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CHAPTER 4:CHAPTER 4: Classical (secretClassical (secret--key) cryptosystemskey) cryptosystems

• In this chapter we deal with some of the very old or quite old 
classical (secret-key or symmetric) cryptosystems that were primarily 
used in the pre-computer era.
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• These cryptosystems are too weak nowadays, too easy to 

break, especially with computers.

• However, these simple cryptosystems give a good illustration 

of several of the important ideas of the cryptography and 

cryptanalysis.

• Moreover, most of them can be very useful in combination with 

more modern cryptosystem - to add a new level of security.
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Cryptology, Cryptosystems Cryptology, Cryptosystems -- secretsecret--key cryptographykey cryptography

Cryptology (= cryptography + cryptoanalysis)

has more than two thousand years of history.
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Basic historical observation

• People have always had fascination with keeping information away from 
others.

• Some people – rulers, diplomats, militaries, businessmen – have always had 
needs to keep some information away from others.

Importance of cryptography nowadays

• Applications:  cryptography is the key tool to make modern information 
transmission secure, and to create secure information society.  

• Foundations: cryptography gave rise to several new key concepts of the 
foundation of informatics: one-way functions, computationally perfect 
pseudorandom generators, zero-knowledge proofs, holographic proofs, 
program self-testing and self-correcting, … 
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Approaches and paradoxes of cryptographyApproaches and paradoxes of cryptography

Sound approaches to cryptography

• Shannon’s approach based on information theory (enemy has not enough 
information to break a cryptosystem)

• Current approach based on complexity theory (enemy has not enough 
computation power to break a cryptosystem).

• Very recent approach based on the laws and limitations of quantum physics

• (enemy would need to break laws of nature to break a cryptosystem).
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Paradoxes of modern cryptography

• Positive results of modern cryptography are based on negative results of 

complexity theory.

• Computers, that were designed originally for decryption, seem to be now 

more useful for encryption.
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Cryptosystems Cryptosystems -- ciphersciphers

The cryptography deals the problem of sending a message (plaintext, 

cleartext), through a insecure channel, that may be tapped by an adversary

(eavesdropper, cryptanalyst), to a legal receiver. 

IV054
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Components of cryptosystems:Components of cryptosystems:IV054

Plaintext-space: P – a set of plaintexts over an alphabet 

Cryptotext-space: C – a set of cryptotexts (ciphertexts) over alphabet  

Key-space: K – a set of keys

Each key k determines an encryption algorithm ek and an decryption 

algorithm dk such that, for any plaintext w, ek (w) is the corresponding cryptotext 

and

or

Note: As encryption algorithms we can use also randomized algorithms. 

wedw kk .wedw kk
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100 100 –– 42 B.C., CAESAR cryptosystem, Shift cipher42 B.C., CAESAR cryptosystem, Shift cipher

CAESAR can be used to encrypt words in any alphabet.                                   

In order to encrypt words in English alphabet we use:
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Key-space: {0,1,…,25}

An encryption algorithm ek substitutes any letter by the 

letter occurring k positions ahead (cyclically) in the 

alphabet.

A decryption algorithm dk substitutes any letter by the one 

occurring k positions backward (cyclically) in the alphabet.
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100 100 –– 42 B.C., CAESAR cryptosystem, Shift cipher42 B.C., CAESAR cryptosystem, Shift cipher

Example e2(EXAMPLE) = GZCOSNG,

e3(EXAMPLE) = HADPTOH,

e1(HAL) = IBM, 

e3(COLD) = FROG

ABCDEFGHIJKLMNOPQRSTUVWXYZ
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Example Find the plaintext to the following cryptotext obtained by the 

encryption with CAESAR with k = ?.

Cryptotext: VHFUHW GH GHXA, VHFUHW GH GLHX, 

VHFUHW GH WURLV, VHFUHW GH WRXV.

Numerical version of CAESAR is defined on the set {0, 1, 2,…, 25} by the 

encryption algorithm:

ek(i) = (i + k) (mod 26)
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POLYBIOUS cryptosystemPOLYBIOUS cryptosystem

for encryption of  words of the English alphabet without J.

Key-space: Polybious checkerboards 5×5 with 25 English letters and with 

rows + columns labeled by symbols.

