

 July 2009

Optimization

NVIDIA CUDA C Programming
Best Practices Guide

CUDA Toolkit 2.3

CUDA Best Practices Guide

ii July 2009

 July 2009 iii

Table of Contents

Preface

Chapter 1. Introduction to Parallel Computing with CUDA

1.1

1.2 Under

1.3 CUDA API

Chapter 2. Performance Metrics

2.1 Timing

2.2 Bandwidth

Chapter 3. Memory Optimizations

3.1 Dat

 .. vii

What Is This Document? .. vii

Who Should Read This Guide? .. vii

Recommendations and Best Practices ... viii

Contents Summary ... viii

.. 1

 Heterogeneous Computing with CUDA .. 1

1.1.1 Differences Between Host and Device .. 1

1.1.2 What Runs on a CUDA-Enabled Device? ... 2

1.1.3 Maximum Performance Benefit .. 3

standing the Programming Environment ... 4

1.2.1 CUDA Compute Capability ... 4

1.2.2 Additional Hardware Data .. 5

1.2.3 C Runtime for CUDA and Driver API Version .. 5

1.2.4 Which Version to Target .. 6

s ... 6

1.3.1 C Runtime for CUDA ... 7

1.3.2 CUDA Driver API ... 7

1.3.3 When to Use Which API .. 8

1.3.4 Comparing Code for Different APIs ... 8

 ... 11

 ... 11

2.1.1 Using CPU Timers ... 11

2.1.2 Using CUDA GPU Timers ... 12

 .. 12

2.2.1 Theoretical Bandwidth Calculation .. 13

2.2.2 Effective Bandwidth Calculation ... 13

2.2.3 Throughput Reported by cudaprof ... 13

 .. 15

a Transfer Between Host and Device ... 15

3.1.1 Pinned Memory .. 15

3.1.2 Asynchronous Transfers and Overlapping Transfers with Computation 16

CUDA Best Practices Guide

iv July 2009

3.1.3 Zero Copy .. 18

3.

3.

3.

3.

3.

Ch

Ch

5.

Ch

2 Device Memory Spaces .. 19

2.1 Coalesced Access to Global Memory ... 20

3.2.1.1 A Simple Access Pattern .. 21

3.2.1.2 A Sequential but Misaligned Access Pattern .. 22

3.2.1.3 Effects of Misaligned Accesses ... 23

3.2.1.4 Strided Accesses .. 24

2.2 Shared Memory .. 26

3.2.2.1 Shared Memory and Memory Banks ... 26

3.2.2.2 Shared Memory in Matrix Multiplication (C = AB) .. 27

3.2.2.3 Shared Memory in Matrix Multiplication (C = AAT) ... 31

3.2.2.4 Shared Memory Use by Kernel Arguments .. 33

3.2.3 Local Memory ... 33

2.4 Texture Memory ... 33

3.2.4.1 Textured Fetch vs. Global Memory Read .. 34

3.2.4.2 Additional Texture Capabilities ... 35

3.2.5 Constant Memory ... 36

2.6 Registers ... 36

3.2.6.1 Register Pressure ... 36

apter 4. Execution Configuration Optimizations .. 37

4.1 Occupancy ... 37

4.2 Calculating Occupancy ... 37

4.3 Hiding Register Dependencies .. 39

4.4 Thread and Block Heuristics ... 40

4.5 Effects of Shared Memory .. 41

apter 5. Instruction Optimizations ... 43

1 Arithmetic Instructions .. 43

5.1.1 Division and Modulo Operations ... 43

5.1.2 Reciprocal Square Root ... 44

5.1.3 Other Arithmetic Instructions ... 44

5.1.4 Math Libraries .. 44

5.2 Memory Instructions ... 45

apter 6. Control Flow .. 47

6.1 Branching and Divergence ... 47

6.2 Branch Predication .. 47

 July 2009 v

Chapter 7. Getting the Right Answer

7.2 Debugging

7.3 Numerical

Appendix A. Recommendations and Best

Appendix B. Useful NVCC Compiler Switches ... 55

NVCC .. 55

 ... 49

7.1 Checking Defective Code ... 49

 ... 49

 Accuracy and Precision ... 50

7.3.1 Single vs. Double Precision .. 50

7.3.2 Floating-Point Math Is Not Associative .. 50

7.3.3 Promotions to Doubles and Truncations to Floats .. 50

7.3.4 IEEE 754 Compliance .. 51

7.3.5 x86 80-bit Computations ... 51

Practices ... 53

A.1 Overall Performance Optimization Strategies ... 53

A.2 High-Priority Recommendations ... 54

A.3 Medium-Priority Recommendations ... 54

A.4 Low-Priority Recommendations .. 54

CUDA Best Practices Guide

vi July 2009

 July 2009 vii

Preface

What Is This Document?

This Best Practices Guide is a manual to help developers obtain the best performance
from the NVIDIA® CUDA™ architecture using version 2.3 of the CUDA Toolkit.
It presents established optimization techniques and explains coding metaphors and
idioms that can greatly simplify programming for the CUDA architecture.

While the contents can be used as a reference manual, you should be aware that
some topics are revisited in different contexts as various programming and
configuration topics are explored. As a result, it is recommended that first-time
readers proceed through the guide sequentially. This approach will greatly improve
your understanding of effective programming practices and enable you to better use
the guide for reference later.

Who Should Read This Guide?

This guide is intended for programmers who have basic familiarity with the CUDA
programming environment. You have already downloaded and installed the CUDA
Toolkit and have written successful programs using it. It is not necessary to have a
CUDA-enabled graphics processing unit (GPU) to follow along in the examples, as
the C code will also work with the CUDA emulator. However, because the emulator
is different from the actual hardware, the comments and results in this document
may differ substantially from the results obtained using the emulator.

The discussions in this guide all use the C programming language, so you must be
comfortable reading C.

This guide refers to and relies on several other documents that you should have at
your disposal for reference, all of which are available at no cost from the CUDA
Web site (http://www.nvidia.com/object/cuda_develop.html). The following
documents are especially important resources:

 CUDA Quickstart Guide

 CUDA Programming Guide

 CUDA Reference Manual

Be sure to download the correct manual for the CUDA Toolkit version and
operating system you are using.

http://www.nvidia.com/object/cuda_develop.html

CUDA Best Practices Guide

Recommendations and Best Practices

Throughout this guide, specific recommendations are made regarding the design
and implementation of CUDA C code. These recommendations are categorized by
priority, which is a blend of the effect of the recommendation and its scope. Actions
that present substantial improvements for most CUDA applications have the
highest priority, while small optimizations that affect only very specific situations are
given a lower priority.

Before implementing lower priority recommendations, it is good practice to make
sure all higher priority recommendations that are relevant have already been applied.
This approach will tend to provide the best results for the time invested and will
avoid the trap of premature optimization.

The criteria of benefit and scope for establishing priority will vary depending on the
nature of the program. In this guide, they represent a typical case. Your code might
reflect different priority factors. Regardless of this possibility, it is good practice to
verify that no higher priority recommendations have been overlooked before
undertaking lower priority items.

Appendix A of this document lists all the recommendations and best practices,
grouping them by priority and adding some additional helpful observations.

Code samples throughout the guide do not perform error checking for conciseness.
Production code should though, by systematically checking the error code returned
by each API call and for kernel launches, by calling cudaGetLastError().

Contents Summary

The remainder of this guide is divided into the following sections:

 Introduction to Parallel Computing with CUDA: Important aspects of the
parallel programming architecture.

 Performance Metrics: How should performance be measured in CUDA
applications and what are the factors that most influence performance?

 Memory Optimizations: Correct memory management is one of the most
effective means of improving performance. This chapter explores the different
kinds of memory available to CUDA applications, and it explains in detail how
memory is handled behind the scenes.

 Execution Configuration Optimizations: How to make sure your CUDA
application is exploiting all the available resources on the GPU.

 Instruction Optimizations: Certain operations run faster than others. Using
faster operations and avoiding slower ones often confers remarkable benefits.

 Control Flow: Carelessly designed control flow can force parallel code into
serial execution; whereas thoughtfully designed control flow can help the
hardware perform the maximum amount of work per clock cycle.

viii July 2009

Introduction to Parallel Computing with CUDA

 July 2009 ix

 Getting the Right Answer: How to debug code and how to handle differences
in how the CPU and GPU represent floating-point values.

