
Ingo Ebersberger and Tina Koestler 

Applied Bioinformatics

Typical applications of bioinformatics

Reconstruction
(Phylogeny)

Prediction
(Function)

Datamanagement/Visualiza8on 

Characterization
(Gene sets)

Our research object

Our research object

MICROSPORIDIA

Our research object

Life cycle of Microsporidia

What are Microsporidia?

Modified from Keeling et al., (2005) TRENDS in Ecology and Evolution Vol.20 No.12

Molecular
Function

Cellular
Component

Biological
Process

Z
eit

Our Workplan

Ortholog prediction

Phylogeny reconstruction

GO analysis
Metabolic Pathways

Functional annotation

Introduction into Molecular Evolution

The evolution of biological sequences

The evolution of biological sequences

ACGGCATAGCCGATTAC

The evolution of biological sequences

ACGGGATAGCCCATTAC

ACGGCATAGCCGATTAC

Sequences are changed by substitutions

The evolution of biological sequences

Sequences are changed by substitutions and insertions/deletions

ACGGGAT--CCCATTAC ACGGCATATCCACTGGATTAC

ACGGGATAGCCCATTAC

ACGGCATAGCCGATTAC

The evolution of biological sequences

Contemporary sequences comprise the leafs of the tree

ACGGGAT--CCCATTAC ACGGCATATCCACTGGATTAC

ACGGGATAGCCCATTAC

ACGGCATAGCCGATTAC

The evolution of biological sequences

ACGGGAT--CCCATTAC ACGGCATATCCACTGGATTAC

ACGGGATAGCCCATTAC

ACGGCATAGCCGATTAC

ACGACATATCCACTGGATTCC

CCGGGATAGCTTCCATTAC

ACGGGATCCCAATAC

ACGGGATCCCATTAC

ACCCCCTATCCACTGGATTAC

What do we have

A collection of related
sequences that vary in
their amino acid
composition and in their
length

The evolution of biological sequences

ACGGGAT--CCCATTAC ACGGCATATCCACTGGATTAC

ACGGGATAGCCCATTAC

ACGGCATAGCCGATTAC

ACGACATATCCACTGGATTCC

CCGGGATAGCTTCCATTAC

ACGGGATCCCAATAC

ACGGGATCCCATTAC

ACCCCCTATCCACTGGATTAC

What do we have

A collection of related
sequences that vary in
their amino acid
composition and in their
length ?

A C G A
 T A C G T

A T T
 A T G T

Finding the homologous positions

Seq1: - A C G A

Seq2: T A C G T

Seq3: - A T - T

Seq4: - A T G T

A C G A
 T A C G T

A T T
 A T G T

Finding the homologous positions

Sequence Alignment

Mathematically
Optimal Alignment

Biologically
Optimal Alignment minimize

 What should a biologically correct alignment look like?
 To what extent can we define and formalize its properties?

Sequence Alignment

Mathematically
Optimal Alignment

Biologically
Optimal Alignment minimize

 What should a biologically correct alignment look like?
 To what extent can we define and formalize its properties?

Objec8ve Func8on: 

A mathema8cal func8on to measure the biological quality of 
an alignment... 

Sequence Alignment

A mathema8cal func8on to measure the biological quality of 
an alignment α... 

€

Objective: find α that maximizes σ(α)!

€

σ(α) = S(ai
i=1

n

∑ ,bi)

Sequence Alignment

then we look for that alignment, that gives us the highest score
by summing up the column scores S(ai,bj) for all columns of the
alignment.

Given two sequences A ={a1,a2,....,an} and
B={b1,b2,....,bm} and a scoring function S such that

€

S(ai,b j) =

+5, if ai = b j

−2, if ai ≠ b j

−6, for introduction of a gap









Sequence Alignment

then we look for that alignment, that gives us the highest score
by summing up the column scores S(ai,bj) for all columns of the
alignment.

Given two sequences A ={a1,a2,....,an} and
B={b1,b2,....,bm} and a scoring function S such that

€

S(ai,b j) =

+5, if ai = b j

−2, if ai ≠ b j

−6, for introduction of a gap









For example:
 T G C T C G T A

 T - - T C A T A

+5 -6 -6 +5 +5 −2 +5 +5 = 11

Sequence Alignment

Blosum62: PAM250:

Many other scoring functions exist…

Sequence Alignment

•  There are far too many alignments for evaluating every
possibility

  number of possible pair-wise alignments:

  for two sequences of length N=300 there are 10179

possibilities

Hence, we need a smart way to cut the computation short!

Dynamic programming approach for pair-wise alignments

by Needleman and Wunsch (1970).