Encryption algorithm: Each symbol is substituted by the pair of symbols 

denoting the row and the column of the checkerboard in which the symbol is 

placed.

Example:

KONIEC --

Decryption algorithm: ???
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F G H I J

A A B C D E

B F G H I K

C L M N O P

D Q R S T U

E V W X Y Z
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Kerckhoff’s PrincipleKerckhoff’s Principle

The philosophy of modern cryptoanalysis is embodied in the following 

principle formulated in 1883 by Jean Guillaume Hubert Victor Francois 

Alexandre Auguste Kerckhoffs von Nieuwenhof (1835 - 1903).
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The security of a cryptosystem must not depend 

on keeping secret the encryption algorithm. The 

security should depend only on keeping secret the 

key. 
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Requirements for good cryptosystemsRequirements for good cryptosystems

(Sir Francis R. Bacon (1561 - 1626))

1.   Given ek and a plaintext w, it should be easy to compute c = ek(w).
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2.   Given dk and a cryptotext c, it should be easy to compute w = dk(c).

4.   It should be unfeasible to determine w from ek(w) without knowing dk.

5.   The so called avalanche effect should hold: A small change in the plaintext, 

or in the key, should lead to a big change in the cryptotext (i.e. a change of 

one bit of the plaintext should result in a change of all bits of the 

cryptotext, each  with the probability close to 0.5).

6.   The cryptosystem should not be closed under composition, i.e. not for 

every two keys k1, k2 there is a key k such that

ek (w) = ek1 (ek2 (w)).

7.   The set of keys should be very large.

3.   A cryptotext ek(w) should not be much longer than the plaintext w.



11Classical (secret-key) cryptosystems

CryptoanalysisCryptoanalysis

The aim of cryptoanalysis is to get as much information about the plaintext 

or the key as possible.

Main types of cryptoanalytics attack

1.Cryptotexts-only attack. The cryptanalysts get cryptotexts 

c1 = ek(w1),…, cn = ek(wn) and try to infer the key k or as many of the plaintexts 

w1,…, wn as possible.
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2.  Known-plaintexts attack (given are some pairs plaintextcryptotext)

The cryptanalysts know some pairs wi, ek(wi), 1 <= i <= n, and try to infer k, or 

at least wn+1 for a new cryptotext many plaintexts ek(wn+1).

3.  Chosen-plaintexts attack (given are cryptotext for some chosen plaintexts)

The cryptanalysts choose plaintexts w1,…, wn to get cryptotexts ek(w1),…, 

ek(wn), and try to infer k or at least wn+1 for a new cryptotext cn+1 = ek(wn+1).

(For example, if they get temporary access to encryption machinery.)
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CryptoanalysisCryptoanalysis

4.  Known-encryption-algorithm attack

The encryption algorithm ek is given and the cryptanalysts try to get the 

decryption algorithm dk.

IV054

5.  Chosen-cryptotext attack (given are plaintexts for some chosen cryptotexts)

The cryptanalysts know some pairs 

(ci , dk(ci)), 1 i n,

where the cryptotexts ci have been chosen by the cryptanalysts. The aim is to 

determine the key. (For example, if cryptanalysts get a temporary access to 

decryption machinery.) 
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WHAT CAN a BAD EVE DOWHAT CAN a BAD EVE DO??

Let us assume that a clever Alice sends an encrypted message to Bob. 

What can a bad enemy, called usually Eve (eavesdropper), do?

Eve can read (and try to decrypt) the message.

Eve can try to get the key that was used and then decrypt all messages 

encrypted with the same key.

Eve can change  the message sent by Alice into another message, in 

such a way that Bob will have the feeling, after he gets the changed 

message, that it was a message from Alice.

Eve can pretend to be Alice and  communicate with Bob, in such a way 

that Bob thinks he is communicating with Alice.

An eavesdropper can therefore be passive - Eve or active - Mallot.

IV054
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Basic goals of broadly understood cryptographyBasic goals of broadly understood cryptography

Confidentiality: Eve should not be able to decrypt the 

message Alice sends to Bob.

Data integrity: Bob wants to be sure that Alice's message 

has not been altered by  Eve.

