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Typical applications of bioinformatics 

Reconstruction 
(Phylogeny) 

Prediction 
(Function) 

Datamanagement/Visualiza8on 

Characterization 
(Gene sets) 



Our research object 



Our research object 

MICROSPORIDIA 



Our research object 

Life cycle of Microsporidia 



What are Microsporidia? 

Modified from Keeling et al., (2005) TRENDS in Ecology and Evolution Vol.20 No.12 



Molecular 
Function 

Cellular 
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Biological 
Process 
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Our Workplan 

Ortholog prediction 

Phylogeny reconstruction 

GO analysis 
Metabolic Pathways 

Functional annotation 



Introduction into Molecular Evolution 



The evolution of biological sequences 



The evolution of biological sequences 

ACGGCATAGCCGATTAC 



The evolution of biological sequences 

ACGGGATAGCCCATTAC 

ACGGCATAGCCGATTAC 

Sequences are changed by substitutions 



The evolution of biological sequences 

Sequences are changed by substitutions and insertions/deletions 

ACGGGAT--CCCATTAC ACGGCATATCCACTGGATTAC 

ACGGGATAGCCCATTAC 

ACGGCATAGCCGATTAC 



The evolution of biological sequences 

Contemporary sequences comprise the leafs of the tree 

ACGGGAT--CCCATTAC ACGGCATATCCACTGGATTAC 

ACGGGATAGCCCATTAC 

ACGGCATAGCCGATTAC 



The evolution of biological sequences 

ACGGGAT--CCCATTAC ACGGCATATCCACTGGATTAC 

ACGGGATAGCCCATTAC 

ACGGCATAGCCGATTAC 

ACGACATATCCACTGGATTCC 

CCGGGATAGCTTCCATTAC 

ACGGGATCCCAATAC 

ACGGGATCCCATTAC 

ACCCCCTATCCACTGGATTAC 

What do we have 

A collection of related 
sequences that vary in 
their amino acid 
composition and in their 
length 



The evolution of biological sequences 

ACGGGAT--CCCATTAC ACGGCATATCCACTGGATTAC 

ACGGGATAGCCCATTAC 

ACGGCATAGCCGATTAC 

ACGACATATCCACTGGATTCC 

CCGGGATAGCTTCCATTAC 

ACGGGATCCCAATAC 

ACGGGATCCCATTAC 

ACCCCCTATCCACTGGATTAC 

What do we have 

A collection of related 
sequences that vary in 
their amino acid 
composition and in their 
length ? 



A C G A
 T A C G T


A T T
 A T G T


Finding the homologous positions 



Seq1: - A C G A

Seq2: T A C G T

Seq3: - A T - T

Seq4: - A T G T


A C G A
 T A C G T


A T T
 A T G T


Finding the homologous positions 

Sequence Alignment 



Mathematically 
Optimal Alignment 

Biologically 
Optimal Alignment minimize 

 What should a biologically correct alignment look like? 
 To what extent can we define and formalize its properties?  

Sequence Alignment 



Mathematically 
Optimal Alignment 

Biologically 
Optimal Alignment minimize 

 What should a biologically correct alignment look like? 
 To what extent can we define and formalize its properties?  

Objec8ve Func8on: 

A mathema8cal func8on to measure the biological quality of 
an alignment... 

Sequence Alignment 



A mathema8cal func8on to measure the biological quality of 
an alignment α... 

€ 

Objective: find α that maximizes σ(α)! 

€ 

σ(α) = S(ai
i=1

n

∑ ,bi)

Sequence Alignment 



then we look for that alignment, that gives us the highest score 
by summing up the column scores S(ai,bj) for all columns of the 
alignment. 

Given two sequences A ={a1,a2,....,an} and 
B={b1,b2,....,bm} and a scoring function S such that 

€ 

S(ai,b j ) =

+5, if ai = b j

−2, if ai ≠ b j

−6, for introduction of a gap

 

 
 

 
 

Sequence Alignment 



then we look for that alignment, that gives us the highest score 
by summing up the column scores S(ai,bj) for all columns of the 
alignment. 