€

2n
n











Alignment algorithms

A dynamic programming approach usually includes: 

  A mathema8cal descrip8on of the (biological) quality of an solu8on, 

i.e. an recursive objec8ve func8on 

  The computa8on of all intermediate values needed to obtain the 

globally op8mal solu8on, thereby avoiding double‐computa8ons 

  The reconstruc8on of the globally op8mal solu8on from the values 

obtained in the previous step (backtracking) 

Alignment algorithms

 T G C T C G T A

 T - - T C A T A

+5 -6 -6 +5 +5 −2 +5 +5 = 11

 T G C T C G T A

 T - T - C A T A

+5 -6 -2 -6 +5 −2 +5 +5 = 4

A1:

A2:

etc...

Underlying principle: Avoid redundant computation

Alignment algorithms

€

σ(i, j) =max
σ(i −1, j −1) + S(ai,b j)
σ(i, j −1) + S(gap,b j)
σ(i −1, j) + S(ai,gap)









€

S(ai,b j) =

+5, if ai = b j

−2, if ai ≠ b j

−6, for introduction of a gap









Scoring function Objective function

Sequence B

S
eq

ue
nc

e
A

Alignment algorithms

σ(i-1,j-1) σ(i-1,j)

σ(i,j-1)

€

σ(i, j) =max
σ(i −1, j −1) + S(ai,b j)
σ(i, j −1) + S(gap,b j)
σ(i −1, j) + S(ai,gap)









σ(i,j) is the optimal alignment score up
to and including ai and bj

Alignment algorithms

Needleman‐Wunsch algorithm: Ini8aliza8on 

€

S(ai,b j) =

+5, if ai = b j

−2, if ai ≠ b j

−6, for introduction of a gap









Alignment algorithms

Needleman‐Wunsch algorithm: Recursion 

€

S(ai,b j) =

+5, if ai = b j

−2, if ai ≠ b j

−6, for introduction of a gap









Alignment algorithms

Needleman‐Wunsch algorithm: Recursion 

€

S(ai,b j) =

+5, if ai = b j

−2, if ai ≠ b j

−6, for introduction of a gap









Alignment algorithms

Needleman‐Wunsch algorithm: Recursion 

€

S(ai,b j) =

+5, if ai = b j

−2, if ai ≠ b j

−6, for introduction of a gap









Alignment algorithms

Needleman‐Wunsch algorithm: Backtrack 

 *

 *

Alignment algorithms

Needleman‐Wunsch algorithm: Backtrack 

 A*

 A*

Alignment algorithms

Needleman‐Wunsch algorithm: Backtrack 

 TA*

 TA*

Alignment algorithms

Needleman‐Wunsch algorithm: Backtrack 

Alignment Score: 11

TGCTCGTA

T--TCATA

Alignment algorithms

Alignment algorithms

Smith‐Waterman pair‐wise local alignment 

€

σ(i, j) =max

σ(i −1, j −1) + S(ai,b j)
σ(i, j −1) + S(gap)
σ(i −1, j) + S(gap)
0




 





€

S(ai,b j) =

+5, if ai = b j

−2, if ai ≠ b j

−6, for introduction of a gap









Alignment Score: 18

Alignment algorithms

Smith‐Waterman pair‐wise local alignment: Backtrack 

TCGTA

TCATA

Both, Needleman-Wunsch and Smith-Waterman alignment
methods are exact methods since they guarantee a globally
optimal solution for the optimization problem!

Drawback: Computational expensive, i.e. O(nm) in time
and memory

Alignment algorithms

Alignment algorithms: BLAST*

BLAST uses several heuristics to reduce search space

*Gapped Blast, Altschul et al. (1997) Nucleic Acids Res. 25:3389-3402.

BLAST heuristics

1.  Given a query q and a target sequence find substrings
of length k (k-mers) of score at least t. k is normally 3
to 5 for amino acids and 12 for nucleotides.

2.  Extend each hit to a locally maximal segment.
Terminate the extension when the reduction in score
exceeds a pre-defined threshold

3.  Report maximal segments above score S.

Finding k-mers quickly

Preprocess the database of sequences:
For each sequence in the database store all k-mers in
hash-table.
This takes linear time

Query sequence:
For each k-mer in the query sequence look up the hash
table of the target database to see if it exists.
Also takes linear time

BLAST heuristics

BLAST heuristics

BLAST heuristics

BLAST Searches*

*http://blast.ncbi.nlm.nih.gov/Blast.cgi

Different BLAST programs

The NCBI BLAST family of programs includes:  

blastp  

compares an amino acid query sequence against a protein sequence 
database  

blastn  

compares a nucleo8de query sequence against a nucleo8de sequence 
database  

blastx  

compares a nucleo8de query sequence translated in all reading frames 
against a protein sequence database  

tblastn  

compares a protein query sequence against a nucleo8de sequence database 
dynamically translated in all reading frames  

tblastx  

compares the six‐frame transla8ons of a nucleo8de query sequence against 
the six‐frame transla8ons of a nucleo8de sequence database. The tblastx 
program cannot be used with the nr database on the BLAST Web page.  