Authentication: Bob wants to be sure that only Alice could 

have sent the message he has received.

Non-repudiation: Alice should not be able to claim that she 

did not send messages that she has sent.

Anonymity: Alice does want that Bob finds who send the 

message

IV054
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HILL cryptosystemHILL cryptosystem

The cryptosystem presented in this slide was probably never used. In spite of 
that this cryptosystem played an important role in the history of modern 
cryptography.

We describe Hill cryptosystem or a fixed n and the English alphabet.

Key-space: matrices M of degree n with elements from the set {0, 1,…, 25}
such that M-1 mod 26 exist.

Plaintext + cryptotext space: English words of length n.

Encoding: For a word w let cw be the column vector of length n of the integer 
codes of symbols of w. (A -> 0, B -> 1, C -> 2, …)

Encryption: cc = Mcw mod 26

Decryption: cw = M-1cc mod 26

IV054
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HILL cryptosystemHILL cryptosystem

Example A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Plaintext: w = LONDON

Cryptotext: MZVQRB

Theorem

Proof: Exercise
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SecretSecret--key (symmetric) cryptosystemskey (symmetric) cryptosystems

A cryptosystem is called secret-key cryptosystem if some secret piece of 

information – the key – has to be agreed first between any two parties that 

have, or want, to communicate through the cryptosystem. Example: CAESAR, 

HILL. Another name is symmetric cryptosystem (cryptography).
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Two basic types of secret-key cryptosystems

• substitution based cryptosystems

• transposition based cryptosystems

Two basic types of substitution cryptosystems

• monoalphabetic cryptosystems – they use a fixed substitution –

CAESAR,  POLYBIOUS

• polyalphabetic cryptosystems– substitution keeps changing during  the                

encryption

A monoalphabetic cryptosystem with letter-by-letter substitution is uniquely 

specified by a permutation of letters. (Number of permutations (keys) is 26!)
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SecretSecret--key cryptosystemskey cryptosystems

Example: AFFINE cryptosystem is given by two integers

1 a, b 25, gcd(a, 26) = 1.

Encryption: ea,b(x) = (ax + b) mod 26

Example

a = 3, b = 5, e3,5(x) = (3x + 5) mod 26, 

e3,5(3) = 14, e3,5(15) = 24 - e3,5(D) = 0, e3,5(P) = Y

Decryption: da,b(y) = a-1(y - b) mod 26

IV054

252423222120191817161514131211109876543210

ZYXWVUTSRQPONMLKJIHGFEDCBA
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CrCryyptanalptanalyysissis’s’s

The basic cryptanalytic attack against monoalphabetic substitution cryptosystems 
begins with a frequency count: the number of each letter in the cryptotext is 
counted. The distributions of letters in the cryptotext is then compared with some 
official distribution of letters in the plaintext laguage.

The letter with the highest frequency in the cryptotext is likely to be substitute for 
the letter with highest frequency in the plaintext language …. The likehood grows 
with the length of cryptotext.

Frequency counts in English:

and for other languages:

The 20 most common digrams are (in decreasing order) TH, HE, IN, ER, AN, RE, 
ED, ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS. The six most 
common trigrams: THE, ING, AND, HER, ERE, ENT.
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% % %

E 12.31 L 4.03 B 1.62

T 9.59 D 3.65 G 1.61

A 8.05 C 3.20 V 0.93

O 7.94 U 3.10 K 0.52

N 7.19 P 2.29 Q 0.20

I 7.18 F 2.28 X 0.20

S 6.59 M 2.25 J 0.10

R 6.03 W 2.03 Z 0.09

H 5.14 Y 1.88 5.27

70.02 24.71

English % German % Finnish %

E 12.31 E 18.46 A 12.06

T 9.59 N 11.42 I 10.59

A 8.05 I 8.02 T 9.76

O 7.94 R 7.14 N 8.64

N 7.19 S 7.04 E 8.11

I 7.18 A 5.38 S 7.83

S 6.59 T 5.22 L 5.86

R 6.03 U 5.01 O 5.54

H 5.14 D 4.94 K 5.20

French % Italian % Spanish %

E 15.87 E 11.79 E 13.15

A 9.42 A 11.74 A 12.69

I 8.41 I 11.28 O 9.49

S 7.90 O 9.83 S 7.60

T 7.29 N 6.88 N 6.95

N 7.15 L 6.51 R 6.25

R 6.46 R 6.37 I 6.25

U 6.24 T 5.62 L 5.94

L 5.34 S 4.98 D 5.58
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CrCryyptanalptanalyysissis’s’s

