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12 Introduction to Ramsey Theory

Informally saying, Ramsey theory is a theory of numerous results in different areas of
discrete mathematics, all basically showing that “a complete disorder is mathematically
impossible”. In other words, Ramsey theory is looking for order inside disorder.

We very briefly introduce some fundamental directions of research of this interesting
branch of mathematics.
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Brief outline of this lecture

• Exempl. problems: the party problem, Schur’s theorem, convex points

• Ramsey theorem: its infinite version, and some special finite bounds

• Hales-Jewett theorem – another kind of problems
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12.1 Some exemplary problems

Example 12.1. Consider six people meeting at a party. Then three of them know
each other, or three of them are mutually strangers. 2

Up to symmetry, person A knows at least three others (out of five) – say B,C,D.
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Then either some two of B,C,D known each other (and we have three!), or B,C,D are
mutually strangers. 2 2

Theorem 12.2. (the Party theorem) For every integer p there exists N such that:
In any group of N people, some p of them know each other or in some group of p they
are mutually strangers.

Remark. Imagine that the pairs of people of the group are coloured blue if they know each
other, or red if they are strangers (do not know each other). Then Theorem 12.2 claims that
there exists a monochromatic k-tuple.
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Schur’s theorem

Theorem 12.3. For any integer c > 0 there exists N such that the following holds: If
the set of integers from 1 to N is coloured arbitrarily with c colours, then the equation
x + y = z has a monochromatic solution in this set. 2

Example 12.4. If the set {1, 2, 3, 4, 5} is 2-coloured, then the equation x + y = z has
a monochromatic solution there (Theorem 12.3 for c = 2 and N = 5).

Up to symmetry, number 1 is red and then 2 is blue, hence 4 is red. . .

1, 2, 3, 4, 52

What is the colour of 3? It must be blue. However, what is then the colour of 5?

1, 2, 3, 4, 5?

2
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Convex point configurations

Theorem 12.5. For any integer q ≥ 3 there exists N such that the following holds:
If N points in the plane are in an arbitrary general position (i.e. no three of them are
colinear), then there exist q of them which form the vertices of a convex q-gon. 2

Example 12.6. Among any 5 planar points in general position, some 4 form a convex
quadrangle. 2

This is an easy analysis, starting from the convex hull of all (a triangle). . .
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12.2 Theorem(s) of Ramsey

Theorem 12.7. (Ramsey theorem – infinite) For any integers c and k the following
holds: If each of the k-tuples of elements of an infinite sequence S is coloured with
one of c colours, then there exists an infinite subsequence S0 ⊆ S such that all the
k-tuples of elements of S0 have the same colour (monochromatic S0).

Remark: For k = 1, this is the pigeon-hole principle. . . 2

Proof: We use induction on k. The case of k = 1 is clear by the remark.

We now consider (k + 1)-tuples. Set S1 = S, and x1 be the first element of S.

– Assign every k-tuple T of S1 \ {x1} the colour of T ∪ {x1}. By the inductive
assumption, there exists an infinite monochromatic subsequence S′

1 ⊆ S1\{x1}.2

– Repeat the previous with S2 = S′

1, then with S3, S4, . . . (“till infinity”) 2

Finally, consider the above selected sequence S′ = (x1, x2, x3, . . .). Every xi has its
“own colour” (of the monochromatic subsequence S′

i), and one colour repeats infinitely
many times. This is our S0. 2
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Theorem 12.8. (Ramsey theorem)
For any integers c, k and n, there exists N = R(k; c) such that the following holds:
If each of the k-tuples of elements of an N -element set M is coloured with one of c
colours, then there exists a subset M0 ⊆ M of n elements such that all the k-tuples
of elements of M0 have the same colour (monochromatic M0).

This theorem follows from Theorem 12.7 via a usual compactness argument. However,
this approach gives no usable bounds on R(k; c). 2

Lemma 12.9. (Theorem 12.2) For every integers m, ℓ the following is true: In any
collection of N(m, ℓ) =

(
m+ℓ−2

m−1

)
people, some m of them know each other or in some

group of ℓ they are mutually strangers. 2

Proof by induction on m + ℓ (a sketch):

Notice that (cf. Pascal’s triangle)

N(m, ℓ) =

(
m + ℓ− 2

m− 1

)

=

(
m + ℓ− 3

m− 2

)

+

(
m + ℓ− 3

m− 1

)