Multiple Sequence Alignments

Multiple Sequence Alignments

Optimal Solution:
Extend Needleman-Wunsch or Smith-Waterman to multiple
sequences

But O(nm) in time and memory:
Computationally not feasible... 4 sequences of length 1000 ->
1TB RAM

Multiple Sequence Alignments
Sum Of Pairs

Seq1: AGA--CTA

Seq2: G-A--CTT

Seq3: AGAAACTT

Seq1: AGA--CTA

Seq2: G-A--CTT

Seq1: AGA--CTA

Seq3: AGAAACTT

Seq2: G-A--CTT

Seq3: AGAAACTT

€

S(ai,b j) =

+5, if ai = b j

−2, if ai ≠ b j

−6, for introduction of a gap









Seq1: AGA--CTA

Seq2: G-A--CTT

Seq1: AGA--CTA

Seq3: AGAAACTT

Seq2: G-A--CTT

Seq3: AGAAACTT

Score: +5 Score: +11 Score: 0

SUM OF PAIRS SCORE: 16

  The sequences are added stepwise. Thus, never
more than two sequences (or multiple sequence
alignments) are simultaneously aligned

  Sequences or MSAs are aligned using Dynamic
Programming

Multiple Sequence Alignments
Progressive alignment strategy

σ(ai,bj): score for aligning column i from alignment (or sequence) a to
column j from alignment or sequence b

n,m number of sequences in alignments a and b, respectively
score for aligning position i in sequence x from alignment a to
position j in sequence y from alignment b

ωx, ωy respective weights of the sequences x and y

€

S(ax
i ,by

j)
€

σ(ai ,b j) =
1

n ×m
S(ax

i ,by
j)

y=1

m

∑
x=1

n

∑ ×ωx ×ωy

Evolutionary relationships
of Species

22,258
Genes

1,909
Genes

6,698
Genes

Speciation

Speciation

Tim
e

Evolutionary relationships
of genes and gene products

22,258
Genes

1,909
Genes

6,698
Genes

Speciation

Speciation

Tim
e

Evolutionary relationships
of genes and gene products

22,258
Genes

1,909
Genes

6,698
Genes

Speciation

Speciation

Tim
e

Orthology

Evolutionary relationships
of genes and gene products

22,258
Genes

1,909
Genes

6,698
Genes

Speciation

Speciation

Z
eit

Orthology vs. Paralogy

Gene duplication

Evolutionary relationships
of genes and gene products

22,258
Genes

1,909
Genes

6,698
Genes

Speciation

Speciation

Z
eit

Orthology vs. Paralogy

Gene duplication

Evolutionary relationships
of genes and gene products

22,258
Genes

1,909
Genes

6,698
Genes

Speciation

Speciation

Tim
e

Orthology vs. Paralogy

Gene duplication

Evolutionary relationships
of genes and gene products

22,258
Genes

1,909
Genes

6,698
Genes

Speciation

Speciation

Tim
e

Co-Orthology and In-Paralogy

Gene duplication

22,258
Genes

1,909
Genes

6,698
Genes

Speciation

Speciation Main arguments for the orthology
assumption:

 a sequence tree that is congruent
to the species tree

 conservation of genomic position
 sequence similarity (typically,

reciprocal best blast hit)

Orthology prediction

Orthology prediction:
The RBH approach

Reciprocal Blast

Reciprocal Best
Blast Hit Pair

Proteome A Proteome B

Modified from Remm et al. J. Mol. Biol (2001) 314: 1041-1052

Reciprocal Blast

Reciprocal Best
Blast Hit Pair

Proteome A Proteome B

Modified from Remm et al. J. Mol. Biol (2001) 314: 1041-1052

B
la

st
 a

ga
in

st
 A

Sortho
Spara

Spara

B
last against B

Spara Paralogs
in A

Paralogs
in B

Orthology prediction:
The InParanoid approach

Reciprocal Blast

Reciprocal Best
Blast Hit Pair

Proteome A Proteome B

Modified from Remm et al. J. Mol. Biol (2001) 314: 1041-1052

B
la

st
 a

ga
in

st
 A

 B
last against B

Sortho
Spara

Spara

Spara

Orthology prediction:
The InParanoid approach

Reciprocal Blast

Reciprocal Best
Blast Hit Pair

Proteome A Proteome B

Modified from Remm et al. J. Mol. Biol (2001) 314: 1041-1052

B
la

st
 a

ga
in

st
 A

 B
last against B

Sortho
Spara

Spara

Orthology prediction:
The InParanoid approach

Reciprocal Blast

Reciprocal Best
Blast Hit Pair

Proteome A Proteome B

Modified from Remm et al. J. Mol. Biol (2001) 314: 1041-1052

B
la

st
 a

ga
in

st
 A

 B
last against B

Sortho
Spara

Spara

Orthology prediction:
The InParanoid approach

Reciprocal Blast

Reciprocal Best
Blast Hit Pair

Proteome A Proteome B

Modified from Remm et al. J. Mol. Biol (2001) 314: 1041-1052

B
la

st
 a

ga
in

st
 A

 B
last against B

Sortho

Orthology prediction:
The InParanoid approach

Orthology prediction:
The InParanoid approach

Reciprocal Blast

Reciprocal Best
Blast Hit Pair

Proteome A Proteome B

Modified from Remm et al. J. Mol. Biol (2001) 314: 1041-1052

B
la

st
 a

ga
in

st
 A

 B
last against B

Sortho
Spara

Spara

Sortho

Prune
Spara>Sortho

Speciation

Spara

Tree reconstruction

Working Hypothesis:
Species evolution is tree like

Tree reconstruction

Tree notation

How many trees exist?