Given two sequences A ={a1,a2,....,an} and 
B={b1,b2,....,bm} and a scoring function S such that 

€ 

S(ai,b j ) =

+5, if ai = b j

−2, if ai ≠ b j

−6, for introduction of a gap

 

 
 

 
 

For example: 
 T   G   C   T   C   G   T   A

 T   -   -   T   C   A   T   A

+5  -6  -6  +5  +5  −2  +5  +5 = 11


Sequence Alignment 



Blosum62: PAM250: 

Many other scoring functions exist… 

Sequence Alignment 



•  There are far too many alignments for evaluating every 
possibility 

  number of possible pair-wise alignments: 

  for two sequences of length N=300 there are 10179 

possibilities 

Hence, we need a smart way to cut the computation short! 

Dynamic programming approach for pair-wise alignments 

by Needleman and Wunsch (1970). 

€ 

2n
n

 

 
 

 

 
 

Alignment algorithms 



A dynamic programming approach usually includes: 

  A mathema8cal descrip8on of the (biological) quality of an solu8on, 

i.e. an recursive objec8ve func8on 

  The computa8on of all intermediate values needed to obtain the 

globally op8mal solu8on, thereby avoiding double‐computa8ons 

  The reconstruc8on of the globally op8mal solu8on from the values 

obtained in the previous step (backtracking) 

Alignment algorithms 



 T   G   C   T   C   G   T   A

 T   -   -   T   C   A   T   A

+5  -6  -6  +5  +5  −2  +5  +5 = 11


 T   G   C   T   C   G   T   A

 T   -   T   -   C   A   T   A

+5  -6  -2  -6  +5  −2  +5  +5 = 4


A1: 

A2: 

etc... 

Underlying principle: Avoid redundant computation  

Alignment algorithms 



€ 

σ(i, j) =max
σ(i −1, j −1) + S(ai,b j )
σ(i, j −1) + S(gap,b j )
σ(i −1, j) + S(ai,gap)

 

 
 

 
 

€ 

S(ai,b j ) =

+5, if ai = b j

−2, if ai ≠ b j

−6, for introduction of a gap

 

 
 

 
 

Scoring function Objective function 

Sequence B 
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Alignment algorithms 



σ(i-1,j-1) σ(i-1,j) 

σ(i,j-1) 

€ 

σ(i, j) =max
σ(i −1, j −1) + S(ai,b j )
σ(i, j −1) + S(gap,b j )
σ(i −1, j) + S(ai,gap)

 

 
 

 
 

σ(i,j) is the optimal alignment score up 
to and including ai and bj 

Alignment algorithms 



Needleman‐Wunsch algorithm: Ini8aliza8on 

€ 

S(ai,b j ) =

+5, if ai = b j

−2, if ai ≠ b j

−6, for introduction of a gap
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 
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 

Alignment algorithms 



Needleman‐Wunsch algorithm: Recursion 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algorithm: Recursion 

€ 

S(ai,b j ) =

+5, if ai = b j

−2, if ai ≠ b j

−6, for introduction of a gap

 

 
 

 
 

Alignment algorithms 



Needleman‐Wunsch algorithm: Backtrack 

        *

        *


Alignment algorithms 



Needleman‐Wunsch algorithm: Backtrack 

       A*

       A*


Alignment algorithms 



Needleman‐Wunsch algorithm: Backtrack 

      TA*

      TA*


Alignment algorithms 



Needleman‐Wunsch algorithm: Backtrack 

Alignment Score: 11 

*TGCTCGTA*

*T--TCATA*


Alignment algorithms 



Alignment algorithms 

Smith‐Waterman pair‐wise local alignment 

€ 

σ(i, j) =max

σ(i −1, j −1) + S(ai,b j )
σ(i, j −1) + S(gap)
σ(i −1, j) + S(gap)
0

 

 
  

 
 
 

€ 

S(ai,b j ) =

+5, if ai = b j

−2, if ai ≠ b j

−6, for introduction of a gap

 

 
 

 
 



Alignment Score: 18 

Alignment algorithms 

Smith‐Waterman pair‐wise local alignment: Backtrack 

*TCGTA*

*TCATA*




Both, Needleman-Wunsch and Smith-Waterman alignment 
methods are exact methods since they guarantee a globally 
optimal solution for the optimization problem! 

Drawback: Computational expensive, i.e. O(nm) in time 
and memory 

Alignment algorithms 



Alignment algorithms: BLAST* 

BLAST uses several heuristics to reduce search space 

*Gapped Blast, Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402. 