 July 2009 1

Chapter 1.
Introduction to Parallel Computing with CUDA

This chapter reviews heterogeneous computing with CUDA, explains the limits of
performance improvement, and helps you choose the right version of CUDA to
employ and which application programming interface (API) to use when
programming.

1.1 Heterogeneous Computing with CUDA

CUDA C programming involves running code on two different platforms: a host
system that relies on one or more CPUs to perform calculations, and a card
(frequently a graphics adapter) with one or more CUDA-enabled NVIDIA GPUs
(the device).

While NVIDIA devices are primarily associated with rendering graphics, they also
are powerful arithmetic engines capable of running thousands of lightweight threads
in parallel. This capability makes them well suited to computations that can leverage
parallel execution well.

However, the device is based on a distinctly different design from the host system
and, to use CUDA effectively, it’s important to understand those differences and
how they determine the performance of CUDA applications.

1.1.1 Differences Between Host and Device
The primary differences occur in threading and memory access:

 Threading resources. Execution pipelines on host systems can support a
limited number of concurrent threads. Servers that have four quad-core
processors today can run only 16 threads in parallel (32 if the CPUs support
HyperThreading.) By comparison, the smallest executable unit of parallelism on
a device, called a warp, comprises 32 threads. All NVIDIA GPUs can support
768 active threads per multiprocessor, and some GPUs support 1,024 active
threads per multiprocessor. On devices that have 30 multiprocessors (such as
the NVIDIA® GeForce® GTX 280), this leads to more than 30,000 active
threads. In addition, devices can hold literally billions of threads scheduled to
run on these GPUs.

 Threads. Threads on a CPU are generally heavyweight entities. The operating
system must swap threads on and off execution channels to provide
multithreading capability. Context switches (when two threads are swapped) are
therefore slow and expensive. By comparison, GPUs run extremely lightweight
threads. In a typical system, hundreds of threads are queued up for work (in

CUDA Best Practices Guide

warps of 32 threads). If the GPU processor must wait on one warp of threads,
it simply begins executing work on another. Because registers are allocated to
active threads, no swapping of registers and state occurs between GPU threads.
Resources stay allocated to the thread until it completes its execution.

 RAM. Both the host system and the device have RAM. On the host system,
RAM is generally equally accessible to all code (within the limitations enforced
by the operating system). On the device, RAM is divided virtually and physically
into different types, each of which has a special purpose and fulfills different
needs. The types of device RAM are explained in the CUDA Programming Guide
and in Chapter 3 of this document.

These are the primary hardware differences between CPU hosts and GPU devices
with respect to parallel programming. Other differences are discussed as they arise
elsewhere in this document.

1.1.2 What Runs on a CUDA-Enabled Device?
Because of the considerable differences between host and device, it’s important to
partition applications so that each hardware system is doing the work it does best.
The following issues should be considered when determining what parts of an
application to run on the device:

 The device is ideally suited for computations that can be run in parallel. That is,
data parallelism is optimally handled on the device. This typically involves
arithmetic on large data sets (such as matrices), where the same operation can
be performed across thousands, if not millions, of elements at the same time.
This is a requirement of good performance on CUDA: The software must use a
large number of threads. The support for running numerous threads in parallel
derives from the CUDA architecture’s use of a lightweight threading model.

 There should be some coherence in memory access by a kernel. Certain
memory access patterns enable the hardware to coalesce groups of data items to
be written and read in one operation. Data that cannot be laid out so as to
enable coalescing, or that doesn’t have enough locality to use textures
efficiently, will not enjoy much of a performance lift when used in
computations on CUDA.

 Traffic along the Peripheral Component Interconnect (PCI) bus should be
minimized. To use CUDA, data values must be transferred from the host to the
device. These transfers are costly in terms of performance and so they should
be minimized. (See section 3.1.) This cost has several ramifications:

 The complexity of operations should justify the cost of moving data to the
device. Code that transfers data for brief use by a small number of threads
will see little or no performance lift. The ideal scenario is one in which many
threads perform a substantial amount of work.
For example, transferring two matrices to the device to perform a matrix
addition and then transferring the results back to the host will not realize
much performance benefit. The issue here is the number of operations
performed per data element transferred. For the preceding procedure,
assuming matrices of size NxN, there are N2 operations (additions) and 3N2
elements transferred, so the operations-to-transfer ratio is 1:3 or O(1).

2 July 2009

Introduction to Parallel Computing with CUDA

Performance benefits can be more readily achieved when the ratio of
operations to elements transferred is higher. For example, a matrix
multiplication of the same matrices requires N3 operations (multiply-add), so
the ratio of operations to element transferred is O(N), in which case the
larger the matrix the greater the performance benefit. The types of
operations are an additional factor, as additions versus trigonometric
functions have different complexity profiles. It is important to include
transfers to and from the device in determining where operations should be
performed.

 Data should be kept on the device as long as possible. Because transfers
should be minimized, programs that run multiple kernels on the same data
should favor leaving the data on the device between kernel calls, rather than
transferring intermediate results to the host and then sending them back to
the device for subsequent calculations. So if the data were already on the
device in the previous example, the matrix addition should be performed
locally on the device. This approach should be used even if one of the steps
in a sequence of calculations could be performed faster on the host. Even a
relatively slow kernel may be advantageous if it avoids one or more PCI
Express (PCIe) transfers. Section 3.1 provides further details, including the
measurements of bandwidth between host and device versus within the
device proper.

1.1.3 Maximum Performance Benefit

High Priority: To get the maximum benefit from CUDA, focus first on finding ways to
parallelize sequential code.

The amount of performance benefit an application will realize by running on
CUDA depends entirely on the extent to which it can be parallelized. As mentioned
previously, code that cannot be sufficiently parallelized should run on the host,
unless doing so would result in excessive transfers between host and device.

Amdahl’s law specifies the maximum speed-up that can be expected by parallelizing
portions of a serial program. Essentially, it states that the maximum speed-up (S) of
a program is

ܵ ൌ
1

ሺ1 െ ܲሻ ܲ
ܰ

where P is the fraction of the total serial execution time taken by the portion of code
that can be parallelized and N is the number of processors over which the parallel
portion of the code runs.

The larger N is (that is, the greater the number of processors), the smaller the P/N
fraction. It can be simpler to view N as a very large number, which essentially
transforms the equation into S ൌ 1 / 1െP. Now, if ¾ of a program is parallelized,
the maximum speed-up over serial code is 1 / ሺ1 – ¾ሻ = 4.

For most purposes, the key point is that the greater P is, the greater the speed-up.
An additional caveat is implicit in this equation, which is that if P is a small number

 July 2009 3

CUDA Best Practices Guide

(so not substantially parallel), increasing N does little to improve performance. To
get the largest lift, best practices suggest spending most effort on increasing P; that
is, by maximizing the amount of code that can be parallelized.

1.2 Understanding the Programming Environment

With each generation of NVIDIA processors, new features are added to the GPU
that CUDA can leverage. Consequently, it’s important to understand the
characteristics of the architecture.

Programmers should be aware of two version numbers. The first is the compute
capability, and the second is the version number of the runtime and driver APIs.

1.2.1 CUDA Compute Capability
The compute capability describes the features of the hardware and reflects the set of
instructions supported by the device as well as other specifications, such as
maximum threads per block and number of registers on a multiprocessor. Higher
compute capability versions are a superset of lower (that is, earlier) versions, and so
they are backward compatible.

The compute capability of the GPU in the device can be queried programmatically
as illustrated in deviceQuery.cu, which is included in the CUDA SDK. The output
for that program is shown in Figure 1.1. This information is obtained by calling
cudaGetDeviceProperties() and accessing the information in the returned
structure.

Figure 1.1 Sample CUDA configuration data reported by deviceQuery

4 July 2009

Introduction to Parallel Computing with CUDA

The major and minor revision numbers of the compute capability are shown on the
third and fourth lines of Figure 1.1. Device 0 of this system has compute capability
1.1.

More details about the compute capabilities of various GPUs are in Appendix A of
the CUDA Programming Guide. In particular, developers should note special
capabilities, the number of multiprocessors on the device, and the available memory.

