single and easy to compute signing mapping

sigk: {0,1}* x M  S

– For each k from Kv there exists a single and easy to compute verification 

mapping  

verk: M x S  {true, false}

such that the following two conditions are satisfied:
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Digital Signature Schemes IIDigital Signature Schemes II

Correctness: 

For each message m from M and public key k in Kv, it holds

verk(m, s) = true

if there is an r from {0, 1}* such that

s = sigl(r, m)

for a private key l from Ks corresponding to the public key k .

Security:

For any w from M and k in Kv , it is computationally infeasible, without the 

knowledge of the private key corresponding to k, to find a signature s

from S such that verk(w, s) = true.
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Attacks on digital signatures

Total break of a signature scheme: The adversary manages to recover 

the secret key from the public key.

Universal forgery: The adversary can derive from the public key an 

algorithm which allows to forge the signature of any message.

Selective forgery: The adversary can derive from the public key a 

method to forge signatures  of selected messages (where selection 

was made prior the knowledge of the public key).

Existential forgery: The adversary is able to create from the public key 

a valid signature of a message m (but has no control for which m).
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A digital signature of one bitA digital signature of one bit

Let us start with a very simple but much illustrating (though non-practical) 

example how to sign a single bit.

Design of the signature scheme:

A one-way function f(x) is chosen.

Two integers k0 and k1 are chosen, by signer, kept secret, and items

f, (0, s0), (1, s1)

are made public, where 

s0 = f (k0), s1 = f (k1)
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Signature of  a bit b:

(b, kb).

Verification of such a signature

sb = f (kb)

SECURITY?
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RSA signatures and their attacksRSA signatures and their attacks

Let us have an RSA cryptosystem with encryption and decryption exponents e

and d and modulus n.

Signing of a message w:

Verification of a signature
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Attacks

• It might happen that Bob accepts a signature not produced by Alice. Indeed,

let Eve, using Alice's public key, compute we and say that (we, w) is a message 

signed by Alice.

Everybody verifying Alice's signature gets we = we.

• Some new signatures can be produced without knowing the secret key.

Indeed, is and are signatures for w1 and w2, then          and are 

signatures for w1w2 and w1
-1.
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ENCRYPTION versus SIGNATUREENCRYPTION versus SIGNATURE

Let each user U uses a cryptosystem with encryption and decryption 

algorithms: eU, dU

Let w be a message

PUBLIC-KEY ENCRYPTIONS

Encryption: eU (w)

Decryption: dU (eU (w))
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PUBLIC-KEY SIGNATURES

Signing: dU (w) 

Verification of the signature: eU (dU (w))
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DIGITAL SIGNATURE SYSTEMSDIGITAL SIGNATURE SYSTEMS –– simplified versionsimplified version

A digital signature system (DSS) consists:

• P - the space  of possible plaintexts (messages).

• S - the space  of possible signatures.

• K - the space of possible keys.

• For each k  K there is a signing algorithm sigk  Sa and a corresponding 

verification algorithm verk  V such that

- sigk : P  S.

- verk : P  S  {true, false}

and

verk (w,s) =   true, if s = sig (w);

false, otherwise.

Algorithms sigk and verk should be computable in polynomial time.

Verification algorithm can be  publically known; signing algorithm (actually only its 

key) should be kept secret.
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FROM PKC to DSSFROM PKC to DSS -- againagain

Any public-key cryptosystem in which the plaintext and cryptotext space are

the same, can be used for digital signature.

Signing of  a message w by a user A so that any user can verify the signature:

dA (w).
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Signing of  a message w by a user A so that only user B can verify the 

signature;

eB (dA (w)).

Sending of a message w and a signed message digest of w obtained by using 

a (standard) hash function h:

(w, dA (h (w))).