BLAST heuristics 

1.  Given a query q and a target sequence find substrings 
of length k (k-mers) of score at least t. k is normally 3 
to 5 for amino acids and 12 for nucleotides. 

2.  Extend each hit to a locally maximal segment. 
Terminate the extension when the reduction in score 
exceeds a pre-defined threshold 

3.  Report maximal segments above score S. 



Finding k-mers quickly  

Preprocess the database of sequences: 
For each sequence in the database store all k-mers in 
hash-table. 
This takes linear time 

Query sequence: 
For each k-mer in the query sequence look up the hash 
table of the target database to see if it exists. 
Also takes linear time 

BLAST heuristics 



BLAST heuristics 



BLAST heuristics 



BLAST Searches* 

*http://blast.ncbi.nlm.nih.gov/Blast.cgi 



Different BLAST programs 

The NCBI BLAST family of programs includes:  

blastp  

compares an amino acid query sequence against a protein sequence 
database  

blastn  

compares a nucleo8de query sequence against a nucleo8de sequence 
database  

blastx  

compares a nucleo8de query sequence translated in all reading frames 
against a protein sequence database  

tblastn  

compares a protein query sequence against a nucleo8de sequence database 
dynamically translated in all reading frames  

tblastx  

compares the six‐frame transla8ons of a nucleo8de query sequence against 
the six‐frame transla8ons of a nucleo8de sequence database. The tblastx 
program cannot be used with the nr database on the BLAST Web page.  



Multiple Sequence Alignments 



Multiple Sequence Alignments 

Optimal Solution:  
Extend Needleman-Wunsch or Smith-Waterman to multiple 
sequences 

But O(nm) in time and memory:  
Computationally not feasible... 4 sequences of length 1000 -> 
1TB RAM 



Multiple Sequence Alignments 
Sum Of Pairs 

Seq1: AGA--CTA

Seq2: G-A--CTT

Seq3: AGAAACTT


Seq1: AGA--CTA

Seq2: G-A--CTT


Seq1: AGA--CTA

Seq3: AGAAACTT


Seq2: G-A--CTT

Seq3: AGAAACTT


€ 

S(ai,b j ) =

+5, if ai = b j

−2, if ai ≠ b j

−6, for introduction of a gap

 

 
 

 
 

Seq1: AGA--CTA

Seq2: G-A--CTT


Seq1: AGA--CTA

Seq3: AGAAACTT


Seq2: G-A--CTT

Seq3: AGAAACTT


Score: +5  Score: +11  Score: 0  

SUM OF PAIRS SCORE: 16 



  The sequences are added stepwise. Thus, never 
more than two sequences (or multiple sequence 
alignments) are simultaneously aligned 

  Sequences or MSAs are aligned using Dynamic 
Programming 

Multiple Sequence Alignments 
Progressive alignment strategy 

σ(ai,bj): score for aligning column i from alignment (or sequence) a to 
column j from alignment or sequence b 

n,m number of sequences in alignments a and b, respectively  
score for aligning position i in sequence x from alignment a to 
position j in sequence y from alignment b 

ωx, ωy respective weights of the sequences x and y 

€ 

S(ax
i ,by

j )
€ 

σ(ai ,b j ) =
1

n ×m
S(ax

i ,by
j )

y=1

m

∑
x=1

n

∑ ×ωx ×ωy



Evolutionary relationships 
of Species 

22,258 
Genes 

1,909 
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6,698 
Genes 
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Evolutionary relationships 
of genes and gene products 
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Gene duplication 
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Evolutionary relationships 
of genes and gene products 

22,258 
Genes 

1,909 
Genes 

6,698 
Genes 

Speciation 

Speciation 

Tim
e 

Co-Orthology and In-Paralogy 

Gene duplication 



22,258 
Genes 

1,909 
Genes 

6,698 
Genes 

Speciation 

Speciation Main arguments for the orthology 
assumption: 

 a sequence tree that is congruent 
to the species tree 

 conservation of genomic position 
 sequence similarity (typically, 

reciprocal best blast hit) 

