
Petr Hliněný, FI MU Brno 1 FI: MA010: Network Flows

6 Network Flow Problems

Yet another area of rich applications of graphs (actually digraphs) deals with so called networks

and “commodity flows” in them.

This time, the main optimization task is to maximize a flow from the designated source to
the designated sink, respecting given constrains – capacities of network arcs.

s s

s s

ss

3

1

4

5

1

5

3

2
2

4

2

z s

2

Brief outline of this lecture

• Networks (weighted directed graphs) and flows in them.

• A network–flow algorithm(s) based on augmenting paths.

• Applications in connectivity, matching, and SDR problems.

Petr Hliněný, FI MU Brno 2 FI: MA010: Network Flows

6.1 Defining a flow network

The underlying structure of a flow network is a directed graph, with its vertices rep-
resenting network nodes, and arcs representing the (existing or possible) connections
between nodes. 2

Definition 6.1. A flow network is a quadruple S = (G, z, s, w) such that

– G is a digraph,

– the vertices z ∈ V (G), s ∈ V (G) are the source and the sink, respectively,

– and w : E(G) → R
+ is a positive weighting of the arcs (edges) of G, these

weights are called edge capacities.

s s

s s

ss

3

1

4

5

1

5

3

2
2

4

2

z s

2

Remark: In reality, more than one source or sink may exist in a flow network, but that is not
a problem — we simply create a single artificial source and draw arcs from it to all the real
sources (even with source capacities!).

Petr Hliněný, FI MU Brno 3 FI: MA010: Network Flows

Notation: For simplicity, we shall write e→ v to mean that an arc e “comes to” (has
its head in) the vertex v, and e← v analogously for e “leaving” (having tail in) v. 2

Definition 6.2. A network flow, in a flow network S = (G, z, s, w),
is an assignment f : E(G)→ R

+
0 satisfying (we say f is admissible)

– ∀e ∈ E(G) : 0 ≤ f(e) ≤ w(e),

– ∀v ∈ V (G), v 6= z, s :
∑

e→v

f(e) =
∑

e←v

f(e). 2

The size (value) of a flow f is the quantity ‖f‖ =
∑

e←z

f(e)−
∑

e→z

f(e). 2

Notation: The flow value F and the capacity C of an arc in a picture of a network
will be shortly denoted by F/C, respectively.

s s

s s

ss

3/3

0/1

2/4

3/5

0/1
0/2

0/2

3/4

2/2

2/5

0/3

z s

Petr Hliněný, FI MU Brno 4 FI: MA010: Network Flows

So what is the value of the depicted flow? 5

s s

s s

ss

3/3

0/1

2/4

3/5

0/1

0/2
0/2

3/4

2/2

2/5

0/3

z s

2

Remark: Notice the following simple identity

0 =
∑

e∈E

(

f(e) − f(e)
)

=
∑

v∈V

(

∑

e←v

f(e) −
∑

e→v

f(e)

)

=
∑

v=z,s

(

∑

e←v

f(e) −
∑

e→v

f(e)

)

.

What interesting does it tell us? Briefly, that the (negative) flow value can be analogously
defined at the sink s.

‖f‖ =

(

∑

e←z

f(e) −
∑

e→z

f(e)

)

=

(

∑

e→s

f(e) −
∑

e←s

f(e)

)

.

Petr Hliněný, FI MU Brno 5 FI: MA010: Network Flows

6.2 Finding the maximum flow value

There exist quite simple and fast algorithms to determine the maximum flow value in
a given network.

Problem 6.3. The Max–Flow problem
Given a flow network S = (G, z, s, w), the task is to find a flow f in S from z to s
such that the value ‖f‖ is maximized (among all admissible flows in S). 2

s s

s s

ss

3/3

0/1

2/4

3/5

0/1

0/2
0/2

3/4

2/2

2/5

0/3

z s

Is the depicted flow really maximum possible?

Petr Hliněný, FI MU Brno 6 FI: MA010: Network Flows

And what about this flow of value 6?

s s

s s

ss

3/3

0/1

3/4

4/5

0/1

0/2
0/2

4/4

2/2

2/5

1/3

z s

2

The main question is; how can we certify that no better flow exists in S?

Fortunately, a nice and simply understandable criterion exists there — notice that there
is an “arc cut” between z and s of total value 6, and hence obviously there cannot be
a larger flow!