If only signature (but not the encryption of the message) are of importance, 

then it suffices that Alice sends to Bob

(w, dA (w)).
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ElGamal signaturesElGamal signatures

Design of the ElGamal digital siganture system: choose: prime p, integers 1  q  x  p, where 
q is a primitive element of Zp*;

Compute: y = q x mod p

key K = (p, q, x, y)

public key (p, q, y) - trapdoor: x
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Signature of a message w: Let r  Z p-1* be randomly chosen and kept secret.

sig(w, r) = (a, b),

where a = q r mod p

and b = (w - xa)r -1 (mod (p –1)).

Verification: accept a signature (a,b) of w as valid if

yaab  qw (mod p)

(Indeed: yaab  qaxqrb  qax + w – ax + k(p -1)  qw (mod p))
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ElGamal signaturesElGamal signatures -- exampleexample

Example choose: p = 11, q = 2, x = 8

compute: y = 28 mod 11 = 3

Signing of w = 5 as (a,b), where  a = qr mod p, w=xa+rb mod (p-1)

choose r = 9 – (this choice is O.K. because gcd(9, 10) = 1)

compute a = 29 mod 11 = 6

solve equation: 5  8 · 6 + 9b (mod 10)

that is  7  9b (mod 10)  b=3

signature: (6, 3)

Note: equation that has to be solved: w= xa+rb mod (p-1).
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Security of ElGamal signaturesSecurity of ElGamal signatures

Let us analyze several ways an eavesdropper Eve can try to forge ElGamal 
signature (with x - secret; p, q and y = q x mod p - public):

sig(w, r) = (a, b);

where r is random and a = q r mod p; b = (w - xa)r –1 (mod p –1).

1. First suppose Eve tries to forge signature for a new message w, without
knowing x.

• If Eve first chooses a value a and tries to find the corresponding b, it has to 
compute the discrete logarithm

lg a q w y -a,

because a b  q r (w - xa) r^(-1)  q w - xa  q w y -a. 

• If Eve first chooses b and then tries to find a, she has to solve the equation

y a a b  q xa q rb  q w (mod p).

It is not known whether this equation can be solved for any given b efficiently.
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2. If Eve chooses a and b and tries to determine such w that (a,b) is signature of 
w, then she has to compute discrete logarithm

lg q y a a b.

Hence, Eve can not sign a “random” message this way.
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Forging and misusing of ElGamal signaturesForging and misusing of ElGamal signatures

There are ways how to produce, using ElGamal signature scheme, some valid

forged signatures, but they do not allow an opponent to forge signatures on 

messages of his/her choice.

For example, if 0 i, j  p -2 and gcd(j, p -1) = 1, then for

a = q i y j mod p; b = -aj -1 mod (p -1); w = -aij -1 mod (p -1)

the pair

(a, b) is a valid signature of the message w.

This can be easily shown by checking the verification condition.

There are several ways ElGamal signatures can be broken if they are used not 

carefully enough.

For example, the random r used in the signature should be kept secret. Otherwise 

the system can be broken and signatures forged. Indeed, if r is known, then x can 

be computed by

x = (w - rb) a -1 mod (p -1)

and once x is known Eve can forge signatures at will.

Another misuse of the ElGamal signature system is to use the same r to sign two 

messages. In such a case x can be computed and system can be broken.
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Digital Signature StandardDigital Signature Standard

In December 1994, on the proposal of the National Institute of Standards and 

Technology,  the following Digital Signature Algorithm (DSA) was accepted as a  

standard.
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1r

Design of DSA
1. The following global public key components are chosen:

• p - a random l-bit prime, 512  l  1024,  l = 64k. 

• q - a random 160-bit prime dividing p -1.

• r = h (p –1)/q mod p, where h is a random primitive element of Zp, such that r>1                         

(observe that r is a q-th root of 1 mod p).

2. The following user's private key components are chosen: 

• x - a random integer (once), 0 < x < q, 

• y = r x mod p.