Orthology prediction 



Orthology prediction: 
The RBH approach 

Reciprocal Blast 

Reciprocal Best 
Blast Hit Pair 

Proteome A Proteome B 

Modified from Remm et al. J. Mol. Biol (2001) 314: 1041-1052 



Reciprocal Blast 

Reciprocal Best 
Blast Hit Pair 

Proteome A Proteome B 

Modified from Remm et al. J. Mol. Biol (2001) 314: 1041-1052 
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Orthology prediction: 
The InParanoid approach 



Reciprocal Blast 

Reciprocal Best 
Blast Hit Pair 

Proteome A Proteome B 

Modified from Remm et al. J. Mol. Biol (2001) 314: 1041-1052 

B
la

st
 a

ga
in

st
 A

 B
last against B

 

Sortho 
Spara 

Spara 

Spara 

Orthology prediction: 
The InParanoid approach 



Reciprocal Blast 

Reciprocal Best 
Blast Hit Pair 

Proteome A Proteome B 

Modified from Remm et al. J. Mol. Biol (2001) 314: 1041-1052 

B
la

st
 a

ga
in

st
 A

 B
last against B

 

Sortho 
Spara 

Spara 

Orthology prediction: 
The InParanoid approach 



Reciprocal Blast 

Reciprocal Best 
Blast Hit Pair 

Proteome A Proteome B 

Modified from Remm et al. J. Mol. Biol (2001) 314: 1041-1052 

B
la

st
 a

ga
in

st
 A

 B
last against B

 

Sortho 
Spara 

Spara 

Orthology prediction: 
The InParanoid approach 



Reciprocal Blast 

Reciprocal Best 
Blast Hit Pair 

Proteome A Proteome B 

Modified from Remm et al. J. Mol. Biol (2001) 314: 1041-1052 

B
la

st
 a

ga
in

st
 A

 B
last against B

 

Sortho 

Orthology prediction: 
The InParanoid approach 



Orthology prediction: 
The InParanoid approach 

Reciprocal Blast 

Reciprocal Best 
Blast Hit Pair 

Proteome A Proteome B 

Modified from Remm et al. J. Mol. Biol (2001) 314: 1041-1052 
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Prune 
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Speciation 

Spara 



Tree reconstruction 



Working Hypothesis:  
Species evolution is tree like 



Tree reconstruction 



Tree notation 



How many trees exist? 



How many unrooted trees exist? 

€ 

b(n) =
(2n − 5)!
2n−3(n − 3)!

€ 

b(10) = 2027025

€ 

b(55) = 2.9 ×1084

€ 

b(100) =1.7 ×10182



Tree formats 



Three representations of the 
same tree 

(((((CIOIN:0.4222,HOMSA:0.2777)97:0.0575,(ACRMI:
0.2611,HYDMA:0.3700)100:0.0745)100:0.0764,DROME:
0.4200)100:0.1034, 
CAEEL:0.6027):0.5804,SACCE:0.5832); 

#NEXUS 
begin taxa; 
        dimensions ntax=7; 
        taxlabels 
        DROME 
        CIOIN 
        HYDMA 
        SACCE 
        CAEEL 
        ACRMI 
        HOMSA 
; 
end; 

begin trees; 
        tree [&r] tree_1 = (((((CIOIN:0.4222,HOMSA:0.2777) 
[&label=97]:0.0575, 
(ACRMI:0.2611,HYDMA:0.37)[&label=100]:0.0745) 
[&label=100]:0.0764, 
DROME:0.42)[&label=100]:0.1034,CAEEL:0.6027):0.5804, 
SACCE:0.5832); 
end; 

begin figtree; 
        set appearance.backgroundColour=#-1; 
end figtree; 



Some more notations 

Monophyletic group 
(clade, sistergroup) 

Chimpanzee Human Gorilla 

Paraphyletic group 
(e.g. reptiles) 

Birds Crocodiles Lizards Turtles 

Storks Birds of Prey Old world 
vultures 

New world 
vultures 

Polyphyletic group 



Character based phylogeny reconstruction: 

  A character has to be expressed in at least two 
states in the taxa under study. Taxa are 
grouped on the basis of shared character 
states. 

Some more notations 

A a a 



Character based phylogeny reconstruction: 

  A character has to be expressed in at least two 
states in the taxa under study. Taxa are 
grouped on the basis of shared character 
states. 