1.2.2 Additional Hardware Data
Certain hardware features are not described by the compute capability. For example,
the ability to overlap kernel execution and asynchronous data transfers between host
and device is available on most—but not all—GPUs with compute capability 1.1. In
such cases, call cudaGetDeviceProperties() to determine whether the device is
capable of a certain feature. For example, the deviceOverlap field of the device
property structure indicates whether overlapping kernel execution and data transfers
is possible (displayed in the “Concurrent copy and execution” line of Figure 1.1);
likewise, the canMapHostMemory field indicates whether zero-copy data transfers
can be performed.

1.2.3 C Runtime for CUDA and Driver API Version
The CUDA driver API and C runtime for CUDA are two of the programming
interfaces to CUDA. Their version number enables developers to check the features
associated with these APIs and decide whether an application requires a newer
(later) version than the one currently installed. This is important because the CUDA
driver API is backward compatible but not forward compatible, meaning that applications,
plug-ins, and libraries (including the C runtime for CUDA) compiled against a
particular version of the driver API will continue to work on subsequent (later)
driver releases. However, applications, plug-ins, and libraries (including the C
runtime for CUDA) compiled against a particular version of the driver API may not
work on earlier versions of the driver, as illustrated in Figure 1.2.

Figure 1.2 Compatibility of CUDA versions

 July 2009 5

CUDA Best Practices Guide

1.2.4 Which Version to Target
When in doubt about the runtime hardware, it is best to assume a compute
capability of 1.0 as defined in the CUDA Programming Guide, Appendix A.1.1.

To target specific versions of NVIDIA hardware and CUDA software, use the
–arch, -code, and –gencode options of nvcc. One particularly important option is
–arch=sm_13, which must be specified to use double-precision arithmetic on CUDA
devices that support this feature. The use of compiler switches is discussed further
in Appendix B.

1.3 CUDA APIs

The host runtime component of the CUDA software environment can be used only
by host functions. It provides functions to handle

 Device management

 Context management

 Memory management

 Code module management

 Execution control

 Texture reference management

 Interoperability with OpenGL and Direct3D

It comprises two APIs:

 A low-level API called the CUDA driver API

 A higher-level API called the C runtime for CUDA that is implemented on top
of the CUDA driver API

These APIs are mutually exclusive: An application should use one or the other.

The C runtime for CUDA, which is the more commonly used API, eases device
code management by providing implicit initialization, context management, and
module management. The C host code generated by nvcc is based on the C runtime
for CUDA, so applications that link to this code must use the C runtime for CUDA.

In contrast, the CUDA driver API requires more code and is somewhat harder to
program and debug, but it offers a better level of control. In particular, it is more
difficult to configure and launch kernels using the CUDA driver API, since the
execution configuration and kernel parameters must be specified with explicit
function calls instead of the execution configuration syntax. Also, device emulation
cannot be used with the CUDA driver API. Note that the APIs relate only to host
code; the kernels that are executed on the device are the same, regardless of which
API is used.

The two APIs can be easily distinguished, because the CUDA driver API is
delivered through the nvcuda dynamic library and all its entry points are prefixed

6 July 2009

Introduction to Parallel Computing with CUDA

with cu; while the C runtime for CUDA is delivered through the cudart dynamic
library and all its entry points are prefixed with cuda.

1.3.1 C Runtime for CUDA
The C runtime for CUDA handles kernel loading and setting kernels before they are
launched. The implicit code initialization, CUDA context management, CUDA
module management (cubin and function mapping), kernel configuration, and
parameter passing are all performed by the C runtime for CUDA.

It comprises two principal parts:

 The low-level functions (cuda_runtime_api.h) have a C-style interface that
does not require compilation with nvcc.

 The high-level functions (cuda_runtime.h) have a C++-style interface built on
top of the low-level functions.

Of these, the high-level functions are the most commonly used. They wrap some of
the low-level functions, using overloading, references, and default arguments. These
wrappers can be used from C++ code and can be compiled with any C++ compiler.

The functions that make up this API are explained in the CUDA Reference Manual.

1.3.2 CUDA Driver API
The driver API is a lower-level API than the runtime API. When compared with the
runtime API, the driver API has these advantages:

 No dependency on the runtime library

 More control over devices (for example, only the driver API enables one CPU
thread to control multiple GPUs)

 No C extensions in the host code, so compilers other than the default CPU
compiler can be used

Its primary disadvantages, as mentioned in section 1.3, are

 Verbose code

 Greater difficulty in debugging

 No device emulation

A key point is that for every runtime API function, there is an equivalent driver API
function. The driver API, however, includes other functions missing in the runtime
API, such as those for migrating a context from one host thread to another.

For more information on the driver API, refer to section 3.3 et seq. of the CUDA
Programming Guide.

 July 2009 7

CUDA Best Practices Guide

1.3.3 When to Use Which API
Section 1.3.2 lists some of the salient differences between the two APIs. Additional
considerations include the following:

C runtime for CUDA–only features

 The CUFFT, CUBLAS, and CUDPP libraries are callable only from the runtime
API

 Device emulation

Driver API–only features

 Context management

 Support for 16-bit floating-point textures

 Just-in-time (JIT) compilation of kernels

 Access to the MCL image processing library

In most cases, these points tend to steer developers strongly toward one API. In
cases where they do not, favor the runtime API because it is higher level and easier
to use. In addition, because runtime functions all have driver API equivalents, it is
easy to migrate runtime code to the driver API should that later become necessary.

1.3.4 Comparing Code for Different APIs
To illustrate the difference in code between the runtime and driver APIs, compare
Listings 1.1 and 1.2, which are examples of a vector addition in which two arrays are
added.
const unsigned int cnBlockSize = 512;
const unsigned int cnBlocks = 3;
const unsigned int cnDimension = cnBlocks * cnBlockSize;

// create CUDA device & context
cudaSetDevice(0); // pick first device

// allocate host vectors
float * pA = new float[cnDimension];
float * pB = new float[cnDimension];
float * pC = new float[cnDimension];

// initialize host memory
randomInit(pA, cnDimension);
randomInit(pB, cnDimension);

// allocate device memory
float *pDeviceMemA, *pDeviceMemB, *pDeviceMemC;
cudaMalloc((void **)&pDeviceMemA, cnDimension * sizeof(float));
cudaMalloc((void **)&pDeviceMemB, cnDimension * sizeof(float));
cudaMalloc((void **)&pDeviceMemC, cnDimension * sizeof(float));

// copy host vectors to device
cudaMemcpy(pDeviceMemA, pA, cnDimension * sizeof(float),
 cudaMemcpyHostToDevice);
cudaMemcpy(pDeviceMemB, pB, cnDimension * sizeof(float),

8 July 2009

Introduction to Parallel Computing with CUDA

 cudaMemcpyHostToDevice);

vectorAdd<<<cnBlocks, cnBlockSize>>> (pDeviceMemA, pDeviceMemB,
 pDeviceMemC);

// copy result from device to host
cudaMemcpy ((void *) pC, pDeviceMemC, cnDimension * sizeof(float),
 cudaMemcpyDeviceToHost);

delete[] pA;
delete[] pB;
delete[] pC;

cudaFree(pDeviceMemA);
cudaFree(pDeviceMemB);
cudaFree(pDeviceMemC);

Listing 1.1 Host code for adding two vectors using the C runtime for
CUDA

Listing 1.1 consists of 27 lines of code. Listing 1.2 shows the same functionality
implemented using the CUDA driver API.
const unsigned int cnBlockSize = 512;
const unsigned int cnBlocks = 3;
const unsigned int cnDimension = cnBlocks * cnBlockSize;

CUdevice hDevice;
CUcontext hContext;
CUmodule hModule;
CUfunction hFunction;

// create CUDA device & context
cuInit(0);
cuDeviceGet(&hContext, 0); // pick first device
cuCtxCreate(&hContext, 0, hDevice));

cuModuleLoad(&hModule, “vectorAdd.cubin”);
cuModuleGetFunction(&hFunction, hModule, "vectorAdd");

// allocate host vectors
float * pA = new float[cnDimension];
float * pB = new float[cnDimension];
float * pC = new float[cnDimension];

// initialize host memory
randomInit(pA, cnDimension);
randomInit(pB, cnDimension);