3. Key is K = (p, q, r, x, y)
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Digital Signature StandardDigital Signature Standard

Signing and Verification

Signing of a 160-bit plaintext w

• choose random 0 < k < q such that gcd(k, q) = 1

• compute a = (r k mod p) mod q

• compute b = k -1(w + xa) mod q where kk -1  1 (mod q)

• signature: sig(w, k) = (a, b)
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Verification of signature (a, b)

• compute z = b -1 mod q

• compute u1 = wz mod q,

u2 = az mod q

verification:

ver K(w, a, b) = true <=> (r u1y u2 mod p) mod q = a
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From ElGamal to DSAFrom ElGamal to DSA

DSA is a modification of ElGamal digital signature scheme. It was proposed in 
August 1991 and adopted in December 1994.
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Any proposal for digital signature standard has to go through a very careful 
scrutiny. Why?

Encryption of a message is usually done only once and therefore it usually suffices 
to use a cryptosystem that is secure at the time of the encryption.

On the other hand, a signed message could be a contract or a will and it can 
happen that it will be needed to verify a signature many years after the message 
is  signed.

Since ElGamal signature is no more secure than discrete logarithm, it is necessary 
to use large p, with at least 512 bits.

However, with ElGamal this would lead to signatures with at least 1024 bits what is 
too much for such applications as smart cards.

In DSA a 160 bit message is signed using 320-bit signature, but computation is 
done modulo with 512-1024 bits.

Observe that y and a are also q-roots of 1. Hence any exponents of r,y and a can 
be reduced module q without affecting the verification condition.

This allowed to change ElGamal verification condition: y a a b = q w.



19Digital signatures

FiatFiat--Shamir signature schemeShamir signature scheme

Choose primes p, q, compute n = pq and choose:

as public key v1,…,vk and compute secret key

Protocol for Alice to sign a message w:

(1) Alice chooses t random integers 1  r1,…,rt < n, computes x i= ri
2 mod n, 1  i  t. 
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(2) Alice uses a publically known hash function h to compute

H=h(wx1x2… xt)

and then uses first kt bits of H, denoted as bij, 1  i  t, 1  j  k as follows.

(3) Alice computes y 1,…,y t

(4) Alice sends to Bob w, all bij all y i and also h                                                                          
{ Bob already knows Alice's public key      v 1,…,v k } 

(5) Bob computes z 1,…,z k

and verifies that the first k  t bits of h(wx1x2… xt) are the bij values that Alice has 
sent to him.

Security of this signature scheme is 2 -kt.

Advantage over the RSA-based signature scheme: only about 5% of modular 
multiplications are needed.



20Digital signatures

Sad story

Alice and Bob got to jail – and, unfortunately, to different

jails.

Walter, the warden, allows them to communicate by

network, but he will not allow that their messages are 

encrypted.

Problem: Can Alice and Bob set up a subliminal channel, 

a covert communications channel between them, in full 

view of Walter, even though the messages themselves 

that they exchange contain no secret information?
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Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate  h = k -2 mod n = (k -1) 2 mod n.

Public key: h, n

Trapdoor information: k

Let secret message Alice wants to send be w (it has to be such that gcd(w, n) =1)

Denote a harmless  message she uses by w ' (it has to be such that gcd(w ',n) = 1)

Signing by Alice:

Signature: (S 1, S 2). Alice then sends to Bob (w ', S 1, S 2)

Signature verification by Walter: w ' = S 1
2 – hS 2

2 (mod n)

Decryption by Bob:

OngOng--SchnorrSchnorr--Shamir subliminal channel schemeShamir subliminal channel scheme

Story Alice and Bob are in different jails. Walter, the warden, allows them to communicate by 

network, but he will not allow messages to be encrypted. Can they set up a subliminal 

channel, a covert communications channel between them, in full view of Walter, even though 

the messages themselves contain no secret information?
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OneOne--time signaturestime signatures

Lamport signature scheme shows how to construct a signature scheme for one use 

only from any one-way function.

Let k be a positive integer and let P = {0,1}k be the set of messages.

Let f:Y  Z be a one-way function where Y is a set of` ”signatures''.

For 1  i  k, j = 0,1 let yijY be chosen randomly and zij = f (yij).

