
Petr Hliněný, FI MU Brno 1 FI: MA010: Distance in Graphs

3 Distances in Graphs

While the previous lecture studied mainly bare graph connectivity, now we are going to inves-

tigate how “long” a connection could be.

This naturally leads to the concept of graph distance, which has two variants: a simple one

only measures by the number of edges, while the weighted one has a “length” for each edge.

a b c

d x

2

Brief outline of this lecture

• Distance in a graph, basic properties.

• Graph metrics, and a dynamic computation of it (Floyd–Warshall).

• Dijkstra’s algorithm for the shortest weighted distance in a graph.



Petr Hliněný, FI MU Brno 2 FI: MA010: Distance in Graphs

3.1 Graph distance

Recall that a walk of length n in a graph G is an alternating sequence of vertices and
edges v0, e1, v1, e2, v2, . . . , en, vn such that each ei has edns vi−1, vi.

Definition 3.1. Distance dG(u, v) between two vertices u, v of a graph G

is defined as the length of the shortest walk between u and v in G.
If there is now walk between u, v, then we declare dG(u, v) = ∞. 2

Informally and naturally, the distance between u, v equals the least possible number of edges

traversed from u to v. Specially dG(u, u) = 0.

Recall, moreover, that the shortest walk is always a path – Theorem 2.2.

Fact: The distance in an undirected graph is symmetric, i.e. dG(u, v) = dG(v, u). 2

Lemma 3.2. The graph distance satisfies the triangle inequality:

∀u, v, w ∈ V (G) : dG(u, v) + dG(v, w) ≥ dG(u, w) .

Proof. Easily; starting with a walk of length dG(u, v) from u to v, and appending a
walk of length dG(v, w) from v to w, results in a walk of length dG(u, v) + dG(v, w)
from u to w. This is an upper bound on the real distance from u to w. 2



Petr Hliněný, FI MU Brno 3 FI: MA010: Distance in Graphs

How to find the distance

Theorem 3.3. Let u, v, w be vertices of a connected graph G such that
dG(u, v) < dG(u, w). Then the breadth-first search algorithm on G, starting from
u, finds the vertex v before w. 2

Proof. We apply induction on the distance dG(u, v): If dG(u, v) = 0, i.e. u = v, then
it is trivial that v is found first. So let dG(u, v) = d > 0 and v′ be a neighbour of v

closer to u, which means dG(u, v′) = d − 1. Analogously choose w′ a neighbour of w

closer to u. Then

dG(u, w′) ≥ dG(u, w) − 1 > dG(u, v) − 1 = dG(u, v′) ,

and so v′ has been found before w′ by the inductive assumption. Hence v′ has been
stored into U before w′, and (cf. FIFO) neighbours of v′ are found before neighbours
of w′. 2 2

Corollary 3.4. Breadth-first search algorithm on G correctly determines graph dis-
tances from the starting vertex.



Petr Hliněný, FI MU Brno 4 FI: MA010: Distance in Graphs

Other related terms

s s s s

s s s s

Definition. Let G be a graph. We define, with respect to G, the following notions:

• The excentricity of a vertex exc(v) is the largest distance from v to another
vertex; exc(v) = maxx∈V (G) dG(v, x). 2

• The diameter diam(G) of G is the largest excentricity over its vertices, and the
radius rad(G) of G is the smallest excentricity over its vertices. 2

• The center of G is the subset U ⊆ V (G) of vertices such that their excentricity
equals rad(G).



Petr Hliněný, FI MU Brno 5 FI: MA010: Distance in Graphs

3.2 Computing all-pairs distances

Definition: The metrics of a graph is the collection of distances between all pairs of its
vertices. In other words, the metrics is a matrix d[,] such that d[i,j] is the distance
from i to j. 2

Method 3.5. Dynamic programming for all-pair distances

• Initially, let d[i,j] be 1 (alt. the edge length of {i, j}), or ∞ if i, j are not
adjacent. 2

• After every step t ≥ 0 let d[i,j] be the shortest length of a path between i, j

such that its internal vertices are from {0, 1, 2, . . . , t − 1}. 2

• Moving from step t to t + 1, we update all the distances as:

– Either d[i,j] from the previous step is still optimal (the vertex t does not
help to obtain a shorter path),

– or there is a shorter path through the vertex t, which is of length
d[i,t]+d[t,j]. 2

Theorem 3.6. Method 3.5 correctly computes the distance d[i,j] between each ver-
tex pair i, j.