How many unrooted trees exist?

€

b(n) =
(2n − 5)!
2n−3(n − 3)!

€

b(10) = 2027025

€

b(55) = 2.9 ×1084

€

b(100) =1.7 ×10182

Tree formats

Three representations of the
same tree

(((((CIOIN:0.4222,HOMSA:0.2777)97:0.0575,(ACRMI:
0.2611,HYDMA:0.3700)100:0.0745)100:0.0764,DROME:
0.4200)100:0.1034,
CAEEL:0.6027):0.5804,SACCE:0.5832);

#NEXUS
begin taxa;
 dimensions ntax=7;
 taxlabels
 DROME
 CIOIN
 HYDMA
 SACCE
 CAEEL
 ACRMI
 HOMSA
;
end;

begin trees;
 tree [&r] tree_1 = (((((CIOIN:0.4222,HOMSA:0.2777)
[&label=97]:0.0575,
(ACRMI:0.2611,HYDMA:0.37)[&label=100]:0.0745)
[&label=100]:0.0764,
DROME:0.42)[&label=100]:0.1034,CAEEL:0.6027):0.5804,
SACCE:0.5832);
end;

begin figtree;
 set appearance.backgroundColour=#-1;
end figtree;

Some more notations

Monophyletic group
(clade, sistergroup)

Chimpanzee Human Gorilla

Paraphyletic group
(e.g. reptiles)

Birds Crocodiles Lizards Turtles

Storks Birds of Prey Old world
vultures

New world
vultures

Polyphyletic group

Character based phylogeny reconstruction:

  A character has to be expressed in at least two
states in the taxa under study. Taxa are
grouped on the basis of shared character
states.

Some more notations

A a a

Character based phylogeny reconstruction:

  A character has to be expressed in at least two
states in the taxa under study. Taxa are
grouped on the basis of shared character
states.

  An evolutionary derived character (state) is
called an Apomorphy

Some more notations

A a a

A

A->a

a

a a
Character based phylogeny reconstruction:

  A character has to be expressed in at least two
states in the taxa under study. Taxa are
grouped on the basis of shared character
states.

  An evolutionary derived character (state) is
called an Apomorphy

  Syn-Apomorphy: an evolutionary derived
character (state) shared by a group of taxa.

Some more notations

A->a

A

A

a

Character based phylogeny reconstruction:

  A character has to be expressed in at least two
states in the taxa under study. Taxa are
grouped on the basis of shared character
states.

  An evolutionary derived character (state) is
called an Apomorphy

  Syn-Apomorphy: an evolutionary derived
character (state) shared by a group of taxa.

  Aut-Apomorphy: an evolutionary derived
character (state) present only in a single taxon

Some more notations

A->a

B->b

A,B a,B a,b

A,B

a,B

Character based phylogeny reconstruction:

  A character has to be expressed in at least two
states in the taxa under study. Taxa are
grouped on the basis of shared character
states.

  An evolutionary derived character (state) is
called an Apomorphy

  Syn-Apomorphy: an evolutionary derived
character (state) shared by a group of taxa.

  Aut-Apomorphy: an evolutionary derived
character (state) present only in a single taxon

  Plesiomorphy: an ancestral character (state)
shared by a group of extant taxa.

Some more notations

A->a

B->b

A,B a,B a,b

A,B

a,B

Character based phylogeny reconstruction:

  A character has to be expressed in at least two
states in the taxa under study. Taxa are
grouped on the basis of shared character
states.

  An evolutionary derived character (state) is
called an Apomorphy

  Syn-Apomorphy: an evolutionary derived
character (state) shared by a group of taxa.

  Aut-Apomorphy: an evolutionary derived
character (state) present only in a single taxon

  Plesiomorphy: an ancestral character (state)
shared by a group of extant taxa.

  Homoplasy: A derived character (state) that is
shared for reasons other than common decent.

Some more notations

A,B,c a,B,C a,b,c

A,B,C

A->a

a,B,C

B->b
C->c

C->c

How to infer a tree from data

The Maximum Parsimony Principle

Occam’s Razor (law of parsimony)
states:

Pluralitas non est ponenda

sine necessitate.

Plurality should not be posited

without necessity.

The principle gives precedence to
simplicity; of two competing theories
the simpler explanation for an
observation is to be preferred.