The key K consists of  2k y's and z's. y's are secret, z's are public.
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Signing of a message x = x 1… x k  {0,1} k

sig(x 1… x k) = (y 1,x1,…, y k,xk) = (a 1,…, a k) - notation

and 

ver K(x 1… x k, a 1,…, a k) = true <=> f(a i) = z i,xi, 1 i  k

Eve cannot forge a signature  because she is unable to invert one-way functions.

Important note: Lampert signature scheme can be used to sign only one message.
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Undeniable signatures I

Undeniable signatures are  signatures that have two properties:

• A signature can be verified only at the cooperation with the signer –

by means of a challenge-and-response protocol.

• The signer cannot deny a correct signature. To achieve that, steps 

are a part of the protocol that force the signer to cooperate – by 

means of a disavowal protocol – this protocol makes possible to 

prove the invalidity of a signature and to show that it is a forgery. (If 

the signer refuses to take part in the disavowal protocol, then the  

signature is considered to be genuine.)

Undeniable signature protocol of Chaum and van Antwerpen (1989), 

discussed next, is again based on infeasibility of the computation of 

the discrete logarithm.
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Undeniable signaturesUndeniable signatures IIII

Undeniable signatures consist:

• Signing algorithm

• Verification protocol, that is a challenge-and-response protocol.

In this case it is required that a signature cannot be verified without a cooperation 
of the signer (Bob).

This protects Bob against the possibility that documents signed by him are 
duplicated and distributed without his approval.

• Disavowal protocol, by which Bob can prove that a signature is a forgery.

This is to prevent Bob from disavowing a signature he made at an earlier time.
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Chaum-van Antwerpen undeniable signature schemes (CAUSS)

• p, r are primes p = 2r + 1

• q  Zp* is of order r;

• 1  x  r -1, y = q x mod p;

• G is a multiplicative subgroup of Zp* of order q (G consists of quadratic residues 
modulo p).

Key space: K = {p, q, x, y }; p, q, y are public, x € G is secret.

Signature: s = sig K (w) = w x mod p.
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Disallowed protocol

Basic idea: After receiving a signature s Alice initiates two independent and 
unsuccessful runs of the verification protocol. Finally, she performs a “consistency 
check'' to determine whether Bob has formed his responses according to the 
protocol.

• Alice chooses e1, e2 Zr*.

• Alice computes c = se1ye2 mod p and sends it to Bob.

• Bob computes d = cx^(-1) mod r mod p and sends it to Alice.

• Alice verifies that d  w e1q e2 (mod p).

• Alice chooses f1, f2 Zr*.

• Alice computes C = s f1y f2 mod p and sends it to Bob.

• Bob computes D = Cx^(-1) mod r mod p and sends it to Alice.

Fooling and Disallowed protocolFooling and Disallowed protocol

Since it holds:

Theorem If s  w x mod p, then Alice will accept s as a valid signature for w with 
probability 1/r.

Bob cannot fool Alice except with very small probability and security is 
unconditional (that is, it does not depend on any computational assumption).
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CONCLUSIONS
It can be shown:

Bob can convince Alice that an invalid signature is a forgery. In order to that it is 

sufficient to show that if s  w x, then

(dq -e2) f1  (Dq -f2) e1 (mod p)

what can be done using congruency relation from the design of the signature 

system and from the disallowed protocol.

Bob cannot make Alice believe that a  valid signature is a forgery, except with a 

very small probability.

• Alice verifies that D  w f1q f2 (mod p).

• Alice concludes that s is a forgery iff

(dq -e2) f1  (Dq -f2) e1 (mod p).

Fooling and Disallowed protocolFooling and Disallowed protocolIV054
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Signing of fingerprintsSigning of fingerprints

Signatures scheme presented so far allow to sign only "short" messages. For 

example, DSS  is used to sign 160 bit messages (with 320-bit signatures).

A naive solution is to break long message into a sequence of shortones and to sign 

each block separately.