Petr Hliněný, FI MU Brno 6 FI: MA010: Distance in Graphs

Remark: In a practical implementation we may use, say, MAX INT/2 in place of ∞.

Algorithm 3.7. Floyd–Warshall algorithm (cf. 3.5)
input < the adjacency matrix G[][] of an N-vertex graph,

such that the vertices of G are indexed as 0...N-1,
and G[i,j]=1 if i, j adjacent and G[i,j]=0 otherwise;

for (i=0; i<N; i++) for (j=0; j<N; j++)

d[i,j] = (i==j?0: (G[i,j]? 1: MAX INT/2));

for (t=0; t<N; t++) {
for (i=0; i<N; i++) for (j=0; j<N; j++)

d[i,j] = min(d[i,j], d[i,t]+d[t,j]);

}
return ’The distance matrix d[][]’; 2

Notice that this Algorithm 3.7 is extremely simple and relatively fast — it runs about
N3 steps to get the whole distance matrix.

Its only problem is that all-pairs distances must be computed at the same time, even
if we need to know just one distance. . .



Petr Hliněný, FI MU Brno 7 FI: MA010: Distance in Graphs

3.3 Weighted distance in graphs

Definition 3.8. A weighted graph is a graph G together with
a weighting w of the edges by real numbers w : E(G) → R (edge lengths in this case).
A positively weighted graph G, w is such that w(e) > 0 for all edges e.

The edge weights w(e) are sometimes called also edge costs. 2

Definition: Consider a positively weighted graph G, w. The length of the weighted
walk S = v0, e1, v1, e2, v2, . . . , en, vn in G is the sum

dw

G(S) = w(e1) + w(e2) + . . . + w(en) .

The weighted distance in G, w between a vertex pair u, v is

dw

G(u, v) = min{dw

G(S) : S is a walk between u, v} .2

Analogously to Section 3.1 we have:

Lemma 3.9. The weighted distance in a positively weighted graph satisfies the triangle
inequality.



Petr Hliněný, FI MU Brno 8 FI: MA010: Distance in Graphs

s s s

s s

s s

a b
c

f f

1
3 3

1
4

1 1
1

The distances between a–c and between b–c are 3. What about the a–b distance? 2

Is it 6? 2 No, the distance from a to b in the graph is 5 (traverse the upper v.).

s s

ss

x yf f

−3

3

3 1
1 1

And what is the x–y distance now? Say, 3 or 1? 2 No, it is −∞.
We have got a very good reason to forbid negative edges!



Petr Hliněný, FI MU Brno 9 FI: MA010: Distance in Graphs

3.4 Computing the shortest paths

This section with the more specific problem of finding the shortest distance between
one pair of terminals in a graph. This very frequent problem is usually solved using
Dijkstra’s or A∗ algorithms.

Remark: The coming Dijkstra’s algorithm is, on one hand, slightly more involved than Algo-

rithm 3.7, but it is significantly faster in the computation of single shortest distance, on the

other hand. 2

Dijkstra’s algorithm

• Is a variant of graph searching (related to BFS), in which every discovered vertex
carries a variable keeping its temporary distance— the length of the shortest so
far discovered walk reaching this vertex from the starting vertex. 2

• We always pick from the depository the vertex with the shortest temporary dis-
tance. This is because no shorter walk may reach this vertex (assuming nonneg-
ative edge lengths). 2

• At the end of processing, the temporary distances become final shortest distances
from the starting vertex (cf. Theorem 3.12).



Petr Hliněný, FI MU Brno 10 FI: MA010: Distance in Graphs

Algorithm 3.10. Computing the single-source shortest paths (Dijkstra)
Finding the shortest path(s) from u to v, or from u to all other vertices.
input < N-vertex graph given by adjacencies neib[][] and corr. lengths len[][],

where neib[i][0],...,neib[i][dg[i]-1] are the neighbours of a
degree-dg[i] vertex i, and the length from i to neib[i][k] is len[i][k]>0;

input < u,v, where u is the starting vertex and v the destination;2

// state[i] records the vertex processing state, dist[i] is the temporary distance
for (i=0; i<=N; i++) { dist[i] = MAX INT; state[i] = 0; }
dist[u] = 0;2

while (state[v]==0) {
for (i=0, j=N; i<N; i++)

if (state[i]==0 && dist[i]<dist[j]) j = i;