Petr Hliněný, FI MU Brno 7 FI: MA010: Network Flows

Definition 6.4. A cut in a flow network S = (G, z, s, w)
is a subset of edges (arcs) C ⊂ E(G) such that there is no z→ s directed path in G
completely avoiding C (i.e. a directed z→s path existing in G− C).
The size of a cut C is the sum of the capacities of arcs in C, i.e. ‖C‖ =

∑

e∈C w(e).2

Theorem 6.5. The maximum (admissible) flow value in a network S equals the min-
imum cut size in S.

See the following example with a cut of size 5 (in the middle), and so the flow value 5 is
maximum.

s s

s s

ss

3

4

4

1

1

4

2

1

1
z s

2

Remark: Theorem 6.5 is an example of a so called good characterization of a property— not
having a larger flow can be certified by showing an obvious constrain, a cut of the corresponding
size.

Petr Hliněný, FI MU Brno 8 FI: MA010: Network Flows

Residual and augmenting paths

Definition: Consider a flow network S and a flow f in it. A residual z–s path (in S
w.r.t. f) is an undirected path in G from the source z to the sink s, i.e. a sequence
of adjacent edges e1, e2, . . . , em, such that f(ei) < w(ei) if ei is directed from z, and
f(ei) > 0 if ei is directed from s. 2

The quantity w(ei)− f(ei), or f(ei), respectively, is called the residual capacity of the
edge ei. 2

A residual path is that of strictly positive residual capacities. . .

sz
3/4 1/2 1/1 2/3 2/4

+1 +1 +2 +2+1residual capacities:

Petr Hliněný, FI MU Brno 9 FI: MA010: Network Flows

s s

s s

ss

3

4

4

1

1

4

2

1

1
z s

Algorithm 6.6. Ford–Fulkerson’s for network flows.
input < flow network S = (G, z, s, w);
flow f ≡ 0;
repeat {

Search (BFS) the graph G to find the set U of those vertices
accessible from the source z along residual paths;

if (s ∈ U) {
P = any residual z–s path in S (this P then called an augmenting path);
Augment (“enlarge”) f by the minimal residual capacity along P;

}
until (s 6∈ U);

output > a maximum flow f in S;
output > a minimum cut in S from U to V (G)− U.

Petr Hliněný, FI MU Brno 10 FI: MA010: Network Flows

Proof of Algorithm 6.6:
For any flow f and any cut C in S, it holds ‖f‖ ≤ ‖C‖. If the algorithm stops with a
flow f in S and a cut C such that ‖C‖ = ‖f‖, then it is clear that f is a maximum
flow in S. (We have, however, not proved yet that the algorithm stops!) 2

So to prove that whenever the algorithm stops with f, C, then ‖f‖ = ‖C‖, we use the
following schematic picture (in which s does not belong to the “accessible” set U):

z s

f(e) = 0

f(e) = w(e)

U

2

Since no further vertex than U is accessible along residual paths, every arc e leaving
U has full flow f(e) = w(e), and every arc e entering U has zero flow f(e) = 0.
Therefore;

∑

e←U

f(e)−
∑

e→U

f(e) =
∑

e←U

f(e) =
∑

e∈C

w(e) = ‖C‖ .

That is nice, and it remains to argue that ‖C‖ =
∑

e←U f(e) −
∑

e→U f(e) = ‖f‖,
finishing the proof. 2

Petr Hliněný, FI MU Brno 11 FI: MA010: Network Flows

The proof of Algorithm 6.6 shows several interesting things:

Fact: If we can prove that Algorithm 6.6 stops, we prove also Theorem 6.5.2

Fact: If the edge capacities in S are integral, then Algorithm 6.6 always stops.

Corollary 6.7. If the edge capacities in S are integral, then Algorithm 6.6 outputs an
integral flow. 2

Improved flow algorithms

Generally, one cannot guarantee that Algorithm 6.6 stops, since counterexamples exist
with real capacities, but we can do better as follows. 2

Algorithm 6.8. Edmonds–Karp’s for network flows.
As in Algorithm 6.6, we always enlarge one of the shortest residual paths in G (i.e. find
the path P using BFS, cf. Corollary 3.4).

This implementation is guaranteed to stop after O(|V (G)| · |E(G)|) iterations, so in
total computing time O(|V (G)| · |E(G)|2).

Petr Hliněný, FI MU Brno 12 FI: MA010: Network Flows

Even better, we can use the following “clever” algorithms.

Algorithm 6.9. Dinitz’s for network flows (a sketch).
We modify Algorithm 6.6 with the following iteration:

• Using BFS, we find all the shortest residual paths in S, creating a “layered”
residual network.

• The layered network is then completely saturated in one run.