// allocate memory on the device
CUdeviceptr pDeviceMemA, pDeviceMemB, pDeviceMemC;
cuMemAlloc(&pDeviceMemA, cnDimension * sizeof(float));
cuMemAlloc(&pDeviceMemB, cnDimension * sizeof(float));
cuMemAlloc(&pDeviceMemC, cnDimension * sizeof(float));

// copy host vectors to device
cuMemcpyHtoD(pDeviceMemA, pA, cnDimension * sizeof(float));
cuMemcpyHtoD(pDeviceMemB, pB, cnDimension * sizeof(float));

// set up parameter values
cuFuncSetBlockShape(cuFunction, cnBlockSize, 1, 1);
#define ALIGN_UP(offset, alignment) \

 July 2009 9

CUDA Best Practices Guide

10 July 2009

 (offset) = ((offset) + (alignment) – 1) & ~((alignment) – 1)
int offset = 0;
void* ptr;
ptr = (void*)(size_t)pDeviceMemA;
ALIGN_UP(offset, __alignof(ptr));
cuParamSetv(cuFunction, offset, &ptr, sizeof(ptr));
offset += sizeof(ptr);
ptr = (void*)(size_t)pDeviceMemB;
ALIGN_UP(offset, __alignof(ptr));
cuParamSetv(cuFunction, offset, &ptr, sizeof(ptr));
offset += sizeof(ptr);
ptr = (void*)(size_t)pDeviceMemC;
ALIGN_UP(offset, __alignof(ptr));
cuParamSetv(cuFunction, offset, &ptr, sizeof(ptr));
offset += sizeof(ptr);
cuParamSetSize(cuFunction, offset);

// execute kernel
cuLaunchGrid(cuFunction, cnBlocks, 1);

// copy the result from device back to host
cuMemcpyDtoH((void *) pC, pDeviceMemC,
 cnDimension * sizeof(float));

delete[] pA;
delete[] pB;
delete[] pC;

cuMemFree(pDeviceMemA);
cuMemFree(pDeviceMemB);
cuMemFree(pDeviceMemC);

Listing 1.2 Host code for adding two vectors using the CUDA driver API

Listing 1.2 contains 37 lines of code and performs several lower-level operations
than the runtime API. These additional calls are evident in several places, especially
the setup necessary in the driver API prior to the kernel call.

 July 2009 11

Chapter 2.
Performance Metrics

When attempting to optimize CUDA code, it pays to know how to measure
performance accurately and to understand the role that bandwidth plays in
performance measurement. This chapter discusses how to correctly measure
performance using CPU timers and CUDA events. It then explores how bandwidth
affects performance metrics and how to mitigate some of the challenges it poses.

2.1 Timing

CUDA calls and kernel executions can be timed using either CPU or GPU timers.
This section examines the functionality, advantages, and pitfalls of both approaches.

2.1.1 Using CPU Timers
Any CPU timer can be used to measure the elapsed time of a CUDA call or kernel
execution. The details of various CPU timing approaches are outside the scope of
this document, but developers should always be aware of the resolution their timing
calls provide.

When using CPU timers, it is critical to remember that many CUDA API functions
are asynchronous; that is, they return control back to the calling CPU thread prior to
completing their work. All kernel launches are asynchronous; so are all memory
copy functions with the Async suffix on the name. Therefore, to accurately measure
the elapsed time for a particular call or sequence of CUDA calls, it is necessary to
synchronize the CPU thread with the GPU by calling cudaThreadSynchronize()
immediately before starting and stopping the CPU timer.
cudaThreadSynchronize()blocks the calling CPU thread until all CUDA calls
previously issued by the thread are completed.

Although it is also possible to synchronize the CPU thread with a particular stream
or event on the GPU, these synchronization functions are not suitable for timing
code in nonzero streams. cudaStreamSynchronize() blocks the CPU thread until
all CUDA calls previously issued into the given stream have completed.
cudaEventSynchronize() blocks until a given event in a particular stream has
been recorded by the GPU. Because the driver may interleave execution of CUDA
calls from different nonzero streams, calls in other streams may be included in the
timing.

Because the default or 0 stream exhibits synchronous behavior (an operation in the
default stream can begin only after all preceding calls in any stream have completed;

CUDA Best Practices Guide

and no subsequent operation in any stream can begin until it finishes), these
functions can be used reliably for timing in the default stream.

2.1.2 Using CUDA GPU Timers
The CUDA event API provides calls that create and destroy events, record events
(via timestamp), and convert timestamp differences into a floating-point value in
milliseconds. Listing 2.1 illustrates their use.
cudaEvent_t start, stop;
float time;

cudaEventCreate(&start);
cudaEventCreate(&stop);

cudaEventRecord(start, 0);
kernel<<<grid,threads>>> (d_odata, d_idata, size_x, size_y,
 NUM_REPS);
cudaEventRecord(stop, 0);
cudaEventSynchronize(stop);

cudaEventElapsedTime(&time, start, stop);
cudaEventDestroy(start);
cudaEventDestroy(stop);

Listing 2.1 How to time code using CUDA events

Here cudaEventRecord() is used to place the start and stop events into the
default or 0 stream. The cudaEventElapsedTime() function places the elapsed
time between start and stop into time. This value is expressed in milliseconds
and has a resolution of approximately half a microsecond. Like the other calls in this
listing, their specific operation, parameters, and return values are described in the
CUDA Reference Manual. Note that the timings are measured on the GPU clock, and
so are operating system–independent.

2.2 Bandwidth

Bandwidth is one of the most important gating factors for performance. Almost all
changes to code should be made in the context of how they affect bandwidth. As
described in Chapter 3 of this guide, bandwidth can be dramatically affected by the
choice of memory in which data is stored, how the data is stored and accessed, as
well as other factors.

To measure performance accurately, it is useful to calculate theoretical and effective
bandwidth. When the latter is much lower than the former, design or
implementation details are likely to reduce bandwidth, and it should be the primary
goal of subsequent optimization efforts to increase it.

High Priority: Use the effective bandwidth of your computation as a metric when
measuring performance and optimization benefits.

12 July 2009

Performance Metrics

2.2.1 Theoretical Bandwidth Calculation
Theoretical bandwidth can be calculated using hardware specifications available in
the product literature. For example, the NVIDIA GeForce GTX 280 uses DDR
(double data rate) RAM with a memory clock rate of 1,107 MHz and a 512-bit wide
memory interface.

Using these data items, the peak theoretical memory bandwidth of the NVIDIA
GeForce GTX 280 is

ሺ 1107 x 106 x ሺ 512/8 ሻ x 2 ሻ / 109 ൌ 141.6 GB/sec
In this calculation, the memory clock rate is converted in to Hz, multiplied by the
interface width (divided by 8, to convert bits to bytes) and multiplied by 2 due to the
double data rate. Finally, this product is divided by 109 to convert the result to
GB/sec (GBps).

Note that some calculations use 1,0243 instead of 109 for the final calculation. In
such a case, the bandwidth would be 131.9 GBps. It is important to use the same
divisor when calculating theoretical and effective bandwidth, so that the comparison
is valid.

2.2.2 Effective Bandwidth Calculation
Effective bandwidth is calculated by timing specific program activities and by
knowing m his equation how data is accessed by the progra . To do so, use t

Effective bandwidth = ሺሺ Br Bw ሻ / 10 ሻ / time 9

where the effective bandwidth is in units of GBps, Br is the number of bytes read
per kernel, Bw is the number of bytes written per kernel, and time is given in
seconds.

For example, to compute the effective bandwidth of a 2048 x 2048 matrix copy, the
following formula could be used:

Effective bandwidth ൌ ሺሺ 20482 x 4 x 2 ሻ / 109 ሻ / time
The number of elements is multiplied by the size of each element (4 bytes for a
float), multiplied by 2 (because of the read and write), divided by 109 (or 1,0243) to
obtain GB of memory transferred. This number is divided by the time in seconds to
obtain GBps.

2.2.3 Throughput Reported by cudaprof
The memory throughput reported in the summary table of cudaprof, the CUDA
visual profiler, differs from the effective bandwidth obtained by the calculation in
section 2.2.2 in several respects.

The first difference is that cudaprof measures throughput using a subset of the
GPU’s multiprocessors and then extrapolates that number to the entire GPU, thus
reporting an estimate of the data throughput.