Disadvantages: signing is slow and for long signatures integrity is not protected.

The solution is to use fast public hash functions h which maps a message of any 

length to a fixed length hash. The hash is then signed.

Example:

message w arbitrary length

message digest z = h (w) 160bits

El Gamal signature   y = sig(z) 320bits

If Bob wants to send a signed message w he sends (w, sig(h(w)).
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CollisionCollision--free hash functions revisitedfree hash functions revisited

For a hash function it is necessary to be good enough for creating fingerprints that
do not allow various forgeries of signatures.

Example 1, Eve starts with a valid signature (w, sig(h(w))), computes h(w) and tries
to find w ' such that h(w) = h(w '). Would she succeed, then

(w ', sig(h(w)))

would be a valid signature, a forgery.

In order to prevent the above type of attacks, and some other, it is required that a 
hash function h satisfies the following collision-free property.
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Definition A hash function h is strongly collision-free if it is computationally 

infeasible to find messages w and w ' such that h(w) = h(w ').

Example 2: Eve computes a  signature y on a random fingerprint z and then find an 

x such that z = h(x). Would she succeed (x,y) would be a valid signature.

In order to prevent the above attack, it is required that in signatures we use one-

way hash functions.

It is not difficult to show that for hash-functions (strong) collision-free property 

implies the one-way property.
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TimestampingTimestamping

There are various ways that a digital signature can be compromised.

For example: if Eve determines the secret key of Bob, then she can forge 
signatures of any Bob‟s message she likes. If thisthis happens,  authenticity of all 
messages signed by Bob before Eve got the secret key is to be questioned.

The key problem is that there is no way to determine when a message was signed.

A timestamping should provide  proof that a message was signed at a certain time.

IV054

A method for timestamping of signatures: 

In the following pub denotes some publically known information that could not be 
predicted before the day of the signature (for example, stock-market data).

Timestamping by Bob of  a signature on a message w, using a hash functionusing a hash function h.

• Bob computes z = h(w);

• Bob computes z „ = h(z || pub);

• Bob computes y = sig(z ');

• Bob publishes (z, pub, y) in the next days's newspaper.

It is now clear that signature was not be done after triple (z, pub, y) was published,
but also not before the date pub was known.
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Blind signatures

The basic idea is that  Sender makes  Signer to sign a message m

without Signer knowing m, therefore blindly – this is needed in         

e-commerce.

Blind signing can be realized by a two party protocol, between the 

Sender and the Signer, that has the following properties.

• In order to sign (by a Signer) a message m, the Sender computes, 

using a blinding procedure, from m an m* from which m can not be 

obtained without knowing a secret, and sends m* to the  Signer.

• The Signer signs m* to get a signature sm* (of m*) and sends sm* to 

the Sender. Signing is done in such a way that the Sender can 

afterwards compute, using an unblinding procedure, from Signer‟s 

signature sm* of m* -- the signer signature sm of m.
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Chum’s  blind signatures

This blind signature protocol combines RSA with blinding/unblinding features.

Bob‟s RSA public key is (n,e) and his private key is d. 

Let m be a message, 0 < m < n,

PROTOCOL:

• Alice chooses a random 0 < k < n with gcd(n,k)=1.

• Alice computes m* = mke (mod n) and sends it to Bob (this way Alice blinds the 

message m).

• Bob computed s* = (m*)d(mod n) and sends s* to Alice (this way Bob signs the 

blinded message m*).

• Alice computes s =k-1s*(mod n) to obtain Bob‟s signature md of m (Alice performs 

unblinding of m*).

Verification is equivalent to that of the RSA signature scheme.
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Fail-then-stop signatures

They are signatures schemes that use a trusted authority and provide ways to 

prove, if it is the case, that a powerful enough adversary is around who could 

break the signature scheme and therefore its use should be stopped.

The scheme is maintained by a trusted authority that chooses a secret key for each 

signer, keeps them secret, even from the signers themselves, and announces 

only the related public keys.