Cryptoanalysis of a cryptotext encrypted using the AFINE cryptosystem with an 

encryption algorithm

ea,b(x) = (ax + b) mod 26 = (xa+b) mod 26

where 0 a, b 25, gcd(a, 26) = 1. (Number of keys: 12 × 26 = 312.)

Example: Assume that an English plaintext is divided into blocks of 5 letter and 

encrypted by an AFINE cryptosystem (ignoring space and interpunctions) as 

follows:

How to find

the plaintext?
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B H J U H N B U L S V U L R U S L Y X H

O N U U N B W N U A X U S N L U Y J S S

W X R L K G N B O N U U N B W S W X K X

H K X D H U Z D L K X B H J U H B N U O

N U M H U G S W H U X M B X R W X K X L

U X B H J U H C X K X A X K Z S W K X X

L K O L J K C X L C M X O N U U B V U L

R R W H S H B H J U H N B X M B X R W X

K X N O Z L J B X X H B N F U B H J U H

L U S W X G L L K Z L J P H U U L S Y X

B J K X S W H S S W X K X N B H B H J U

H Y X W N U G S W X G L L K
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CrCryyptanalptanalyysissis’s’s

Frequency analysis of plainext and

frequency table for English: 

First guess: E = X, T = U

Encodings: 4a + b = 23 (mod 26)

xa+b=y 19a + b = 20 (mod 26) 

Solutions: a = 5, b = 3  a-1      = 

Translation table

provides from the above cryptotext the plaintext that starts with KGWTG CKTMO 
OTMIT DMZEG, what does not make a sense.
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% % %

E 12.31 L 4.03 B 1.62

T 9.59 D 3.65 G 1.61

A 8.05 C 3.20 V 0.93

O 7.94 U 3.10 K 0.52

N 7.19 P 2.29 Q 0.20

I 7.18 F 2.28 X 0.20

S 6.59 M 2.25 J 0.10

R 6.03 W 2.03 Z 0.09

H 5.14 Y 1.88 5.27

70.02 24.71

X - 32 J - 11 D - 2

U - 30 O - 6 V - 2

H - 23 R - 6 F - 1

B - 19 G - 5 P - 1

L - 19 M - 4 E - 0

N - 16 Y - 4 I - 0

K - 15 Z - 4 Q - 0

S - 15 C - 3 T - 0

W - 14 A - 2

B H J U H N B U L S V U L R U S L Y X H

O N U U N B W N U A X U S N L U Y J S S

W X R L K G N B O N U U N B W S W X K X

H K X D H U Z D L K X B H J U H B N U O

N U M H U G S W H U X M B X R W X K X L

U X B H J U H C X K X A X K Z S W K X X

L K O L J K C X L C M X O N U U B V U L

R R W H S H B H J U H N B X M B X R W X

K X N O Z L J B X X H B N F U B H J U H

L U S W X G L L K Z L J P H U U L S Y X

B J K X S W H S S W X K X N B H B H J U

H Y X W N U G S W X G L L K

crypto A B C D E F G H I J K L M N O P Q R S T U V W X

plain P K F A V Q L G B W R M H C X S N I D Y T O J E

Y Z

Z U
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CrCryyptanalptanalyysissis’s’s

Second guess: E = X, A = H

Equations 4a + b = 23 (mod 26)

b = 7 (mod 26) 

Solutions: a = 4 or a = 17 and therefore a=17

This gives the translation table

and the following

plaintext from the 

above cryptotext
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S A U N A I S N O T K NO W N T O B E A