 July 2009 13

CUDA Best Practices Guide

14 July 2009

The second and more important difference is that because the minimum memory
transaction size is larger than most word sizes, the memory throughput reported by
the profiler includes the transfer of data not used by the kernel.

The effective bandwidth calculation in section 2.2.2, however, includes only data
transfers that are relevant to the algorithm. As such, the effective bandwidth will be
smaller than the memory throughput reported by cudaprof and is the number to use
when optimizing memory performance.

However, it’s important to note that both numbers are useful. The profiler memory
throughput shows how close the code is to the hardware limit, and the comparison
of the effective bandwidth with the profiler number presents a good estimate of
how much bandwidth is wasted by suboptimal coalescing of memory accesses.

 July 2009 15

Chapter 3.
Memory Optimizations

Memory optimizations are the most important area for performance. The goal is to
maximize the use of the hardware by maximizing bandwidth. Bandwidth is best
served by using as much fast memory and as little slow-access memory as possible.
This chapter discusses the various kinds of memory on the host and device and how
best to set up data items to use the memory effectively.

3.1 Data Transfer Between Host and Device

The peak bandwidth between the device memory and the GPU is much higher
(141 GBps on the NVIDIA GeForce GTX 280, for example) than the peak
bandwidth between host memory and device memory (8 GBps on the PCI Express
×16 Gen2). Hence, for best overall application performance, it is important to
minimize data transfer between the host and the device, even if that means running
kernels on the GPU that do not demonstrate any speed-up compared with running
them on the host CPU.

High Priority: Minimize data transfer between the host and the device, even if it
means running some kernels on the device that do not show performance gains when
compared with running them on the host CPU.

Intermediate data structures should be created in device memory, operated on by
the device, and destroyed without ever being mapped by the host or copied to host
memory.

Also, because of the overhead associated with each transfer, batching many small
transfers into one larger transfer performs significantly better than making each
transfer separately.

Finally, higher bandwidth between host and device is achieved when using page-
locked (or pinned) memory, as discussed in the CUDA Programming Guide and section
3.1.1 of this document.

 3.1.1 Pinned Memory
Page-locked or pinned memory transfers attain the highest bandwidth between host
and device. On PCIe ×16 Gen2 cards, for example, pinned memory can attain
greater than 5 GBps transfer rates.

CUDA Best Practices Guide

Pinned memory is allocated using the cudaMallocHost()or cudaAllocHost()
functions in the runtime API. The bandwidthTest.cu program in the CUDA SDK
shows how to use these functions as well as how to measure memory transfer
performance.

Pinned memory should not be overused. Excessive use can reduce overall system
performance because pinned memory is a scarce resource. How much is too much
is difficult to tell in advance, so as with all optimizations, test the applications and
the systems they run on for optimal performance parameters.

3.1.2 Asynchronous Transfers and Overlapping Transfers
with Computation

Data transfers between host and device using cudaMemcpy() are blocking transfers;
that is, control is returned to the host thread only after the data transfer is complete.
The cudaMemcpyAsync() function is a nonblocking variant of cudaMemcpy() in
which control is returned immediately to the host thread. In contrast with
cudaMemcpy(), the asynchronous transfer version requires pinned host memory (see
section 3.1.1), and it contains an additional argument, a stream ID. A stream is simply
a sequence of operations that are performed in order on the device. Operations in
different streams can be interleaved and in some cases overlapped—a property that
can be used to hide data transfers between host and device.

Asynchronous transfers enable overlap of data transfers with computation in two
different ways. On all CUDA-enabled devices, it is possible to overlap host
computation with asynchronous data transfers and device computations. For
example, Listing 3.1 demonstrates how host computation in the routine
cpuFunction() is performed while data is transferred to the device and a kernel
using the device is executed.
cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, 0);
kernel<<<grid, block>>>(a_d);
cpuFunction();

Listing 3.1 Overlapping computation and data transfers

The last argument to the cudaMemcpyAsync() function is the stream ID, which in
this case uses the default stream, stream 0. The kernel also uses the default stream,
and it will not begin execution until the memory copy completes; therefore, no
explicit synchronization is needed. Because the memory copy and the kernel both
return control to the host immediately, the host function cpuFunction() overlaps
their execution.

In Listing 3.1, the memory copy and kernel execution occur sequentially. On devices
that are capable of “concurrent copy and execute,” it is possible to overlap kernel
execution with data transfers between host and device. Whether a device has this
capability is indicated by the deviceOverlap field of a cudaDeviceProp variable
(or listed in the output of the deviceQuery SDK sample). On devices that have this
capability, the overlap once again requires pinned host memory, and, in addition, the
data transfer and kernel must use different, nonzero streams. Nonzero streams are
required for this overlap because memory copy, memory set functions, and kernel
calls that use the default stream begin only after all preceding calls on the device (in

16 July 2009

Memory Optimizations

any stream) have completed, and no operation on the device (in any stream)
commences until they are finished.

Listing 3.2 illustrates the basic technique.
cudaStreamCreate(&stream1);
cudaStreamCreate(&stream2);
cudaMemcpyAsync(a_d, a_h, size, cudaMemcpyHostToDevice, stream1);
kernel<<<grid, block, 0, stream2>>>(otherData_d);

Listing 3.2 Concurrent copy and execute

In this code, two streams are created and used in the data transfer and kernel
executions as specified in the last arguments of the cudaMemcpyAsync call and the
kernel’s execution configuration.

Listing 3.2 demonstrates how to overlap kernel execution with asynchronous data
transfer. This technique could be used when the data dependency is such that the
data can be broken into chunks and transferred in multiple stages, launching
multiple kernels to operate on each chunk as it arrives. Listings 3.3a and 3.3b
demonstrate this. They produce equivalent results. The first segment shows the
reference sequential implementation, which transfers and operates on an array of N
floats (where N is assumed to be evenly divisible by nThreads).
cudaMemcpy(a_d, a_h, N*sizeof(float), dir);
kernel<<<N/nThreads, nThreads>>>(a_d);

Listing 3.3a Sequential copy and execute

Listing 3.3b shows how the transfer and kernel execution can be broken up into
nStreams stages. This approach permits some overlapping of the data transfer and
execution.
size=N*sizeof(float)/nStreams;
for (i=0; i<nStreams; i++) {
 offset = i*N/nStreams;
 cudaMemcpyAsync(a_d+offset, a_h+offset, size, dir, stream[i]);
}
for (i=0; i<nStreams; i++) {
 offset = i*N/nStreams;
 kernel<<<N/(nThreads*nStreams), nThreads,
 0, stream[i]>>>(a_d+offset);
}

Listing 3.3b Staged concurrent copy and execute

(In Listing 3.3b, it is assumed that N is evenly divisible by nThreads * nStreams.)
Because execution within a stream occurs sequentially, none of the kernels will
launch until the data transfers in their respective streams complete. Current
hardware can simultaneously process an asynchronous data transfer and execute
kernels. (It should be mentioned that it is not possible to overlap a blocking transfer
with an asynchronous transfer, because the blocking transfer occurs in the default
stream, and so it will not begin until all previous CUDA calls complete. It will not
allow any other CUDA call to begin until it has completed.) A diagram depicting the
timeline of execution for the two code segments is shown in Figure 3.1, and
nStreams=4 for Listing 3.3b is shown in the bottom half.

 July 2009 17

CUDA Best Practices Guide

Figure 3.1 Comparison of timelines for sequential (top) and concurrent

(bottom) copy and kernel execution

For this example, it is assumed that the data transfer and kernel execution times are
comparable. In such cases, and when the execution time (tE) exceeds the transfer
time (tT), a rough estimate for the overall time is tE + tT/nStreams for the staged
version versus tE + tT for the sequential version. If the transfer time exceeds the
execution time, a rough estimate for the overall time is tT + tE/nStreams.

3.1.3 Zero Copy
Zero copy is a new feature as of version 2.2 of the CUDA Toolkit. It enables GPU
threads to directly access host memory. For this purpose, it requires mapped pinned
(nonpageable) memory. On integrated GPUs, mapped pinned memory is always a
performance gain because it avoids superfluous copies as integrated GPU and CPU
memory are physically the same. On discrete GPUs, mapped pinned memory is
advantageous only in certain cases. Because the data is not cached on the GPU,
mapped pinned memory should be read or written only once, and the global loads
and stores that read and write the memory should be coalesced. Zero copy can be
used in place of streams because kernel-originated data transfers automatically
overlap kernel execution without the overhead of setting up and determining the
optimal number of streams.