William of Ockham, 1285-1347/49

Taxon  1  2  3  4  5  6  7  8  9 

S1  C  G  C  A  C  T  G  T  T 

S2  C  G  C  A  C  T  G  T  T 

S3  T  G  A  A  C  T  G  C  T 

S4  C  G  G  A  C  T  G  C  T 

The Maximum Parsimony Criterion

Taxon  1  2  3  4  5  6  7  8  9 

S1  C  G  C  A  C  T  G  T  T 

S2  C  G  C  A  C  T  G  T  T 

S3  T  G  A  A  C  T  G  C  T 

S4  C  G  G  A  C  T  G  C  T 

The Maximum Parsimony Criterion

Taxon  1  2  3  4  5  6  7  8  9 

S1  C  G  C  A  C  T  G  T  T 

S2  C  G  C  A  C  T  G  T  T 

S3  T  G  A  A  C  T  G  C  T 

S4  C  G  G  A  C  T  G  C  T 

S1: C

S2: C

S3: T

S4: C

The Maximum Parsimony Criterion

Taxon  1  2  3  4  5  6  7  8  9 

S1  C  G  C  A  C  T  G  T  T 

S2  C  G  C  A  C  T  G  T  T 

S3  T  G  A  A  C  T  G  C  T 

S4  C  G  G  A  C  T  G  C  T 

S1: C

S2: C

S3: T

S4: C
S1: C

S3: T

S2: C

S4: C

The Maximum Parsimony Criterion

Taxon  1  2  3  4  5  6  7  8  9 

S1  C  G  C  A  C  T  G  T  T 

S2  C  G  C  A  C  T  G  T  T 

S3  T  G  A  A  C  T  G  C  T 

S4  C  G  G  A  C  T  G  C  T 

S1: C

S2: C

S3: T

S4: C
S1: C

S3: T

S2: C

S4: C
S1: C

S4: C

S3: T

S2: C

The Maximum Parsimony Criterion

Taxon  1  2  3  4  5  6  7  8  9 

S1  C  G  C  A  C  T  G  T  T 

S2  C  G  C  A  C  T  G  T  T 

S3  T  G  A  A  C  T  G  C  T 

S4  C  G  G  A  C  T  G  C  T 

S1: C

S2: C

S3: A

S4: G
S1: C

S3: A

S2: C

S4: G
S1: C

S4: G

S3: A

S2: C

The Maximum Parsimony Criterion

Taxon  1  2  3  4  5  6  7  8  9 

S1  C  G  C  A  C  T  G  T  T 

S2  C  G  C  A  C  T  G  T  T 

S3  T  G  A  A  C  T  G  C  T 

S4  C  G  G  A  C  T  G  C  T 

S1: T

S2: T

S3: C

S4: C
S1: T

S3: C

S2: T

S4: C
S1: T

S4: C

S3: C

S2: T

The Maximum Parsimony Criterion

Taxon  1  2  3  4  5  6  7  8  9 

S1  C  G  C  A  C  T  G  T  T 

S2  C  G  C  A  C  T  G  T  T 

S3  T  G  A  A  C  T  G  C  T 

S4  C  G  G  A  C  T  G  C  T 

S1: C

S2: C

S3: T

S4: C
S1: C

S3: T

S2: C

S4: C
S1: C

S4: C

S3: T

S2: C

S1: C

S2: C

S3: A

S4: G
S1: C

S3: A

S2: C

S4: G
S1: C

S4: G

S3: A

S2: C

S1: T

S2: T

S3: C

S4: C
S1: T

S3: C

S2: T

S4: C
S1: T

S4: C

S3: C

S2: T

The Maximum Parsimony Tree

{C} {A} {C} {A} {G}

1 2 3 4 5

1: ..C..

2: ..A..

3: ..C..

4: ..A..

5: ..G..

The Fitch algorithm (1970)

1.  Initialize state set Sk at each leaf k
with the characters from the
alignment.

{C} {A} {C} {A} {G}

{?} {?}

{?}

{?}

1 2 3 4 5

1: ..C..

2: ..A..

3: ..C..

4: ..A..

5: ..G..

The Fitch algorithm (1970)

1.  Initialize state set Sk at each leaf k
with the characters from the
alignment.

2.  Construct the state sets of all
internal nodes in a post-order-
traversal starting at the root node

The Fitch algorithm (1970)

1.  Initialize state set Sk at each leaf k
with the characters from the
alignment.

2.  Construct the state sets of all
internal nodes in a post-order-
traversal starting at the root node

3.  Let k be the current node and i,j
its descendents, then build the
intersection of Si and Sj:

1.  If Si ∩ Sj ≠ {}: set Sk=Si ∩ Sj

2.  If Si ∩ Sj = {}: set Sk=Si ∪ Sj
and increase the tree length
by 1.

€

{C} {A} {C} {A} {G}

{?}

{?}

1 2 3 4 5

1: ..C..

2: ..A..

3: ..C..

4: ..A..

5: ..G..

{A,G} {A,C}

Ltree=2

{C} {A} {C} {A} {G}

{A,C} {A,G}

{A,C,G}

1 2 3 4 5

1: ..C..