F I N N I S H I N V E N T I O N B U T T

H E W O R D I S F I N N I S H T H E R E

A R E M A N Y M O R E SA U N A S I N F

I N L A N D T H A N E L S E W H E R E O

N E S A U N A P E R E VE R Y T H R E E

O R F O U R P E O P L EF I N N S K N O

W W H A T A S A U N A I S E L S E W H E

R E I F Y O U S E E A S I G N S A U N A

O N T H E D O O R Y O UC A N N O T B E

S U R E T H A T T H E RE I S A S A U N

A B E H I N D T H E D OO R

crypto A B C D E F G H I J K L M N O P Q R S T U V W X

plain V S P M J G D A X U R O L I F C Z W T Q N K H E

Y Z

B Y
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Example of monoalphabetic cryptosystemExample of monoalphabetic cryptosystem

Symbols of the English alphabet will be replaced by squares with or without points 
and with or without surrounding lines using the following rule:

For example the plaintext:

WE TALK ABOUT FINNISH SAUNA MANY TIMES LATER

results in the cryptotext:

Garbage in between method: the message (plaintext or cryptotext) is 
supplemented by ''garbage letters''.

Richelieu cryptosystem

used sheets of card

board with holes.

IV054
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Polyalphabetic Substitution CryptosystemsPolyalphabetic Substitution Cryptosystems

Playfair cryptosystem
Invented around 1854 by Ch. Wheatstone.

Key - a Playfair square is defined by a word w of length at most 25. In w repeated 
letters are then removed, remaining letters of alphabets (except j) are then added 
and resulting word is divided to form an 5 x 5 array (a Playfair square).
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QKEOT

XCLPR

WYVMB

GNFAH

UIZDS

Encryption: of a pair of letters x,y

•If x and y are in the same row (column), then they are replaced by the pair of 

symbols to the right (bellow) them.

•If x and y are in different rows and columns they are replaced by symbols in the 

opposite corners of rectangle created by x and y.

Example: PLAYFAIR is encrypted as LCMNNFCS

Playfair was used in World War I by British army.

Playfair square:
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Polyalphabetic Substitution CryptosystemsPolyalphabetic Substitution Cryptosystems

VIGENERE and AUTOCLAVE 
cryptosystems

Several of the following polyalphabetic cryptosystems are  modification of the 
CAESAR cryptosystem.

A 26 ×26 table is first designed with the first row containing a permutation of all 
symbols of alphabet and all columns represent CAESAR shifts starting with the 
symbol of the first row.

Secondly, for a plaintext w a key k is a word of the same length as w.

Encryption: the i-th letter of the plaintext - wi is replaced by the letter in the wi-row 
and ki-column of the table.
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VIGENERE cryptosystem: a short keyword p is chosen and

k = Prefix|w|p
oo

VIGENERE is actually a cyclic version of the CAESAR cryptosystem.

AUTOCLAVE cryptosystem: k = Prefix|w|pw.
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Polyalphabetic Substitution CryptosystemsPolyalphabetic Substitution Cryptosystems

VIGENERE and AUTOCLAVE cryptosystems

Example:

Keyword: H A M B U R G

Plaintext: I N J E D E M M E N S C H E N G E S I C H T E S T E H T S E I N E G

Vigenere-key: H A M B U R G H A M B U R G H A M B U R G H A M B U R G H A M B U R

Autoclave-key: H A M B U R G I N J E D E M M E N S C H E N G E S I C H T E S T E H

Vigerere-cryp.: P N V F X V S T E Z T W Y K U G Q T C T N A E E V Y Y Z Z E U O Y X

Autoclave-cryp.: P N V F X V S U R W W F L Q Z K R K K J L G K W L M J A L I A G I N

IV054
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CRYPTOANALYSISCRYPTOANALYSIS of cryptotexts producedof cryptotexts produced by VINEGAR cryptosystemby VINEGAR cryptosystem

1.Task 1 -- to find the length of the key

Kasiski method (1852) - invented also by Charles Babbage (1853).

Basic observation If a subword of a plaintext is repeated at a distance 
that is a multiple of the length of the key, then the corresponding subwords 
of the cryptotext are the same.
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Example, cryptotext:

Substring ''CHR'' occurs in positions 1, 21, 41, 66: expected keyword length is 

therefore 5.