Low Priority: On version 2.2 of the CUDA Toolkit (and later), use zero-copy operations
on integrated GPUs.

The host code in Listing 3.4 shows how zero copy is typically set up.
float *a_h, *a_map;
…
cudaGetDeviceProperties(&prop, 0);
if (!prop.canMapHostMemory)
 exit(0);
cudaSetDeviceFlags(cudaDeviceMapHost);
cudaHostAlloc((void **)&a_h, nBytes, cudaHostAllocMapped);
cudaHostGetDevicePointer((void **)&a_map, (void *)a_h, 0);
kernel<<<gridSize, blockSize>>>(a_map);

Listing 3.4 Zero-copy host code

18 July 2009

Memory Optimizations

In this code, the canMapHostMemory field of the structure returned by
cudaGetDeviceProperties() is used to check that the device supports mapping
host memory to the device’s address space. Page-locked memory mapping is
enabled by calling cudaSetDeviceFlags() with cudaDeviceMapHost. Note that
cudaSetDeviceFlags() must be called prior to setting a device or making a
CUDA call that requires state (that is, essentially, before a context is created). Page-
locked mapped host memory is allocated using cudaHostAlloc(), and the pointer
to the mapped device address space is obtained via the function
cudaHostGetDevicePointer(). In the kernel, the pointer a_map is used just as a
device pointer is used.

3.2 Device Memory Spaces

CUDA devices use several memory spaces, which have different characteristics that
reflect their distinct usages in CUDA applications. These memory spaces include
global, local, shared, texture, and registers, as shown in Figure 3.2.

To Host

Figure 3.2 The various memory spaces on a CUDA device

Of these different memory spaces, global and texture memory are the most
plentiful. There is a 16 KB per thread limit on local memory, a total of 64 KB of
constant memory, and a limit of 16 KB of shared memory, and either 8,192 or
16,384 32-bit registers per multiprocessor. Global, local, and texture memory have
the greatest access latency (although texture is cached), followed by constant
memory, registers, and shared memory.

The various principal traits of the memory types are shown in Table 3.1.

 July 2009 19

CUDA Best Practices Guide

Table 3.1 Salient features of device memory

Memory Location
on/off chip

Cached Access Scope Lifetime

Register On n/a R/W 1 thread Thread

Local Off No R/W 1 thread Thread

Shared On n/a R/W All threads in block Block

Global Off No R/W All threads + host Host allocation

Constant Off Yes R All threads + host Host allocation

Texture Off Yes R All threads + host Host allocation

In the case of texture access, if a texture reference is bound to a linear (and as of
version 2.2 of the CUDA Toolkit, pitch-linear) array in global memory, then the
device code can write to the underlying array. Reading from a texture while writing
to its underlying global memory array in the same kernel launch should be avoided
because the texture caches are read-only and are not invalidated when the associated
global memory is modified.

3.2.1 Coalesced Access to Global Memory

High Priority: Ensure global memory accesses are coalesced whenever possible.

Perhaps the single most important performance consideration in programming for
the CUDA architecture is coalescing global memory accesses. Global memory loads
and stores by threads of a half warp (16 threads) are coalesced by the device in as
few as one transaction (or two transactions in the case of 128-bit words) when
certain access requirements are met. To understand these access requirements,
global memory should be viewed in terms of aligned segments of 16 and 32 words.
Figure 3.3 helps explain coalescing of a half warp of 32-bit words, such as floats. It
shows global memory as rows of 64-byte aligned segments (16 floats). Two rows of
the same color represent a 128-byte aligned segment. A half warp of threads that
accesses the global memory is indicated at the bottom of the figure.

20 July 2009

Memory Optimizations

Figure 3.3 Linear memory segments and threads in a half warp

The access requirements for coalescing depend on the compute capability of the
device:

 On devices of compute capability 1.0 or 1.1, the k-th thread in a half warp must
access the k-th word in a segment aligned to 16 times the size of the elements
being accessed; however, not all threads need to participate.

 On devices of compute capability 1.2 or higher, coalescing is achieved for any
pattern of accesses that fits into a segment size of 32 bytes for 8-bit words,
64 bytes for 16-bit words, or 128 bytes for 32- and 64-bit words. Smaller
transactions may be issued to avoid wasting bandwidth. More precisely, the
following protocol is used to issue a memory transaction for a half warp:

 Find the memory segment that contains the address requested by the lowest
numbered active thread. Segment size is 32 bytes for 8-bit data, 64 bytes for
16-bit data, and 128 bytes for 32-, 64-, and 128-bit data.

 Find all other active threads whose requested address lies in the same
segment, and reduce the transaction size if possible:

 If the transaction is 128 bytes and only the lower or upper half is used,
reduce the transaction size to 64 bytes.

 If the transaction is 64 bytes and only the lower or upper half is used,
reduce the transaction size to 32 bytes.

 Carry out the transaction and mark the serviced threads as inactive.
 Repeat until all threads in the half warp are serviced.

These concepts are illustrated in the following simple examples.

3.2.1.1 A Simple Access Pattern
The first and simplest case of coalescing can be achieved by any CUDA-enabled
device: the k-th thread accesses the k-th word in a segment; the exception is that not
all threads need to participate. (See Figure 3.4.)

 July 2009 21

CUDA Best Practices Guide

Figure 3.4 Coalesced access in which all threads but one access the

corresponding word in a segment

This access pattern results in a single 64-byte transaction, indicated by the red
rectangle. Note that even though one word is not requested, all data in the segment
are fetched. If accesses by threads were permuted within this segment, still one 64-
byte transaction would be performed by a device with compute capability 1.2 or
higher, but 16 serialized transactions would be performed by a device with compute
capability 1.1 or lower.

3.2.1.2 A Sequential but Misaligned Access Pattern
If sequential threads in a half warp access memory that is sequential but not aligned
with the segments, then a separate transaction results for each element requested on
a device with compute capability 1.1 or lower. On a device with compute capability
1.2 or higher, several different scenarios can arise depending on whether all
addresses for a half warp fall within a single 128-byte segment. If the addresses fall
within a 128-byte segment, then a single 128-byte transaction is performed, as
shown in Figure 3.5.

Figure 3.5 Unaligned sequential addresses that fit within a single 128-

byte segment

If a half warp accesses memory that is sequential but split across two 128-byte
segments, then two transactions are performed. In the following case, illustrated in
Figure 3.6, one 64-byte transaction and one 32-byte transaction result.

22 July 2009

Memory Optimizations

Figure 3.6 Misaligned sequential addresses that fall within two 128-byte

segments

Memory allocated through the runtime API, such as via cudaMalloc(), is
guaranteed to be aligned to at least 256 bytes. Therefore, choosing sensible thread
block sizes, such as multiples of 16, facilitates memory accesses by half warps that
are aligned to segments. In addition, the qualifiers __align__(8) and
__align__(16) can be used when defining structures to ensure alignment to
segments.

3.2.1.3 Effects of Misaligned Accesses
It is easy and informative to explore the ramifications of misaligned accesses using a
simple copy kernel, such as the one in Listing 3.5.
__global__ void offsetCopy(float *odata, float* idata, int offset)
{
 int xid = blockIdx.x * blockDim.x + threadIdx.x + offset;
 odata[xid] = idata[xid];
}

Listing 3.5 A copy kernel that illustrates misaligned accesses

In Listing 3.5, data is copied from the input array idata to the output array, both of
which exist in global memory. The kernel is executed within a loop in host code that
varies the parameter offset from 1 to 32. (Figures 3.5 and 3.6 correspond to
offsets of 1 and 17, respectively.) The effective bandwidth for the copy with various
offsets on an NVIDIA GeForce GTX 280 (with compute capability 1.3) and an
NVIDIA Quadro® FX 5600 (compute capability 1.0) are shown in Figure 3.7.

