3 Distances in Graphs

While the previous lecture studied mainly bare graph connectivity, now we are going to investigate how "long" a connection could be.

This naturally leads to the concept of graph distance, which has two variants: a simple one only measures by the number of edges, while the weighted one has a "length" for each edge.

Brief outline of this lecture

- Distance in a graph, basic properties.
- Graph metrics, and a dynamic computation of it (Floyd–Warshall).
- Dijkstra's algorithm for the shortest weighted distance in a graph.

3.1 Graph distance

Recall that a walk of length n in a graph G is an alternating sequence of vertices and edges $v_0, e_1, v_1, e_2, v_2, \ldots, e_n, v_n$ such that each e_i has edns $v_{i-1}, v_i.$

Definition 3.1. Distance $d_G(u, v)$ between two vertices u, v of a graph G is defined as the length of the shortest walk between u and v in G . If there is now walk between u, v , then we declare $d_G(u, v) = \infty$. \Box

Informally and naturally, the distance between u, v equals the least possible number of edges traversed from u to v. Specially $d_G(u, u) = 0$.

Recall, moreover, that the shortest walk is always a path – Theorem 2.2.

Fact: The distance in an undirected graph is symmetric, i.e. $d_G(u, v) = d_G(v, u)$.

Lemma 3.2. *The graph distance satisfies the triangle inequality:*

 $\forall u, v, w \in V(G) : d_G(u, v) + d_G(v, w) > d_G(u, w).$

Proof. Easily; starting with a walk of length $d_G(u, v)$ from u to v, and appending a walk of length $d_G(v, w)$ from v to w, results in a walk of length $d_G(u, v) + d_G(v, w)$ from u to w . This is an upper bound on the real distance from u to w .

How to find the distance

Theorem 3.3. *Let* u, v, w *be vertices of a connected graph* G *such that* $d_G(u, v) < d_G(u, w)$. Then the breadth-first search algorithm on G, starting from u , finds the vertex v before w .

Proof. We apply induction on the distance $d_G(u, v)$: If $d_G(u, v) = 0$, i.e. $u = v$, then it is trivial that v is found first. So let $d_G(u,v)=d>0$ and v' be a neighbour of v closer to u , which means $d_G(u,v')=d-1.$ Analogously choose w' a neighbour of w closer to u . Then

$$
d_G(u, w') \ge d_G(u, w) - 1 > d_G(u, v) - 1 = d_G(u, v'),
$$

and so v' has been found <mark>before</mark> w' by the inductive assumption. Hence v' has been stored into U before w' , and (cf. FIFO) neighbours of v' are found before neighbours of w' . \square

Corollary 3.4. *Breadth-first search algorithm on* G *correctly determines graph distances from the starting vertex.*

- The *excentricity* of a vertex $exc(v)$ is the largest distance from v to another vertex; $\text{exc}(v) = \max_{x \in V(G)} d_G(v, x)$. \Box
- The *diameter* diam(G) of G is the largest excentricity over its vertices, and the *radius* rad(G) of G is the smallest excentricity over its vertices. \Box
- The *center* of G is the subset $U \subseteq V(G)$ of vertices such that their excentricity equals rad (G) .

3.2 Computing all-pairs distances

Definition: The *metrics* of a graph is the collection of distances between all pairs of its vertices. In other words, the metrics is a matrix $d \cdot 1$ such that $d \cdot 1$ is the distance from i to i . \Box

Method 3.5. Dynamic programming for all-pair distances

- Initially, let d[i,j] be 1 (alt. the edge length of $\{i, j\}$), or ∞ if i, j are not adiacent.
- After every step $t > 0$ let d[i, i] be the shortest length of a path between i, j such that its internal vertices are from $\{0, 1, 2, \ldots, t-1\}$. \Box
- Moving from step t to $t + 1$, we update all the distances as:
	- Either $d[i,j]$ from the previous step is still optimal (the vertex t does not help to obtain a shorter path).
	- or there is a shorter path through the vertex t, which is of length $d[i,t]+d[t,i]$.

Theorem 3.6. *Method 3.5 correctly computes the distance* d[i,j] *between each vertex pair* i, j*.*

Remark: In a practical implementation we may use, say, MAX_INT/2 in place of ∞ .

```
Algorithm 3.7. Floyd–Warshall algorithm (cf. 3.5)
input < the adjacency matrix G[][] of an N-vertex graph,
    such that the vertices of G are indexed as 0...N-1,
    and G[i,j]=1 if i, j adjacent and G[i,j]=0 otherwise;
for (i=0; i\le N; i++) for (i=0; i\le N; i++)d[i, i] = (i == i?0; (G[i, i] ? 1; MAXINT/2));for (t=0; t < N; t++) {
```

```
for (i=0; i<N; i++) for (i=0; i<N; i++)
```

```
d[i,j] = min(d[i,j], d[i,t]+d[t,j]);
```

```
return 'The distance matrix d[][]'; \Box
```
Notice that this Algorithm 3.7 is extremely simple and relatively fast — it runs about N^3 steps to get the whole distance matrix.

Its only problem is that all-pairs distances must be computed at the same time, even if we need to know just one distance...

}

3.3 Weighted distance in graphs

Definition 3.8. A weighted graph is a graph G together with a weighting w of the edges by real numbers $w : E(G) \to \mathbf{R}$ (edge lengths in this case). A *positively weighted graph* G, w is such that $w(e) > 0$ for all edges e.