CHRGQPWOEIRULYANDOSHCHRIZKEBUSNOFKYWROPDCHRKGAXBNRHROAKERBKSCHRIWK

Method. Determine the greatest common divisor of the distances between 

identical subwords (of length 3 or more) of the cryptotext.
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CRYPTOANALYSISCRYPTOANALYSIS of cryptotexts producedof cryptotexts produced by VINEGAR cryptosystemby VINEGAR cryptosystem

Friedman method Let ni be the number of 
occurrences of the  i-th letter in the 
cryptotext. 

Let l be the length of the keyword. 

Let n be the length of the cryptotext. 
Then it holds

Once the length of the keyword is found it is easy to 
determine the key using the statistical (frequency 
analysis)method of analyzing monoalphabetic

cryptosystems.

IV054
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Derivation of the  Friedman methodDerivation of the  Friedman method

1. Let ni be the number of occurrences of i-th alphabet symbol in a text of length n.

The probability that if one selects a pair of symbols from the text, then they are the 
same is

and it is called the index of coincides.
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2. Let pi be the probability that a randomly chosen symbol is the i -th symbol of the 

alphabet. The probability that two randomly chosen symbol are the same is

For English text one has

For randomly chosen text:

Approximately
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Derivation of the  Friedman methodDerivation of the  Friedman method

Assume that a cryptotext is organized into l columns headed by the letters of the 
keyword

First observation Each column is obtained using the CAESAR cryptosystem.

Probability that two randomly chosen letters are the same in

- the same column is 0.065.

- different columns is 0.038.

The number of pairs of letters in the same column:

The number of pairs of letters in different columns:

The expect number A of pairs of equals letters is

Since

one gets the formula for l from the previous slide.
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ONE-TIME PAD cryptosystem – Vernam’s cipher

Binary case:

plaintext w

key k are binary words of the same length

cryptotext c

Encryption: c = w k

Decryption: w = c k
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Example:

w = 101101011

k = 011011010

c = 110110001

What happens if the same key is used twice or 3 times for encryption? 

c1 = w1 k, c2 = w2 k, c3 = w3 k

c1 c2 = w1 w2

c1 c3 = w1 w3

c2 c3 = w2 w3
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Perfect secret cryptosystems

By Shanon, a cryptosystem is perfect if the knowledge of the cryptotext provides no 

information whatsoever about its plaintext (with the exception of its length).

It  follows from Shannon's results that perfect secrecy is possible if the key-space is 

as large as the plaintext-space. In addition, a key has to be as long as plaintext and 

the same key should not be used twice.
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An example of a perfect cryptosystem ONE-TIME PAD cryptosystem (Gilbert S. 

Vernam (1917) - AT&T + Major Joseph Mauborgne).

If used with the English alphabet, it is simply a polyalphabetic substitution 

cryptosystem of VIGENERE with the key being a randomly chosen English word of 

the same length as the plaintext.

Proof of perfect secrecy: by the proper choice of the key any plaintext of the 

same length could provide the given cryptotext.

Did we gain something? The problem of secure communication of the plaintext got 

transformed to the problem of secure communication of the key of the same length.

Yes: 1. ONE-TIME PAD cryptosystem is used in critical applications

2. It suggests an idea how to construct practically secure cryptosystems.
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Transposition Cryptosystems

The basic idea is very simple: permutate the plaintext to get the cryptotext. Less 

clear it is how to specify and perform efficiently  permutations.

One idea: choose n, write plaintext into rows, with n symbols in each row and then 

read it by columns to get cryptotext.

Example

Cryptotexts obtained by transpositions, called anagrams, were popular among 

scientists of 17th century. They were used also to encrypt scientific findings.

Newton wrote to Leibnitz

a7c2d2e14f2i7l3m1n8o4q3r2s4t8v12x1

what stands for: ”data aequatione quodcumque fluentes quantitates involvente, 

fluxiones invenire et vice versa”

Example a2cdef3g2i2jkmn8o5prs2t2u3z

Solution:
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ONOEJOTETH

CIHCSEGENI

ESTHETSETH

CISEGNEHCS

NEMMEDEJNI
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KEYWORD CAESAR cryptosystem1

Choose an integer 0 < k < 25 and a string, called keyword, of length at 

most 25 with all letters different.