An important idea is that signing and verification algorithms are enhanced by

a so-called proof-of-forgery algorithm. When the signer see a forged signature he 

is able to compute his secret key and by submitting it to the trusted authority to 

prove the existence of a forgery and this way to achieve that any further use of 

the signature scheme is stopped.

So called Heyst-Pedersen Scheme is an example of a Fail-Then-Stop siganture

Scheme.
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Digital signatureDigital signaturess withwith encryptionencryption and resendingand resending

1. Alice signs the message: sA(w). 
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2. Alice encrypts the signed message: eB(sA(w)).

3. Bob decrypt the signed message: dB(eB(sA(w))) = sA(w).

4. Bob verifies signature and recovers the message vA(sA(w)) = w.

Resending the message as a receipResending the message as a receiptt

5. Bob signs and encrypts the message and sends to Alice eA(sB(w)).

6. Alice decrypts the message and verifies the signature.

Assume now: vx = ex, sx = dx for all users x.
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AA surprisingsurprising attackattack to the previous schemeto the previous scheme

1. Mallot intercept eB(sA(w)).

IV054

2. Later Mallot sends eB(sA(w)) to Bob pretending it is from him (from Mallot).

3. Bob decrypts and “verifies” the message by computing

eM(dB(eB(dA(w)))) = eM(dA(w)) - a garbage.

4. Bob goes on with the protocol and reterns Mallot the receipt:

eM(dB(eM(dA(w))))

5. Mallot can then get w.

Indeed, Mallot can compute           eA(dM(eB(dM(eM(dB(eM(dA(w)))))))) = w.
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A MANA MAN--ININ--THETHE--MIDDLEMIDDLE attackattack

Consider the following protocol:

1. Alice sends Bob the pair (eB(eB(w)A), B) to B.

2. Bob uses dB to get A and w, and acknowledges by sending the pair (eA(eA(w)B),
A) to Alice.

(Here the function e and d are assumed to operate on numbers, names A,B,…  
are sequences of digits and eB(w)A is a sequence of digitals obtained by 
concatenating eB(w) and A.)
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What can an active eavesdropperWhat can an active eavesdropper CC do?do?

• C can learn (eA(eA(w) B), A) and therefore eA(w'), w „ = eA(w)B. 

• C can now send to Alice the pair (eA(eA(w ') C), A).

• Alice, thinking that this is the step 1 of the protocol, acknowledges by sending the 
pair (eC(eC(w ') A), C) to C. 

• C is now able to learn w ' and therefore also eA(w).

• C now sends to Alice the pair (eA(eA(w) C), A).

• Alice acknowledges by sending the pair (eC(eC(w) A), C). 

• C is now able to learn w.
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Probabilistic signature schemesProbabilistic signature schemes -- PSSPSS

Let us have integers k, l, n such that k+l< n, a permutation

a pseudorandom bit generator

and a hash function

h: {0,1}*  {0,1} l.

The following PSS scheme is applicable to messages of arbitrary length.
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 ,1,0  ,: nDDDf 

            wGwGwG klnkl
21 ,   ,1,01,01,0:  

Signing: of a message w  {0,1}*.

1. Choose random r  {0,1} k and compute m = h (w || r).

2. Compute G(m) = (G1(m), G2(m)) and y = m || (G1(m)  r) || G2(m).

3. Signature of w is  = f -1(y).

Verification of a  signed message (w, ).

• Compute f() and decompose f() = m || t || u, where |m| = l, |t| = k and |u| = n -

(k+l).

• Compute r = t  G1(m).

• Accept signature  if h(w || r) = m and G2(m) = u; otherwise reject it.



37Digital signatures

Authenticated DiffieAuthenticated Diffie--Hellman key exchangeHellman key exchange

Let each user U have a signature algorithm sU and a verification algorithm vU.

The following protocol allows Alice and Bob to establish a key K to use with an 

encryption function eK and to avoid the man-in-the-middle attack.