  An evolutionary derived character (state) is 
called an Apomorphy 

Some more notations 

A a a 

A 

A->a 

a 
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Character based phylogeny reconstruction: 

  A character has to be expressed in at least two 
states in the taxa under study. Taxa are 
grouped on the basis of shared character 
states. 

  An evolutionary derived character (state) is 
called an Apomorphy 

  Syn-Apomorphy: an evolutionary derived 
character (state) shared by a group of taxa. 
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Character based phylogeny reconstruction: 

  A character has to be expressed in at least two 
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grouped on the basis of shared character 
states. 

  An evolutionary derived character (state) is 
called an Apomorphy 

  Syn-Apomorphy: an evolutionary derived 
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Character based phylogeny reconstruction: 

  A character has to be expressed in at least two 
states in the taxa under study. Taxa are 
grouped on the basis of shared character 
states. 

  An evolutionary derived character (state) is 
called an Apomorphy 

  Syn-Apomorphy: an evolutionary derived 
character (state) shared by a group of taxa. 

  Aut-Apomorphy: an evolutionary derived 
character (state) present only in a single taxon 

  Plesiomorphy: an ancestral character (state) 
shared by a group of extant taxa. 

Some more notations 
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Character based phylogeny reconstruction: 

  A character has to be expressed in at least two 
states in the taxa under study. Taxa are 
grouped on the basis of shared character 
states. 

  An evolutionary derived character (state) is 
called an Apomorphy 

  Syn-Apomorphy: an evolutionary derived 
character (state) shared by a group of taxa. 

  Aut-Apomorphy: an evolutionary derived 
character (state) present only in a single taxon 

  Plesiomorphy: an ancestral character (state) 
shared by a group of extant taxa. 

  Homoplasy: A derived character (state) that is 
shared for reasons other than common decent. 

Some more notations 

A,B,c a,B,C a,b,c 

A,B,C 

A->a 

a,B,C 

B->b 
C->c 

C->c 



How to infer a tree from data 



The Maximum Parsimony Principle 

Occam’s Razor (law of parsimony) 
states:



Pluralitas non est ponenda


sine necessitate.


Plurality should not be posited


without necessity.


The principle gives precedence to 
simplicity; of two competing theories 
the simpler explanation for an 
observation is to be preferred.


William of Ockham, 1285-1347/49 



Taxon  1  2  3  4  5  6  7  8  9 

S1  C  G  C  A  C  T  G  T  T 

S2  C  G  C  A  C  T  G  T  T 

S3  T  G  A  A  C  T  G  C  T 

S4  C  G  G  A  C  T  G  C  T 

The Maximum Parsimony Criterion 
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The Maximum Parsimony Tree 
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5: ..G.. 

The Fitch algorithm (1970) 

1.  Initialize state set Sk at each leaf k 
with the characters from the 
alignment. 
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The Fitch algorithm (1970) 

1.  Initialize state set Sk at each leaf k 
with the characters from the 
alignment. 

2.  Construct the state sets of all 
internal nodes in a post-order-
traversal starting at the root node 

3.  Let k be the current node and i,j 
its descendents, then build the 
intersection of Si and Sj: 

1.  If Si ∩ Sj ≠ {}: set Sk=Si ∩ Sj 

2.  If Si ∩ Sj = {}: set Sk=Si ∪ Sj 
and increase the tree length 
by 1. 
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Ltree=2 
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4: ..A.. 

5: ..G.. 

The Fitch algorithm (1970) 

1.  Initialize state set Sk at each leaf k 
with the characters from the 
alignment. 

2.  Construct the state sets of all 
internal nodes in a post-order-
traversal starting at the root node 

3.  Let k be the current node and i,j 
its descendents, then build the 
intersection of Si and Sj: 

1.  If Si ∩ Sj ≠ {}: set Sk=Si ∩ Sj 

2.  If Si ∩ Sj = {}: set Sk=Si ∪ Sj 
and increase the tree length 
by 1.  

4.  Continue with the traversal until 
the state set Sroot has been 
reconstructed. 
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Ltree=3 
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The Fitch algorithm (1970) 