The edge weights $w(e)$ are sometimes called also *edge costs*. \Box

Definition: Consider a positively weighted graph G, w . The length of the weighted walk $S = v_0, e_1, v_1, e_2, v_2, \dots, e_n, v_n$ in G is the sum

$$
d_G^w(S) = w(e_1) + w(e_2) + \ldots + w(e_n).
$$

The *weighted distance* in G, w between a vertex pair u, v is

 $d_G^w(u,v) = \min\{d_G^w(S) : S$ is a walk between $u, v\}$.

Analogously to Section 3.1 we have:

Lemma 3.9. The weighted distance in a positively weighted graph satisfies the *triangle inequality.*

The distances between $a-c$ and between $b-c$ are 3. What about the $a-b$ distance? Is it 6? \Box No, the distance from a to b in the graph is 5 (traverse the upper v.).

And what is the $x-y$ distance now? Say, 3 or 1? \Box No, it is $-\infty$. We have got a very good reason to forbid negative edges!

Petr Hliněný, FI MU Brno $\overline{}$ 8 FI: MA010: Distance in Graphs

3.4 Computing the shortest paths

This section with the more specific problem of finding the shortest distance between one pair of terminals in a graph. This very frequent problem is usually solved using Dijkstra's or A^* algorithms.

Remark: The coming Dijkstra's algorithm is, on one hand, slightly more involved than Algorithm 3.7, but it is significantly faster in the computation of single shortest distance, on the other hand \Box

Dijkstra's algorithm

- Is a variant of graph searching (related to BFS), in which every discovered vertex carries a *variable keeping its temporary distance*— the length of the shortest so far discovered walk reaching this vertex from the starting vertex. \Box
- We always pick from the depository the vertex with the shortest temporary distance. This is because no shorter walk may reach this vertex (assuming nonnegative edge lengths). \Box
- At the end of processing, the temporary distances become final shortest distances from the starting vertex (cf. Theorem 3.12).

Algorithm 3.10. Computing the single-source shortest paths (Dijkstra) *Finding the shortest path(s) from* u *to* v*, or from* u *to all other vertices.* input < N*-vertex graph given by adjacencies* neib[][] *and corr. lengths* len[][]*, where* neib[i][0],...,neib[i][dg[i]-1] *are the neighbours of a degree-*dg[i] *vertex* i*, and the length from* i *to* neib[i][k] *is* len[i][k]>0; input $\langle u, v \rangle$, where u *is the starting vertex and* v *the destination*; \Box

```
Petr Hliněný, FI MU Brno 10 10 FI: MA010: Distance in Graphs
// state[i] records the vertex processing state, dist[i] is the temporary distance
for (i=0; i<=N; i++) \{ dist[i] = MAX_INT; state[i] = 0; \}dist[u] = 0:while (\text{state}[v] == 0) {
    for (i=0, i=N; i\le N; i++)if (\text{state}[i] == 0 \& \text{dist}[i] < \text{dist}[i]) i = i;
    // picking the nearest unprocessed vertex j, and processing it. . .
    if (dist[j]==MAX INT) return 'No path';
    state[i] = 1;for (k=0; k< dy[i]; k++)if (dist[j]+len[j][k]<dist[neib[j][k]]) {
             incm[neib[i][k]] = i;dist[neib[i][k]] = dist[i]+len[i][k];}
}
return 'A u-v path of length dist[v], stored in incm[] reversely';
```
Remark: Notice that Algorithm 3.10 works as-is also in directed graphs.

Example 3.11. An illustration run of Dijkstra's Algorithm 3.10 from u to v in the following graph.

Fact: The number of steps performed by Algorithm 3.10 to find the shortest path from u to v is about N^2 when N is the number of vertices (not so good...). On the other hand, with a better implementation of the depository, one can achieve on sparse graphs runtime almost linear in the number of edges. \Box

Theorem 3.12. *Every iteration of Algorithm 3.10 (since just after finishing the first* while() *loop) maintains an invariant that*

• dist[i] *is the length of a shortest path from* u *to* i *using only those internal vertices* x of state $[x] == 1$ *(finished).*

Proof: Briefly using *mathematical induction*:

- In the first iteration, the first vertex $j=u$ is picked and processed, and its neighbours receive the correct straight distances (edge lengths). \Box
- In every next iteration, the picked vertex j is the nearest one to the starting vertex u. Assuming nonnegative costs del[][], this certifies that no shorter walk from u to j may exist in the graph. \Box

On the other hand, any improved path from u to an unfinished vertex i passing through j has i j as the last edge (since the distance of j is not smaller than of the other finished vertices). Hence $dist[i]$ is updated correctly in the algorithm. \Box

In some situations, there is a better alternative to ordinary Disjktra's algorithm— the *Algorithm* A[∗] which uses a suitable *potential function* to direct the search "towards the destination". Whenever we have a good "sense of direction" (e.g. in a topo-map navigation), A^* can perform much better!

Algoritmus A[∗]

- It re-implements Dijkstra with suitably modified edge costs. \Box
- Let $p_v(x)$ be a potential function giving an arbitrary lower bound on the distance from x to the destination v. E.g., in a map navigation, $p_n(x)$ may be the Euclidean distance from x to v_{\perp}
- Each directed(!) edge xy of the weighted graph G, w gets a new cost

 $w'(xy) = w(xy) + p_v(y) - p_v(x)$.

The potential p_v is *admissible* when all $w'(xy) \ge 0$, i.e. $w(xy) \ge p_v(x) - p_v(y)$. The above Euclidean potential is always admissible. \Box

 \bullet The modified length of any $u\hbox{-} v$ walk S then is $d_G^{w'}(S)=d_G^w(S)+p_v(v)-p_v(u)$, which is a constant difference from $d_G^w(S)!$ Hence some S is optimal for the weighting w iff S is optimal for w' .

Here the Euclidean potential "strongly prefers" edges in the dest. direction.