This implementation makes only O(|V (G)|) iterations of the main cycle. Total com-
puting time now is O(|V (G)|2 · |E(G)|). 2

Algorithm 6.10. MPM “Three Indians” (a sketch).
Same as Algorithm 6.9, except that a layered network is saturated faster, and the total
computing time is O(|V (G)|3).

Petr Hliněný, FI MU Brno 13 FI: MA010: Network Flows

6.3 Generalized network flow settings

Among the many ways flow networks can be generalized, we briefly mention three which
are interesting and often used.

Networks with vertex capacities

In a flow network with vertex capacities (of course, retaining edge capacities as well),
the weight function is w : E(G) ∪ V (G)→ R

+.

The meaning for admissible flows is that the total sum of incoming flow to any vertex
x is not more than w(x). (Differently applicable to the source or the sink, though. . .)

Fact. Such a generalized flow network can easily be translated to an ordinary network
via “doubling” the capacitated vertices (replacing them with new arcs between the two
copies), as follows.

s

z

a

b z

s

a

b

5

42

5

3
3

5

2
4

Petr Hliněný, FI MU Brno 14 FI: MA010: Network Flows

Networks with lower capacities

In a flow network with lower capacities, in addition to the weight function w, there is
another weight function ℓ : E(G)→ R

+
0 giving the lower edge capacities.

A flow f is admissible in such a network if ℓ(e) ≤ f(e) ≤ w(e) for every edge e of the
network. 2Notice that an admissible flow may not exist in such a lower-capacitated
network. 2

Algorithm 6.11. Flows in lower-capacitated network
For this kind of a flow network, the solution has two steps.

– First, an admissible circulation is found (with a “back-arc” sz), respecting both
the lower an upper bounds ℓ, w. This is done by finding a maximum flow in an
artificial network modelling the “surplus” of lower capacities at every vertex. . .

– Second, this admissible circulation is enlarged by a maximum possible excessive
flow from z to s (the capacities are now w(e) − r(e) where r is the circulation
found above). 2

Multicommodity flows

This is a difficult problem setting reaching beyond the scope of our lecture.

Petr Hliněný, FI MU Brno 15 FI: MA010: Network Flows

6.4 Other applications of network flows

Bipartite matching

Definition: A matching in a graph G (bipartite here) is a subset of edges M ⊂ E(G)
such that no two edges from M share a vertex. 2

Algorithm 6.12. Finding maximum matching in a bipartite graph
Given a bipartite graph G with the vertex parts A, B, we construct the following flow
network S:

s s

s s

s s

s s

s s

A B

1 1

1 1

s sz s

All the edges are implicitly directed from the source towards the sink, and all capacities
are 1. We run Algorithm 6.6, and form the resulting matching M by those edges of G
having nonzero flow at the end. 2

Proof of Algorithm 6.12: By Corollary 6.7, the maximum flow found by our algorithm
is integral, which now means that each flow unit is 0 or 1. Hence no two edges of M
could share a vertex. Conversely, any matching M ′ gives an admissible flow in S. 2

Petr Hliněný, FI MU Brno 16 FI: MA010: Network Flows

Higher graph connectivity

Let us consider a graph G as a generalized (symmetrically–oriented) network with all
vertex capacities equal to 1. Then the network flow theorem immediately says:

Corollary 6.13. Let u, v be two vertices of G and k > 0 be an integer. Then there
exists at least k internally disjoint u–v paths in G if, and only if, removing any subset
of at most k − 1 vertices of G (other than u, v) does not disconnect u from v. 2

This statement immediately implies Theorem 2.6 (Menger’s)!

Petr Hliněný, FI MU Brno 17 FI: MA010: Network Flows

Systems of distinct representatives (SDR)

Definition: Let M1, M2, . . . , Mk be a collection of nonempty sets. A system of distinct
representatives (SDR) of the set family {M1, M2, . . . , Mk} is a sequence of pairwise
distinct elements (x1, x2, . . . , xk) such that xi ∈Mi for i = 1, 2, . . . , k. 2

Theorem 6.14. (Hall) Let {M1, M2, . . . , Mk} be a family of nonempty sets. Then
there exists a system of its distinct representatives if, and only if,

∀J ⊂ {1, 2, . . . , k} :
∣

∣

∣

⋃

j∈J
Mj

∣

∣

∣
≥ |J | ,

i.e., the union of any subfamily of these sets has at least that many elements as the
number of sets in it.

Necessity of Hall’s condition in this theorem is obvious, and its sufficiency can be proved by
an application of network flows again.