// picking the nearest unprocessed vertex j, and processing it. . .
if (dist[j]==MAX INT) return ’No path’;
state[j] = 1;2

for (k=0; k<dg[j]; k++)

if (dist[j]+len[j][k]<dist[neib[j][k]]) {
incm[neib[j][k]] = j;

dist[neib[j][k]] = dist[j]+len[j][k];

}
}
return ’A u-v path of length dist[v], stored in incm[] reversely’;



Petr Hliněný, FI MU Brno 11 FI: MA010: Distance in Graphs

Remark: Notice that Algorithm 3.10 works as-is also in directed graphs.

Example 3.11. An illustration run of Dijkstra’s Algorithm 3.10 from u to v in the following

graph.

s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5

2

2

1

2

0

∞

∞

∞

∞∞

∞

∞



Petr Hliněný, FI MU Brno 12 FI: MA010: Distance in Graphs

s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5 2

2

1

2

ff
0

1

∞

5

∞∞

∞

2

2 s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5 2

2

1

2

f ff
0

1

3

5

∞4

∞

2

2 s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5 2

2

1

2

f f

ff

0

1

3

5

74

3

2

2

s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5
2

2

1

2

f f

f ff

0

1

3

4

74

3

2

2 s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5
2

2

1

2

f f

f f

ff

0

1

3

4

74

3

2

2 s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5
2

2

1

2

f f

f f

f ff

0

1

3

4

64

3

2

2

s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5
2

2

1

2

f f

f f

f f

ff

0

1

3

4

54

3

2

2 s s

s

s

ss

s

s

u

v

1

5

3

2

3
1

2

1

5
2

2

1

2

f f

f f

f f

f ff

0

1

3

4

54

3

2

2



Petr Hliněný, FI MU Brno 13 FI: MA010: Distance in Graphs

Fact: The number of steps performed by Algorithm 3.10 to find the shortest path from
u to v is about N2 when N is the number of vertices (not so good. . . ). 2

On the other hand, with a better implementation of the depository, one can achieve
on sparse graphs runtime almost linear in the number of edges. 2

Theorem 3.12. Every iteration of Algorithm 3.10 (since just after finishing the first
while() loop) maintains an invariant that

• dist[i] is the length of a shortest path from u to i using only those internal
vertices x of state[x]==1 (finished). 2

Proof: Briefly using mathematical induction:

• In the first iteration, the first vertex j=u is picked and processed, and its neigh-
bours receive the correct straight distances (edge lengths). 2

• In every next iteration, the picked vertex j is the nearest one to the starting
vertex u. Assuming nonnegative costs del[][], this certifies that no shorter
walk from u to j may exist in the graph. 2

On the other hand, any improved path from u to an unfinished vertex i passing
through j has ij as the last edge (since the distance of j is not smaller than of
the other finished vertices). Hence dist[i] is updated correctly in the algorithm.

2



Petr Hliněný, FI MU Brno 14 FI: MA010: Distance in Graphs

In some situations, there is a better alternative to ordinary Disjktra’s algorithm— the
Algorithm A∗ which uses a suitable potential function to direct the search “towards
the destination”. Whenever we have a good “sense of direction” (e.g. in a topo-map
navigation), A∗ can perform much better!

Algoritmus A∗

• It re-implements Dijkstra with suitably modified edge costs. 2

• Let pv(x) be a potential function giving an arbitrary lower bound on the distance
from x to the destination v. E.g., in a map navigation, pv(x) may be the
Euclidean distance from x to v. 2

• Each directed(!) edge xy of the weighted graph G, w gets a new cost

w′(xy) = w(xy) + pv(y) − pv(x) .

The potential pv is admissible when all w′(xy) ≥ 0, i.e. w(xy) ≥ pv(x)− pv(y).

The above Euclidean potential is always admissible. 2

• The modified length of any u-v walk S then is dw
′

G
(S) = dw

G
(S)+pv(v)−pv(u),

which is a constant difference from dw

G
(S)! Hence some S is optimal for the

weighting w iff S is optimal for w′.

Here the Euclidean potential “strongly prefers” edges in the dest. direction.