1.  Initialize state set Sk at each leaf k 
with the characters from the 
alignment. 

2.  Construct the state sets of all 
internal nodes in a post-order-
traversal starting at the root node 

3.  Let k be the current node and i,j 
its descendents, then build the 
intersection of Si and Sj: 

1.  If Si ∩ Sj ≠ {}: set Sk=Si ∩ Sj 

2.  If Si ∩ Sj = {}: set Sk=Si ∪ Sj 
and increase the tree length 
by 1.  

4.  Continue with the traversal until 
the state set Sroot has been 
reconstructed. 
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Ltree=3 



€ 

L(T) = ω j
j=1

A

∑
k=1

B

∑ ∗ diff (xk ' j ,xk '' j )

MP Objective Function 

Aim: Find the tree T that minimizes the following function 

diff: Scoring matrix for changes 
ωj: Alignment-specific weight (often ωj=1, for all j) 
A: Alignment length 
B: Number of branches in T 

k’, k’’: Endnotes of branch k 



Aspects of Maximum Parsimony 

1.  Parsimony is often considered model-free 

2.  One has no choice of a model, but the 
algorithm assumes that changes are rare and 
backmutations do not occur (model) 

3.  Although assumption 2 is often true for 
morphological data, it is certainly not true for 
biological sequence data  



S1 A G C T T A C C T T T T A C T 
S2 C G T A A A T T T C C C G A T 
S3 C G C A A G T T T C C C G A T 
S4 C A C T T A T T A G T C A A C 

The criterion of distance 



S1 A G C T T A C C T T T T A C T 
S2 C G T A A A T T T C C C G A T 
S3 C G C A A G T T T C C C G A T 
S4 C A C T T A T T A G T C A A C 

Edit distance (Hamming) 



S1 A G C T T A C C T T T T A C T 
S2 C G T A A A T T T C C C G A T 
S3 C G C A A G T T T C C C G A T 
S4 C A C T T A T T A G T C A A C 

S1 S2 S3 S4 

S1 0 11 11 8 

S2 11 0 2 10 

S3 11 2 0 9 

S4 8 10 9 0 

Edit distance (Hamming) 



A B C D 

v4 

v3 v2 

v1 

Aim: Find branch lengths vb such that the sum of the 
branch lengths connecting any two leaves gets close to 
the measured distances between all pairs of leaves, e.g. 

€ 

dA ,D
measured ≈ v1 + v2 + v3 + v4

Distance based tree reconstruction 



The Four-Point-Condition 

Theorem: Four-Point-Condition 

A distance matrix (di,j), i,j=1....n, is representable as a tree, if 
and only if  

€ 

d(a,b) + d(c,d) ≤max d(a,c) + d(b,d),d(a,d) + d(b,c){ }
for all 

€ 

a,b,c,d ∈ 1,2,...,n{ }

A  B  C 

B  6 

C  7  8 

D  12  14  11 

A 

B 

D 

C 

2.5 

3.5 

2 

2.5 

8.5 



The ultrametric inequality 

Theorem: The ultrametric inequality 

A distance matrix (di,j), i,j=1....n, is representable as a clock-
like tree, if and only if  

for all triple (A,B,C) 

A  B  C 

B  6 

C  7  8 

D  12  14  11 

€ 

d(A,B) ≤max d(A,C),d(B,C){ }

A B C D 
3 3 

0.75 
3.75 

2.38 
6.13 



1. begin with a star tree: 

2. compute for each pair (1,2) the net-divergence 

3. take the pair (A,B) that minimizes Eq. (1) 

(1) 

A 

B 
C 

D 

F 
E 

The Neighbor Joining Algorithm* 

€ 

1
2(n − 2)

D1k
k= 3

N

∑ + D2k ) +
1
2
D12 +

1
N − 2

Dij
3≤ i< j
∑

Saitou and Nei (1987), Mol Biol Evol 4:406-425 



4. cluster (A,B) and define an interior node W 

5. compute branch lengths for the external edges: 

€ 

v(A,W ) =
1
2
D(A,B) +

1
m − 2

D(A,k) −D(B,k)
k= 3

m

∑
 

 
 

 

 
 

v(B,W ) = D(A,B) − v(A,W )

A 

B 
C 

D 

F 
E 

The Neighbor Joining Algorithm 

W 



6. compute distance W to the remaining m-2 leaves: 

€ 

D(W ,k) =
1
2
D(A,k) + D(B,k) −D(A,B)( )