The keyword is then written bellow the English alphabet letters, 

beginning with the k-symbol, and the remaining letters are written in 

the alphabetic order and cyclicly after the keyword.
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Example: keyword: HOW MANY ELKS, k = 8

JIGFDCBSKLEYNAMWOHZXVUTRQP

ZYXWVUTSRQPONMLKJIHGFEDCBA

80
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KEYWORD CAESAR cryptosystem

Exercise Decrypt the following cryptotext encrypted using the 

KEYWORD CAESAR and determine the keyword and k
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KEYWORD CAESAR cryptosystem

Step 1. Make the

frequency counts:

IV054

Number Number Number

U 32 X 8 W 3

C 31 K 7 Y 2

Q 23 N 7 G 1

F 22 E 6 H 1

V 20 M 6 J 0

P 15 R 6 L 0

T 15 B 5 O 0

I 14 Z 5 S 0

A 8 D 4 7=2.90%

180=74.69% 54=22.41%

Step 2. Cryptotext contains two one-letter words T and Q. They must be A and I. 

Since T occurs once and Q three times it is likely that T is I and Q is A.

The three letter word UPC occurs 7 times and all  other 3-letter words occur only 

once. Hence

UPC is likely to be THE.

Let us now decrypt the remaining letters in the high frequency group: F,V,I

From the words TU, TF F=S 

From UV V=O

From VI I=N

The result after the remaining guesses

DGCBOTI?FEH?UR?Y?NMKSPWEVL

ZYXWVUTSRQPONMLKJIHGFEDCBA
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UNICITY DISTANCE of CRYPTOSYSTEMS

Redundancy of natural languages is of the key importance for 
cryptanalysis.

Would all letters of a 26-symbol alphabet have the same probability, a 
character would carry lg 26 = 4.7 bits of Information.

The estimated average amount of information carried per letter 
in a meaningful English text is 1.5 bits.

The unicity distance of a cryptosystem is the minimum number 
of cryptotext (number of letters) required to a computationally 
unlimited adversary to recover the unique encryption key.

Empirical evidence indicates that if any simple cryptosystem is 
applied to a meaningful English message, then about 25 
cryptotext characters is enough for an experienced 
cryptanalyst to recover the plaintext.
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ANAGRAMS - EXAMPLES

German:

IRI BRÄTER, GENF Briefträgerin

FRANK PEKL, REGEN …

PEER ASSSTIL, MELK …

INGO DILMR, PEINE …

EMIL REST, GERA …

KARL SORDORT, PEINE …
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English:

algorithms logarithms

antagonist stagnation

compressed decompress

coordinate decoration

creativity reactivity

deductions discounted

descriptor predictors

impression permission

introduces reductions

procedures reproduces
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• APPENDIX
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STREAM  CRYPTOSYSTEMS

Two basic types of cryptosystems are:

• Block cryptosystems (Hill cryptosystem,…) – they are used

to encrypt simultaneously blocks of plaintext.

• Stream cryptosystems (CAESAR, ONE-TIME PAD,…) – they

encrypt plaintext letter by letter, or block by block, using an encryption that 
may vary during the encryption process.

Stream cryptosystems are more appropriate in some applications
(telecommunication), usually are simpler to implement (also in hardware), 
usually are faster and  usually have no error propagation (what is of 
importance when transmission errors are highly probable).

Two basic types of stream cryptosystems: secret key cryptosystems

(ONE-TIME PAD) and public-key cryptosystems (Blum-Goldwasser)
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Block versus stream cryptosystems

In block cryptosystems the same key is used to encrypt arbitrarily long 

plaintext – block by block - (after dividing each long plaintext w into a 

sequence of subplaintexts (blocks)  w1w2w3 ).

In stream cryptosystems each block is encryptyd using a different key
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• The fixed key k is used to encrypt all blocks. In such a
case the resulting cryptotext has the form

c = c1c2c3… = ek(w1) ek(w2) ek(w3)…

• A stream of keys is used to encrypt subplaintexts. The 

basic idea is to generate a key-stream K=k1,k2,k3,… and 

then to compute the cryptotext as follows

c = c1c2c3 …  = ek1(w1) ek2(w2) ek3(w3).



42Classical (secret-key) cryptosystems

CRYPTOSYSTEMS WITH STREAMS OF KEYSIV054

Decryption: To decrypt the cryptotext c1c2c3  … the sequence

k1, w1, k2, w2, k3, w3, … 

of keys and subplaintexts is computed.