 July 2009 23

CUDA Best Practices Guide

Figure 3.7 Performance of offsetCopy kernel

For the NVIDIA Quadro FX 5600 device, global memory accesses with no offset
or with offsets that are multiples of 16 result in a single transaction per half warp
and an effective bandwidth of approximately 60 GBps. Otherwise, 16 transactions
are issued per half warp resulting in an effective bandwidth of approximately
6.6 GBps. This roughly 8x performance degradation is due to the fact that 32 bytes,
the minimum transaction size, are fetched for each thread. However, only 4 bytes of
data are used for each 32 bytes fetched—resulting in the 4/32=1/8 performance
relative to the fully coalesced case. The two numbers also reflect the different data
represented by effective bandwidth (4 bytes) versus actual bandwidth (32 bytes).

Because of this possible performance degradation, memory coalescing is the most
critical aspect of performance optimization of device memory. For the NVIDIA
GeForce GTX 280 device, the situation is less dire for misaligned accesses because,
in all cases, access by a half warp of threads in this kernel results in either one or
two transactions. As such, the effective bandwidth is between 120 GBps for a single
transaction and 66 GBps for two transactions per half warp. The number of
transactions issued for a half warp of threads depends on the offset and whether the
warp is even- or odd-numbered. For offsets of 0 or 16, each half warp results in a
single 64-byte transaction (Figure 3.4). For offsets of 1 through 7 or 9 through 15,
even-numbered warps result in a single 128-byte transaction (Figure 3.5) and odd-
numbered warps result in two transactions: one 64-byte and one 32-byte (Figure
3.6). For offsets of 8, even-numbered warps result in one 128-byte transaction and
odd-numbered warps result in two 32-byte transactions. The two 32-byte
transactions, rather than a 64- and a 32-byte transaction, are responsible for the blip
at the offset of 8 in Figure 3.7.

3.2.1.4 Strided Accesses
Although the relaxed coalescing restrictions for devices with compute capability 1.2
or higher achieve one-half full bandwidth for the offset copy case just described,
performance on such devices can degrade when successive threads in a half warp
access memory locations that have non-unit strides. This pattern occurs frequently

24 July 2009

Memory Optimizations

when dealing with multidimensional data or matrices; for example, when a half warp
of threads accesses matrix elements columnwise and the matrix is stored in row-
major order.

To illustrate the effect of strided access on effective bandwidth, see the following
kernel strideCopy(), which copies data with a stride of stride elements between
threads from idata to odata.
__global__ void strideCopy(float *odata, float* idata, int stride)
{
 int xid = (blockIdx.x*blockDim.x + threadIdx.x)*stride;
 odata[xid] = idata[xid];
}

Listing 3.6 A kernel to illustrate non-unit stride data copy

Figure 3.8 illustrates a situation that can be created using the code in Listing 3.6;
namely, threads within a half warp access memory with a stride of 2. This action is
coalesced into a single 128-byte transaction on an NVIDIA GeForce GTX 280
(compute capability 1.3).

Figure 3.8 A half warp accessing memory with a stride of 2

Although a stride of 2 results in a single transaction, note that half the elements in
the transaction are not used and represent wasted bandwidth. As the stride
increases, the effective bandwidth decreases until the point where 16 transactions
are issued for the 16 threads in a half warp, as indicated in Figure 3.9.

 July 2009 25

CUDA Best Practices Guide

Figure 3.9 Performance of strideCopy kernel

Note, however, that on the NVIDIA Quadro FX 5600 device (compute capability
1.0), any non-unit stride results in 16 separate transactions per half warp.

As illustrated in Figure 3.9, non-unit stride global memory accesses should be
avoided whenever possible. One method for doing so utilizes shared memory,
which is discussed in the next section.

3.2.2 Shared Memory
Because it is on-chip, shared memory is much faster than local and global memory.
In fact, shared memory latency is roughly 100x lower than global memory latency—
provided there are no bank conflicts between the threads, as detailed in the
following section.

3.2.2.1 Shared Memory and Memory Banks
To achieve high memory bandwidth for concurrent accesses, shared memory is
divided into equally sized memory modules, called banks, that can be accessed
simultaneously. Therefore, any memory load or store of n addresses that spans n
distinct memory banks can be serviced simultaneously, yielding an effective
bandwidth that is n times as high as the bandwidth of a single bank.

However, if multiple addresses of a memory request map to the same memory bank,
the accesses are serialized. The hardware splits a memory request that has bank
conflicts into as many separate conflict-free requests as necessary, decreasing the
effective bandwidth by a factor equal to the number of separate memory requests.
The one exception here is when all threads in a half warp address the same shared
memory location, resulting in a broadcast.

To minimize bank conflicts, it is important to understand how memory addresses
map to memory banks and how to optimally schedule memory requests.

26 July 2009

Memory Optimizations

Medium Priority: Accesses to shared memory should be designed to avoid serializing
requests due to bank conflicts.

Shared memory banks are organized such that successive 32-bit words are assigned
to successive banks and each bank has a bandwidth of 32 bits per clock cycle. The
bandwidth of shared memory is 32 bits per bank per clock cycle.

For devices of compute capability 1.x, the warp size is 32 threads and the number of
banks is 16. A shared memory request for a warp is split into one request for the
first half of the warp and one request for the second half of the warp. Note that no
bank conflict occurs if only one memory location per bank is accessed by a half
warp of threads. Refer to the CUDA Programming Guide for more information on
how accesses and banks can be matched to avoid conflicts.

3.2.2.2 Shared Memory in Matrix Multiplication (C = AB)
Shared memory enables cooperation between threads in a block. When multiple
threads in a block use the same data from global memory, shared memory can be
used to access the data from global memory only once. Shared memory can also be
used to avoid uncoalesced memory accesses by loading and storing data in a
coalesced pattern from global memory and then reordering it in shared memory.
Aside from memory bank conflicts, there is no penalty for nonsequential or
unaligned accesses by a half warp in shared memory.

The use of shared memory is illustrated via the simple example of a matrix
multiplication C = AB for the case with A of dimension Mx16, B of dimension
16xN, and C of dimension MxN. To keep the kernels simple, M and N are multiples
of 16. A natural decomposition of the problem is to use a block and tile size of
16x16 threads. Therefore, in terms of 16x16 tiles, A is a column matrix, B is a row
matrix, and C is their outer product. (See Figure 3.10.) A grid of N/16 by M/16
blocks is launched, where each thread block calculates the elements of a different
tile in C from a single tile of A and a single tile of B.

 July 2009 27

CUDA Best Practices Guide

Figure 3.10 A block-column matrix (A) multiplied by a block-row matrix

(B) and the resulting product matrix (C)

To do this, the simpleMultiply kernel (Listing 3.7) calculates the output elements
of a tile of matrix C.
__global__ void simpleMultiply(float *a, float* b, float *c,
 int N)
{
 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 float sum = 0.0f;
 for (int i = 0; i < TILE_DIM; i++) {
 sum += a[row*TILE_DIM+i] * b[i*N+col];
 }
 c[row*N+col] = sum;
}

Listing 3.7 Unoptimized matrix multiplication

In Listing 3.7, a, b, and c are pointers to global memory for the matrices A, B, and
C, respectively; blockDim.x, blockDim.y, and TILE_DIM are all 16. Each thread in
the 16x16 block calculates one element in a tile of C. row and col are the row and
column of the element in C being calculated by a particular thread. The for loop
over i multiplies a row of A by a column of B, which is then written to C.

The effective bandwidth of this kernel is only 8.8 GBps on an NVIDIA GeForce
GTX 280 and 0.62 GBps on an NVIDIA Quadro FX 5600. To analyze
performance, it is necessary to consider how half warps of threads access global
memory in the for loop. Each half warp of threads calculates one row of a tile of C,
which depends on a single row of A and an entire tile of B as illustrated in Figure
3.11.

28 July 2009

Memory Optimizations

Figure 3.11 Computing a row (half warp) of a tile in C using one row of A

and an entire tile of B

For each iteration i of the for loop, all threads in a half warp read the same value
from global memory (the index row*TILE_DIM+i is constant within a half warp),
resulting in 16 transactions for compute capability 1.1 or lower, and 1 transaction
for compute capability 1.2 or higher. Even though the operation requires only 1
transaction for compute capability 1.2 or higher, there is wasted bandwidth in the
transaction because only 4 bytes out of a 32-byte transaction are used. For each
iteration, the 16 threads in a half warp read a row of the B tile, which is a sequential
and coalesced access for all compute capabilities.