7. continue with step 1 with the reduced set of leaves 

The Neighbor Joining Algorithm 



The Maximum Likelihood criterion 

S1:…AAGGCTTCAG…


S2:…AAGGCCTCAG…


S3:…ATGGACTCAG…


Time tn 

Time tn+1 

Modelling sequence evolution 
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Modelling sequence evolution 

1.   First order Markov process 
The evolutionary process is 
memory less, i.e. sequence S2 
mutates to S3 during time tn+1 
independent of S1 
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independent of S1 

2.   Stationary  
 The overall character 
frequencies πj of the 
nucleotides or amino acids 
remain constant. 



The Maximum Likelihood criterion 

S1:…AAGGCTTCAG…


S2:…AAGGCCTCAG…


S3:…ATGGACTCAG…


Time tn 

Time tn+1 

Modelling sequence evolution 

1.   First order Markov process 
The evolutionary process is 
memory less, i.e. sequence S2 
mutates to S3 during time tn+1 
independent of S1 

2.   Stationary  
 The overall character 
frequencies πj of the 
nucleotides or amino acids 
remain constant. 

3.  Time reversible  
 πi · Pij (t ) = Pji (t ) · πj  



Modelling sequence evolution 

Evolutionary models are often described using a substitution 
rate matrix Q and character frequencies Π. 

€ 

Q =

− a b c
a − d e
b d − f
c e f −

 

 

 
 
 
 

 

 

 
 
 
 

A C G T 
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Π = π A ,πC ,πG ,πT( )



Modelling sequence evolution 

Evolutionary models are often described using a substitution 
rate matrix Q and character frequencies Π. 

€ 

Q =

− a b c
a − d e
b d − f
c e f −

 

 

 
 
 
 

 

 

 
 
 
 

A C G T 

€ 

Π = π A ,πC ,πG ,πT( )

From Q and Π we reconstruct a 
substitution probability matrix 
P where Pij(t) is the probability 
of changing i to j in time t. 



DNA sequence evolution models 



Protein sequence evolution models 

Generally this is the same for protein sequences, but with 20 × 20 
matrices. Some protein models are: 



The likelihood of sequence s evolving to s′ in time t: 

€ 

L t | s→ ′ s ( ) =Π
i=1

m
π si

× Psi ′ s i
(t)( )

S‘: GATCCTGAGAGAAATAAAC

S: GGTCCTGACAGAAATAAAC


The Likelihood function 



The likelihood of sequence s evolving to s′ in time t: 

€ 

L t | s→ ′ s ( ) =Π
i=1

m
π si

× Psi ′ s i
(t)( )

S‘: GATCCTGAGAGAAATAAAC

S: GGTCCTGACAGAAATAAAC


The Likelihood function 

Log-Likelihood surface under JC69 



Given a tree with branch lengths and sequences for all nodes, 
the computation of likelihood values is straightforward. 
Usually no sequences are available for the inner nodes 
(ancestral sequences). Hence we have to evaluate every 
possible labeling at the inner nodes: 

for every column in the alignment. 

Tree likelihoods 



Given a tree with branch lengths and sequences for all nodes, 
the computation of likelihood values is straightforward. 
Usually no sequences are available for the inner nodes 
(ancestral sequences). Hence we have to evaluate every 
possible labeling at the inner nodes: 

for every column in the alignment. 

But there is a faster algorithm... 

Tree likelihoods 



1 2 

5 3 4 

6 

A 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C  1 

G  0 

T  0 

A  0 

C  0 

G  1 

T  0  A  0 

C  1 

G  0 

T  0 

A  0 

C  1 

G  0 

T  0 

A 

C 

G 

T  A 

C 

G 

T 

d1 d2 

d5 d3 d4 

k 

1  …C… 

2  …G… 

3  …C… 

4  …C… 

For a single alignment 
column k and a given tree: 

Calculating tree likelihoods 

€ 

with dx = 0.1 ∀ x ∈ 1,..,5{ },  and Pij (0.1) =
0.91 if i ≠ j
0.09 if i = j
 
 
 
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For a single alignment 
column k and a given tree: 

Calculating tree likelihoods 

€ 

with dx = 0.1 ∀ x ∈ 1,..,5{ },  and Pij (0.1) =
0.91 if i = j
0.03 if i ≠ j
 
 
 