= N(m− 1, ℓ) + N(m, ℓ− 1) .2

Pick any person A. Then either at least N(m − 1, ℓ) persons are known to A, or at
least N(m, ℓ − 1) persons are strangers to A. In either case, by induction, we get a
solution of the respective subproblem, and possibly add A to it. 2
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Edge-coloured graph view

Ramsey–type results for coloured pairs (k = 2) are often formulated for edge–coloured
(not proper colourings, though!) graphs. Such as the Party problem (Theorem 12.2)
asks for a monochromatic copy of Kp. Or, the following is well-known:

Lemma 12.10. For any c > 1 the following holds: If the edges of a complete graph
KN where N = N(c) = ⌈c! · e⌉ are coloured with c colours, then there exists a
monochromatic triangle. (Here e = 2.718281 . . .) 2

Proof: For c = 2, this is true by Example 12.1. We continue the proof by induction
on c ≥ 2; taking N1 = (c + 1) · (N − 1) + 2 where N = N(c).

Pick any vertex a of KN1
(whose edges are coloured with c + 1 colours). Then a has

N1−1 = (c+1)·(N−1)+1 incident edges, and at least N of them, by the pigeon–hole
principle, have the same colour – say 1. The subgraph induced on the other ends of
these edges is a copy K ′ of KN . So, either some edge of this K ′ has colour 1 and we
get a triangle in this colour with a, or K ′ is edge-c-coloured, and the statement folows
by induction. 2

Lastly, it remains to verify that N(c + 1) = ⌈(c + 1)! · e⌉ = ⌊c! · e⌋ · (c + 1) + 2, which
follows from well-known e =

∑
∞

i=0 1/i! . 2
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Graph Ramsey numbers

Definition: The Ramsey number R
(

Kp, Kq, Kr, . . .
︸ ︷︷ ︸

c

)
is the minimum integer R such

that the following is true: Whenever the edges of the complete graph KR are coloured
arbitrarily with c colours, then there exists a monochromatic copy of Kp in colour 1,
or of Kq in colour 2, or of Kr in colour 3, or . . . .

This Ramsey number is always defined by Theorem 12.8, and the definition can be
extended to arbitrary subgraphs instead of the cliques. 2

For instance, N(c) = R
(

K3, K3, . . .
︸ ︷︷ ︸

c

)
from Lemma 12.10 are tight for c = 2, 3 (N= 6, 17).
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Corollary 12.11. (Theorem 12.3) For any integer c > 0 the following holds: If the
set of integers from 1 to N(c) = ⌈c! · e⌉ is coloured arbitrarily with c colours, then the
equation x + y = z has a monochromatic solution in this set. 2

Proof: We colour the edges of the complete graph KN on vertices {1, . . . , N} as
follows: {u, v} gets the colour of the number |u− v|. Then a monochromatic triangle
exists by Lemma 12.10 – say on the vertices a < b < c – and hence the numbers
x = b − a, y = c − b, and z = c − a have the same colour and x + y = z. 2
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12.3 Hales-Jewett theorem

Informal explanation: in high-dimensional tic-tac-toe game, there cannot be a draw.

2

Definition: Let n and D be integers A formal hypercube of dimension D and side n
is the set of formal words ΣD = {1, 2, . . . , n}D.

A formal (combinatorial) line in ΣD is a word ℓ ∈ (Σ ∪ {x})D \ ΣD where x is a
(symbolic) variable. The n points of this line are the words ℓ(x = 1), . . . , ℓ(x = n). 2

Remark: Every formal line is a line in the “usual sense”, but not the converse. Hence the
coming statement is actually much stronger than just saying that a high-dimensional tic-tac-
toe game has no draw.

Theorem 12.12. (Hales-Jewett) For every integers n, c > 1 there exists D =
D(n, c) such that the following holds: If the points of a formal D-dimensional hyper-
cube of side n are coloured with c colours, then there always exists a monochromatic
combinatorial line.
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Van der Waerden’s theorem

Theorem 12.13. (van der Waerden) For every integers n, c > 1 there exists W =
W (n, c) such that the following holds: If the integers 1, 2, . . . , W are coloured with c
colours, then there exists a monochromatic arithmetic progression among them. 2

Proof : We choose W = nD(n,c) where D is from Theorem 12.12. The integers
1, 2, . . . , W , written down as n-adic numbers, then form a hypercube of side n and
dimension D(n, c). A monochromatic line exists in this hypercube by Theorem 12.12,
and the points of this line clearly give an arithmetic progression of length n.