1. Alice and Bob choose large prime p and a generator  q  Zp*.
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2. Alice chooses a random x and Bob chooses a random y.

3. Alice computes q x mod p, and Bob computes q y mod p.

4. Alice sends q x to Bob.

5. Bob computes K = q xy mod p.

6. Bob sends q y and eK (sB (q y, q x)) to Alice.

7. Alice computes K = q xy mod p.

8. Alice decrypts eK (sB (q y, q x)) to obtain sB (q y, q x).

9. Alice  verifies, using an authority, that vB is Bob's verification algorithm.

10. Alice uses vB to verify Bob's signature.

11. Alice sends eK (sA (q x, q y)) to Bob.

12. Bob decrypts, verifies vA, and verifies Alice's signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.
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Security of digital signatureSecurity of digital signaturess

It is very non-trivial to define security of digital signature.

Definition A chosen message attackchosen message attack is a process by which on an input of a 

verification key one can obtain a signature (corresponding to the given key) to 

a message of its choice.

A chosen message attack is considered to be successful (in so called 

existential forgery) if it outputs a valid signature for a message for which it has 

not requested a signature during the attack.

A signature scheme is secure (or unforgeable) if every feasible chosen 

message attack succeeds with at most negligible probability.
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Treshold Signature SchemesTreshold Signature SchemesIV054

The idea of a (t+1, n) treshold signature scheme is to distribute the power of the 

signing operation to (t+1) parties out of n.

A (t+1) treshold signature scheme should satisfy two conditions.

Unforgeability means that even if an adversary corrupts t parties, he still cannot 

generate a valid signature.

Robustness means that corrupted parties cannot prevent uncorrupted parties to 

generate signatures.

Shoup (2000) presented an efficient, non-interactive, robust and unforgeable 

treshold RSA signature schemes.

There is no proof yet whether Shoup‟s scheme is provably secure.
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Digital Signatures Digital Signatures -- ObservationObservation

Can we make digital signatures by digitalizing our usual signature 

and attaching them to the messages (documents) that need to be 

signed?

No, because such signatures could be easily removed and attached 

to some other documents or messages.

Key observation: Digital signatures have to depend not only on the 

signer, but also on the message that is being signed.
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SPECIAL TYPES of DIGITAL SIGNATURESSPECIAL TYPES of DIGITAL SIGNATURESIV054

• Append-Only Signatures (AOS) have the property that any party 
given an AOS signature sig[M1] on message M1   can compute 
sig[M1II M2] for any message M2. (Such signatures are of importance 
in network applications, where users need to delegate their shares of 
resources to other users).

• Identity-Based signatures (IBS) at which the identity of the signer 
(i.e. her email address) plays the role of her public key. (Such 
schemes assume the existence of a TA holding a master public-
private key pair used to assign secret keys to users based on their 
identity.)

• Hierarchically Identity-Based Signatures are such IBS in which 
users are arranged in a hierarchy and a user at any level at the 
hierarchy can delegate secret keys to her descendants based on their 
identities and her own secret keys.
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GROUP SIGNATURESGROUP SIGNATURESIV054

• At Group Signatures (GS) a group member can compute a 

signature that reveals nothing about the signer‟s identity, except that 

he is a member of the group. On the other hand, the group manager 

can always reveal the identity of the signer.

• Hierarchical Group Signatures (HGS) are a generalization of GS 

that allow multiple group managers to be organized  in a tree with the 

signers as leaves. When verifying a signature, a group manager only 

learns to which of its subtrees, if any, the signer belongs.
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Unconditionally secure digital signaturesUnconditionally secure digital signaturesIV054

Any of the digital signature schemes introduced so far can be forged 

by anyone having enough computer power.

Caum and Rojakkers (2001) developed, for any fixed set of users, an 

unconditionally secure signature scheme with the following 

properties:

• Any participant can convince (except with exponentially small 

probability) any other participant that his signature is valid.

• A convinced partipant can convince any other participant of the 

signature‟s validity, without interaction with the original signer.