€ 

L5(i) = [PiC (d1) × L(C)]× [PiG (d2) × L(G)],∀ i ∈ {A,C,G,T}

d5 
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with dx = 0.1 ∀ x ∈ 1,..,5{ },  and Pij (0.1) =
0.91 if i = j
0.03 if i ≠ j
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L5(i) = [PiC (d1) × L(C)]× [PiG (d2) × L(G)],∀ i ∈ {A,C,G,T}

d5 

€ 

L6(i) = Pij (dv ) × Lv ( j)
j={A ,C ,G,T}
∑

 

 
 
 

 

 
 
 v={3,4,5}

∏ ,∀ i ∈ {A,C,G,T}
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For a single alignment 
column k and a given tree: 

Calculating tree likelihoods 
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with dx = 0.1 ∀ x ∈ 1,..,5{ },  and Pij (0.1) =
0.91 if i = j
0.03 if i ≠ j
 
 
 

€ 

L5(i) = [PiC (d1) × L(C)]× [PiG (d2) × L(G)],∀ i ∈ {A,C,G,T}

d5 

€ 

L6(i) = Pij (dv ) × Lv ( j)
j={A ,C ,G,T}
∑

 

 
 
 

 

 
 
 v={3,4,5}
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€ 

L(k ) = π i × L6(i) = 0.005489
i={A ,C ,G,T}
∑

A  0.0000027 

C  0.0219225 

G  0.0000263 

T  0.0000027 



1  CCG 

2  GGC 

3  CCC 

4  CCC 

For an alignment of four 
sequences and length m=3 
the likelihood is then 

Calculating tree likelihoods 

1 2 

5 3 4 

6 

CCG GGC 

CCC CCC 
0.1 0.1 

0.1 

0.1 

0.1 € 

L(T) = L(k )
k=1

m

∏ = 0.0054892 × 0.005489

€ 

= 0.0000001653381

€ 

lnL(T) = lnL(k ) = −15.61527
k=1

m
∑

or the log-likelihood is 



Optimizing branch lengths 

To compute optimal branch lengths do the following. Initialize 
the branch lengths. Choose a branch (A). Move the virtual root 
to an adjacent node (B). Compute all partial likelihoods 
recursively (C). Adjust the branch length to maximize the 
likelihood value (D). 



Finding the best tree 

1.   Exhaustive Search: evaluates every possible tree and 
hence an optimal solution is guaranteed. Limit: 10-12 
taxa 

2.   Branch and Bound: excludes parts from the tree space 
from the search where the optimal tree cannot be found. 
Guarantees to find the optimal tree.  

3.   Heuristics: Can be applied to large taxon sets but does 
not guarantee an optimal solution 



Finding the best tree:  
Heuristic search 

Building the tree: Stepwise insertion 



Finding the best tree:  
Heuristic search 

Building the tree: Stepwise insertion 



How can we deal with local maxima in the likelihood surface? 

Tree rearrangements to escape local maxima. 

Finding the best tree:  
Heuristic search 



Finding the best tree:  
Tree rearrangements 



Definition: A split Y|Z in the tree is a bipartition of the 
leaves/taxa into two subsets Y and Z induced by removing 
an edge from the tree.  

Summarizing trees 

AB|CDEF 

ABC|DEF 

A 

B 

C 

D 

E 

F 



Definition: A split Y|Z in the tree is a bipartition of the 
leaves/taxa into two subsets Y and Z induced by removing 
an edge from the tree.  

Definition: Two splits W|X and Y|Z are compatible, i.e. 
not contradictory, if at least one intersection of W ∩ Y ,  
W ∩ Z , X ∩ Y , X ∩ Z is empty.  

Summarizing trees 

AB|CDEF 

ABC|DEF 

A 

B 

C 

D 

E 

F 

AC|BDEF 

ABC|DEF 

A 

C 

B 

D 

E 

F 



Summarizing trees 

Strict consensus: contains only splits that occur in all 
input trees 
Semi-strict consensus: contains only splits that are not 
contradicted by any tree 
Majority-rule consensus (Ml): contains all splits that 
occur in more than l input trees, where typically l = 50%. 



Assessing the confidence of trees: 
The (non-parametric) Bootstrap 



What is the goal? 

Biological Problem Problem solution 