Various techniques are used to compute a sequence of keys. For 

example, given a key k

ki = fi (k, k1, k2, …, ki-1)

In such a case encryption and decryption processes generate the

following sequences:

Encryption: To encrypt the plaintext w1w2w3 … the sequence 

k1, c1, k2, c2, k3, c3, … 

of keys and sub-cryptotexts is computed.
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EXAMPLES

A keystream is called synchronous if it is independent of the plaintext.

KEYWORD VIGENERE cryptosystem can be seen as an example of a 
synchronous keystream cryptosystem.

Another type of the binary keystream cryptosystem is specified by an initial
sequence of keys k1, k2, k3 … km

and a initial sequence of binary constants b1, b2, b3 … bm-1

and the remaining keys are computed using the rule

A keystrem is called periodic with period p if ki+p = ki for all i. 
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1

0

2 mod
m

j

jijmi kbk

Example Let the keystream be generated by the rule

ki+4 = ki ki+1

If the initial sequence of keys is (1,0,0,0), then we get the following keystream:

1,0,0,0,1,0,0,1,1,0,1,0 1,1,1, …

of period 15.
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PERFECT SECRECY - BASIC CONCEPTS

Let P, K and C be sets of plaintexts, keys andcryptotexts.

Let pK(k) be the probability that the key k is chosen from K and let a priory 

probability that plaintext w is chosen is pp(w).

If for a key , then for the probability PC(y) that c is the

cryptotext that is transmitted it holds

For the conditional probability pc(c|w) that c is the cryptotext if w is the plaintext it 

holds

Using  Bayes' conditional probability formula p(y)p(x|y) = p(x)p(y|x) we get for 

probability pP(w|c) that w is the plaintext if c is the cryptotext the expression
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P|   K, wwekCk k

.
| kCck
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PERFECT SECRECY - BASIC RESULTS

Definition A cryptosystem has perfect secrecy if

(That is, the a posteriori probability that the plaintext is w,given that the cryptotext is 
c is obtained, is the same as a priori probability that the plaintext is w.)

Example CAESAR cryptosystem has perfect secrecy if any of the26 keys is used 
with the same probability to encode any symbol of the plaintext.

Proof Exercise.

An analysis of perfect secrecy: The condition pP(w|c) = pP(w) is for all w P and 
c C equivalent to the condition pC(c|w) = pC(c).

Let us now assume that pC(c) > 0 for all c C.

Fix w P. For each c C we have pC(c|w) = pC(c) > 0. Hence, for each c€C there 
must exists at least one key k such that ek(w) = c. Consequently, |K| >= |C| >= |P|.

In a special case |K| = |C| = |P|. the following nice characterization of the perfect 
secrecy can be obtained:

Theorem A cryptosystem in which |P| = |K| = |C| provides  perfect secrecy if and 
only if every key is used with the same probability and for every w P and every 
c€C there is a unique key k such that ek(w) = c.

Proof Exercise.
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C. and P allfor  | cwwpcwp PP
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PRODUCT CRYPTOSYSTEMS

A cryptosystem S = (P, K, C, e, d) with the sets of plaintexts P, keys K and 

cryptotexts C and encryption (decryption) algorithms e (d) is called endomorphic if 

P = C.

If S1 = (P, K1, P, e(1), d (1)) and S2 = (P, K2, P, e (2), d (2)) are endomorphic 

cryptosystems, then the product cryptosystem is

S1 S2 = (P, K1 K2, P, e, d),

where encryption is performed  by the procedure

e( k1, k2 )(w) = ek2(ek1(w))

and decryption by the procedure

d( k1, k2 )(c) = dk1(dk2(c)).
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Example (Multiplicative cryptosystem):

Encryption: ea(w) = aw mod p; decryption: da(c) = a-1c mod 26.

If M denote the multiplicative cryptosystem, then clearly CAESAR M is actually 
the AFFINE cryptosystem.

Exercise Show that also M CAESAR is actually the AFFINE cryptosystem.

Two cryptosystems S1 and S2 are called commutative if S1 S2 = S2 S1.

A cryptosystem S is called idempotent if S S = S.