2: ..A..

3: ..C..

4: ..A..

5: ..G..

The Fitch algorithm (1970)

1.  Initialize state set Sk at each leaf k
with the characters from the
alignment.

2.  Construct the state sets of all
internal nodes in a post-order-
traversal starting at the root node

3.  Let k be the current node and i,j
its descendents, then build the
intersection of Si and Sj:

1.  If Si ∩ Sj ≠ {}: set Sk=Si ∩ Sj

2.  If Si ∩ Sj = {}: set Sk=Si ∪ Sj
and increase the tree length
by 1.

4.  Continue with the traversal until
the state set Sroot has been
reconstructed.

€

Ltree=3
{?}

{C} {A} {C} {A} {G}

{A,C} {A,G}

{A,C,G}

{A,C}

1 2 3 4 5

1: ..C..

2: ..A..

3: ..C..

4: ..A..

5: ..G..

The Fitch algorithm (1970)

1.  Initialize state set Sk at each leaf k
with the characters from the
alignment.

2.  Construct the state sets of all
internal nodes in a post-order-
traversal starting at the root node

3.  Let k be the current node and i,j
its descendents, then build the
intersection of Si and Sj:

1.  If Si ∩ Sj ≠ {}: set Sk=Si ∩ Sj

2.  If Si ∩ Sj = {}: set Sk=Si ∪ Sj
and increase the tree length
by 1.

4.  Continue with the traversal until
the state set Sroot has been
reconstructed.

€

Ltree=3

€

L(T) = ω j
j=1

A

∑
k=1

B

∑ ∗ diff (xk ' j ,xk '' j)

MP Objective Function

Aim: Find the tree T that minimizes the following function

diff: Scoring matrix for changes
ωj: Alignment-specific weight (often ωj=1, for all j)
A: Alignment length
B: Number of branches in T

k’, k’’: Endnotes of branch k

Aspects of Maximum Parsimony

1.  Parsimony is often considered model-free

2.  One has no choice of a model, but the
algorithm assumes that changes are rare and
backmutations do not occur (model)

3.  Although assumption 2 is often true for
morphological data, it is certainly not true for
biological sequence data

S1 A G C T T A C C T T T T A C T
S2 C G T A A A T T T C C C G A T
S3 C G C A A G T T T C C C G A T
S4 C A C T T A T T A G T C A A C

The criterion of distance

S1 A G C T T A C C T T T T A C T
S2 C G T A A A T T T C C C G A T
S3 C G C A A G T T T C C C G A T
S4 C A C T T A T T A G T C A A C

Edit distance (Hamming)

S1 A G C T T A C C T T T T A C T
S2 C G T A A A T T T C C C G A T
S3 C G C A A G T T T C C C G A T
S4 C A C T T A T T A G T C A A C

S1 S2 S3 S4

S1 0 11 11 8

S2 11 0 2 10

S3 11 2 0 9

S4 8 10 9 0

Edit distance (Hamming)

A B C D

v4

v3 v2

v1

Aim: Find branch lengths vb such that the sum of the
branch lengths connecting any two leaves gets close to
the measured distances between all pairs of leaves, e.g.

€

dA ,D
measured ≈ v1 + v2 + v3 + v4

Distance based tree reconstruction

The Four-Point-Condition

Theorem: Four-Point-Condition

A distance matrix (di,j), i,j=1....n, is representable as a tree, if
and only if

€

d(a,b) + d(c,d) ≤max d(a,c) + d(b,d),d(a,d) + d(b,c){ }
for all

€

a,b,c,d ∈ 1,2,...,n{ }

A  B  C 

B  6 

C  7  8 

D  12  14  11 

A

B

D

C

2.5

3.5

2

2.5

8.5

The ultrametric inequality

Theorem: The ultrametric inequality

A distance matrix (di,j), i,j=1....n, is representable as a clock-
like tree, if and only if

for all triple (A,B,C)

A  B  C 

B  6 

C  7  8 

D  12  14  11 

€

d(A,B) ≤max d(A,C),d(B,C){ }

A B C D
3 3

0.75
3.75

2.38
6.13

1. begin with a star tree:

2. compute for each pair (1,2) the net-divergence

3. take the pair (A,B) that minimizes Eq. (1)

(1)

A

B
C

D

F
E

The Neighbor Joining Algorithm*

€

1
2(n − 2)

D1k
k= 3

N

∑ + D2k) +
1
2
D12 +

1
N − 2

Dij
3≤ i< j
∑

Saitou and Nei (1987), Mol Biol Evol 4:406-425

4. cluster (A,B) and define an interior node W

5. compute branch lengths for the external edges:

€

v(A,W) =
1
2
D(A,B) +

1
m − 2

D(A,k) −D(B,k)
k= 3

m

∑










v(B,W) = D(A,B) − v(A,W)

A

B
C

D

F
E

The Neighbor Joining Algorithm

W

6. compute distance W to the remaining m-2 leaves:

€

D(W ,k) =
1
2
D(A,k) + D(B,k) −D(A,B)()

7. continue with step 1 with the reduced set of leaves

The Neighbor Joining Algorithm

The Maximum Likelihood criterion

S1:…AAGGCTTCAG…

S2:…AAGGCCTCAG…

S3:…ATGGACTCAG…

Time tn

Time tn+1

Modelling sequence evolution

The Maximum Likelihood criterion

S1:…AAGGCTTCAG…

S2:…AAGGCCTCAG…

S3:…ATGGACTCAG…

Time tn

Time tn+1

Modelling sequence evolution

1.   First order Markov process
The evolutionary process is
memory less, i.e. sequence S2
mutates to S3 during time tn+1
independent of S1

The Maximum Likelihood criterion

S1:…AAGGCTTCAG…

S2:…AAGGCCTCAG…

S3:…ATGGACTCAG…

Time tn

Time tn+1

Modelling sequence evolution

1.   First order Markov process
The evolutionary process is
memory less, i.e. sequence S2
mutates to S3 during time tn+1
independent of S1

2.   Stationary
 The overall character
frequencies πj of the
nucleotides or amino acids
remain constant.

The Maximum Likelihood criterion

S1:…AAGGCTTCAG…

S2:…AAGGCCTCAG…

S3:…ATGGACTCAG…

Time tn

Time tn+1

Modelling sequence evolution

1.   First order Markov process
The evolutionary process is
memory less, i.e. sequence S2
mutates to S3 during time tn+1
independent of S1

2.   Stationary
 The overall character
frequencies πj of the
nucleotides or amino acids
remain constant.

3. Time reversible
 πi · Pij (t) = Pji (t) · πj

Modelling sequence evolution

Evolutionary models are often described using a substitution
rate matrix Q and character frequencies Π.

€

Q =

− a b c
a − d e
b d − f
c e f −



















A C G T

€

Π = π A ,πC ,πG ,πT()

Modelling sequence evolution

Evolutionary models are often described using a substitution
rate matrix Q and character frequencies Π.

€

Q =

− a b c
a − d e
b d − f
c e f −



















A C G T

€

Π = π A ,πC ,πG ,πT()

From Q and Π we reconstruct a
substitution probability matrix
P where Pij(t) is the probability
of changing i to j in time t.

DNA sequence evolution models

Protein sequence evolution models

Generally this is the same for protein sequences, but with 20 × 20
matrices. Some protein models are:

The likelihood of sequence s evolving to s′ in time t:

€

L t | s→ ′ s () =Π
i=1

m
π si

× Psi ′ s i
(t)()

S‘: GATCCTGAGAGAAATAAAC

S: GGTCCTGACAGAAATAAAC

The Likelihood function

The likelihood of sequence s evolving to s′ in time t:

€

L t | s→ ′ s () =Π
i=1

m
π si

× Psi ′ s i
(t)()

S‘: GATCCTGAGAGAAATAAAC

S: GGTCCTGACAGAAATAAAC

The Likelihood function

Log-Likelihood surface under JC69

Given a tree with branch lengths and sequences for all nodes,
the computation of likelihood values is straightforward.
Usually no sequences are available for the inner nodes
(ancestral sequences). Hence we have to evaluate every
possible labeling at the inner nodes:

for every column in the alignment.

Tree likelihoods

Given a tree with branch lengths and sequences for all nodes,
the computation of likelihood values is straightforward.
Usually no sequences are available for the inner nodes
(ancestral sequences). Hence we have to evaluate every
possible labeling at the inner nodes:

for every column in the alignment.

But there is a faster algorithm...

Tree likelihoods

1 2

5 3 4

6

A  0 

C  1 

G  0 

T  0 

A  0 

C  0 

G  1 

T  0  A  0 

C  1 

G  0 

T  0 

A  0 

C  1 

G  0 

T  0 

A 

C 

G 

T  A 

C 

G 

T 

d1 d2

d5 d3 d4

k 

1  …C… 

2  …G… 

3  …C… 

4  …C… 

For a single alignment
column k and a given tree:

Calculating tree likelihoods

€

with dx = 0.1 ∀ x ∈ 1,..,5{ }, and Pij (0.1) =
0.91 if i ≠ j
0.09 if i = j




1 2

5 3 4

6

A  0 

C  1 

G  0 

T  0 

A  0 

C  0 

G  1 

T  0  A  0 

C  1 

G  0 

T  0 

A  0 

C  1 

G  0 

T  0 

A  0.00098 

C  0.02844 

G  0.02844 

T  0.00098  A 

C 

G 

T 

d1 d2

d3 d4

k 

1  …C… 

2  …G… 

3  …C… 

4  …C… 

For a single alignment
column k and a given tree:

Calculating tree likelihoods

€

with dx = 0.1 ∀ x ∈ 1,..,5{ }, and Pij (0.1) =
0.91 if i = j
0.03 if i ≠ j




€

L5(i) = [PiC (d1) × L(C)]× [PiG (d2) × L(G)],∀ i ∈ {A,C,G,T}

d5

1 2

5 3 4

6

A  0 

C  1 

G  0 

T  0 

A  0 

C  0 

G  1 

T  0  A  0 

C  1 

G  0 

T  0 

A  0 

C  1 

G  0 

T  0 

A  0.00098 

C  0.02844 

G  0.02844 

T  0.00098  A  0.0000027 

C  0.0219225 

G  0.0000263 

T  0.0000027 

d1 d2

d3 d4

k 

1  …C… 

2  …G… 

3  …C… 

4  …C… 

For a single alignment
column k and a given tree:

Calculating tree likelihoods

€

with dx = 0.1 ∀ x ∈ 1,..,5{ }, and Pij (0.1) =
0.91 if i = j
0.03 if i ≠ j




€

L5(i) = [PiC (d1) × L(C)]× [PiG (d2) × L(G)],∀ i ∈ {A,C,G,T}

d5

€

L6(i) = Pij (dv) × Lv (j)
j={A ,C ,G,T}
∑











 v={3,4,5}

∏ ,∀ i ∈ {A,C,G,T}

1 2

5 3 4

6

A  0 

C  1 

G  0 

T  0 

A  0 

C  0 

G  1 

T  0  A  0 

C  1 

G  0 

T  0 

A  0 

C  1 

G  0 

T  0 

A  0.00098 

C  0.02844 

G  0.02844 

T  0.00098 

d1 d2

d3 d4

k 

1  …C… 

2  …G… 

3  …C… 

4  …C… 

For a single alignment
column k and a given tree:

Calculating tree likelihoods

€

with dx = 0.1 ∀ x ∈ 1,..,5{ }, and Pij (0.1) =
0.91 if i = j
0.03 if i ≠ j




€

L5(i) = [PiC (d1) × L(C)]× [PiG (d2) × L(G)],∀ i ∈ {A,C,G,T}

d5

€

L6(i) = Pij (dv) × Lv (j)
j={A ,C ,G,T}
∑











 v={3,4,5}

∏ ,∀ i ∈ {A,C,G,T}

€

L(k) = π i × L6(i) = 0.005489
i={A ,C ,G,T}
∑

A  0.0000027 

C  0.0219225 

G  0.0000263 

T  0.0000027 

1  CCG 

2  GGC 

3  CCC 

4  CCC 

For an alignment of four
sequences and length m=3
the likelihood is then

Calculating tree likelihoods

1 2

5 3 4

6

CCG GGC

CCC CCC
0.1 0.1

0.1

0.1

0.1 €

L(T) = L(k)
k=1

m

∏ = 0.0054892 × 0.005489

€

= 0.0000001653381

€

lnL(T) = lnL(k) = −15.61527
k=1

m
∑

or the log-likelihood is

Optimizing branch lengths

To compute optimal branch lengths do the following. Initialize
the branch lengths. Choose a branch (A). Move the virtual root
to an adjacent node (B). Compute all partial likelihoods
recursively (C). Adjust the branch length to maximize the
likelihood value (D).

Finding the best tree

1.   Exhaustive Search: evaluates every possible tree and
hence an optimal solution is guaranteed. Limit: 10-12
taxa

2.   Branch and Bound: excludes parts from the tree space
from the search where the optimal tree cannot be found.
Guarantees to find the optimal tree.

3.   Heuristics: Can be applied to large taxon sets but does
not guarantee an optimal solution

Finding the best tree:
Heuristic search

Building the tree: Stepwise insertion

Finding the best tree:
Heuristic search

Building the tree: Stepwise insertion

How can we deal with local maxima in the likelihood surface?

Tree rearrangements to escape local maxima.

Finding the best tree:
Heuristic search

Finding the best tree:
Tree rearrangements

Definition: A split Y|Z in the tree is a bipartition of the
leaves/taxa into two subsets Y and Z induced by removing
an edge from the tree.

Summarizing trees

AB|CDEF

ABC|DEF

A

B

C

D

E

F

Definition: A split Y|Z in the tree is a bipartition of the
leaves/taxa into two subsets Y and Z induced by removing
an edge from the tree.

Definition: Two splits W|X and Y|Z are compatible, i.e.
not contradictory, if at least one intersection of W ∩ Y ,
W ∩ Z , X ∩ Y , X ∩ Z is empty.

Summarizing trees

AB|CDEF

ABC|DEF

A

B

C

D

E

F

AC|BDEF

ABC|DEF

A

C

B

D

E

F

Summarizing trees

Strict consensus: contains only splits that occur in all
input trees
Semi-strict consensus: contains only splits that are not
contradicted by any tree
Majority-rule consensus (Ml): contains all splits that
occur in more than l input trees, where typically l = 50%.

Assessing the confidence of trees:
The (non-parametric) Bootstrap

What is the goal?

Biological Problem Problem solution