The performance on a device of any compute capability can be improved by reading
a tile of A into shared memory as shown in Listing 3.8.
__global__ void coalescedMultiply(float *a, float* b, float *c,
 int N)
{
 __shared__ float aTile[TILE_DIM][TILE_DIM];

 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 float sum = 0.0f;
 aTile[threadIdx.y][threadIdx.x] = a[row*TILE_DIM+threadIdx.x];
 for (int i = 0; i < TILE_DIM; i++) {
 sum += aTile[threadIdx.y][i]* b[i*N+col];
 }
 c[row*N+col] = sum;
}

Listing 3.8 Using shared memory to improve the global memory load
efficiency in matrix multiplication

 July 2009 29

CUDA Best Practices Guide

In Listing 3.8, each element in a tile of A is read from global memory only once, in a
fully coalesced fashion (with no wasted bandwidth), to shared memory. Within each
iteration of the for loop, a value in shared memory is broadcast to all threads in a
half warp.

In Listing 3.8, a __syncthreads()synchronization barrier call is not needed after
reading the tile of A into shared memory because only threads within the half warp
that write the data into shared memory read the data. This kernel has an effective
bandwidth of 14.3 GBps on an NVIDIA GeForce GTX 280, and 7.34 GBps on an
NVIDIA Quadro FX 5600.

A further improvement can be made to how Listing 3.8 deals with matrix B. In
calculating a tile’s row of matrix C, the entire tile of B is read. The repeated reading
of the B tile can be eliminated by reading it into shared memory once (Listing 3.9).
__global__ void sharedABMultiply(float *a, float* b, float *c,
 int N)
{
 __shared__ float aTile[TILE_DIM][TILE_DIM],
 bTile[TILE_DIM][TILE_DIM];
 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 float sum = 0.0f;
 aTile[threadIdx.y][threadIdx.x] = a[row*TILE_DIM+threadIdx.x];
 bTile[threadIdx.y][threadIdx.x] = b[threadIdx.y*N+col];
 __syncthreads();
 for (int i = 0; i < TILE_DIM; i++) {
 sum += aTile[threadIdx.y][i]* bTile[i][threadIdx.x];
 }
 c[row*N+col] = sum;
}

Listing 3.9 Improvement by reading additional data into shared memory

Note that in Listing 3.9, a __syncthreads() call is required after reading the B tile
because a warp reads data from shared memory that were written to shared memory
by different warps. The effective bandwidth of this routine is 29.7 GBps on an
NVIDIA GeForce GTX 280 and 15.5 GBps on an NVIDIA Quadro FX 5600.
Note that the performance improvement is not due to improved coalescing in either
case, but to avoiding redundant transfers from global memory.

The results of the various optimizations are summarized in Table 3.2.

Table 3.2 Performance improvements optimizing C = AB matrix multiply

Optimization NVIDIA GeForce
GTX 280

NVIDIA Quadro
FX 5600

No optimization 8.8 GBps 0.62 GBps

Coalesced using shared
memory to store a tile of A 14.3 GBps 7.34 GBps

Using shared memory to
eliminate redundant reads
of a tile of B

29.7 GBps 15.5 GBps

30 July 2009

Memory Optimizations

Medium Priority: Use shared memory to avoid redundant transfers from global
memory.

3.2.2.3 Shared Memory in Matrix Multiplication (C = AAT)
A variant of the previous matrix multiplication can be used to illustrate how strided
accesses to global memory, as well as shared memory bank conflicts, are handled.
This variant simply uses the transpose of A rather than B, or C = AAT.

A simple implementation for C = AAT is shown in Listing 3.10.
__global__ void simpleMultiply(float *a, float *c, int M)
{
 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 float sum = 0.0f;
 for (int i = 0; i < TILE_DIM; i++) {
 sum += a[row*TILE_DIM+i] * a[col*TILE_DIM+i];
 }
 c[row*M+col] = sum;
}

Listing 3.10 Unoptimized handling of strided accesses to global memory

In Listing 3.10, the row-th, col-th element of C is obtained by taking the dot product
of the row-th and col-th rows of A. The effective bandwidth for this kernel is
1.1 GBps on an NVIDIA GeForce GTX 280 and 0.4 GBps on an NVIDIA
Quadro FX 5600. These results are substantially lower than the corresponding
measurements for the C = AB kernel. The difference is in how threads in a half
warp access elements of A in the second term, a[col*TILE_DIM+i], for each
iteration i. For a half warp of threads, col represents sequential columns of the
transpose of A, and therefore col*TILE_DIM represents a strided access of global
memory with a stride of 16. This results in uncoalesced memory accesses on devices
with compute capability 1.1 or lower and plenty of wasted bandwidth on devices
with compute capability 1.2 or higher. The way to avoid strided access is to use
shared memory as before, except in this case a half warp reads a row of A into a
column of a shared memory tile, as shown in Listing 3.11.
__global__ void coalescedMultiply(float *a, float *c, int M)
{
 __shared__ float aTile[TILE_DIM][TILE_DIM],
 transposedTile[TILE_DIM][TILE_DIM];
 int row = blockIdx.y * blockDim.y + threadIdx.y;
 int col = blockIdx.x * blockDim.x + threadIdx.x;
 float sum = 0.0f;
 aTile[threadIdx.y][threadIdx.x] = a[row*TILE_DIM+threadIdx.x];
 transposedTile[threadIdx.x][threadIdx.y] =
 a[(blockIdx.x*blockDim.x + threadIdx.y)*TILE_DIM +
 threadIdx.x];
 __syncthreads();

 July 2009 31

CUDA Best Practices Guide

 for (int i = 0; i < TILE_DIM; i++) {
 sum += aTile[threadIdx.y][i]* transposedTile[i][threadIdx.x];
 }
 c[row*M+col] = sum;
}

Listing 3.11 An optimized version of Listing 3.10 using coalesced reads
from global memory

Listing 3.11 uses the shared transposedTile to avoid uncoalesced accesses in the
second term in the dot product, and the shared aTile technique from the previous
example to avoid uncoalesced accesses in the first term. The effective bandwidth of
this kernel is 24.8 GBps on an NVIDIA GeForce GTX 280 and 13.3 GBps on an
NVIDIA Quadro FX 5600. These results are slightly lower than those obtained by
the final kernel for C = AB. The cause of the difference is shared memory bank
conflicts.

The reads of elements in transposedTile within the for loop are free of conflicts,
because threads of each half warp read across rows of the tile, resulting in unit stride
across the banks. However, bank conflicts occur when copying the tile from global
memory into shared memory. To enable the loads from global memory to be
coalesced, data are read from global memory sequentially. However, this requires
writing to shared memory in columns, and because of the use of 16x16 tiles in
shared memory, this results in a stride between threads of 16 banks. These 16-way
bank conflicts are very expensive. The simple remedy is to pad the shared memory
array so that it has an extra column, as in the following line of code.
 __shared__ float transposedTile[TILE_DIM][TILE_DIM+1];

This padding eliminates the conflicts entirely, because now the stride between
threads is 17 banks, which, due to modular arithmetic used to compute bank
indices, is equivalent to a unit stride. After this change, the effective bandwidth is
30.3 GBps on an NVIDIA GeForce GTX 280 and 15.6 GBps on an NVIDIA
Quadro FX 5600, which is comparable to the results from the last C = AB kernel.

The results of these optimizations are summarized in Table 3.3.

Table 3.3 Performance improvements optimizing C = AAT matrix
multiplication

Optimization NVIDIA GeForce
GTX 280

NVIDIA Quadro
FX 5600

No optimization 1.1 GBps 0.4 GBps

Using shared memory to
coalesce global reads 24.8 GBps 13.3 GBps

Removing bank conflicts 30.3 GBps 15.6 GBps

These results should be compared with those in Table 3.2. As can be seen from
these tables, judicious use of shared memory can dramatically improve performance.

32 July 2009

Memory Optimizations

The examples in this section have illustrated three ways to use shared memory:

 To enable coalesced accesses to global memory, especially to avoid large strides
(for general matrices, strides are much larger than 16)

 To eliminate (or reduce) redundant loads from global memory

 To avoid wasted bandwidth

3.2.2.4 Shared Memory Use by Kernel Arguments
Shared memory holds the parameters or arguments that are passed to kernels at
launch. In kernels with long argument lists, it can be valuable to put some
arguments into constant memory (and reference them there) rather than consume
shared memory.

Low Priority: For kernels with long argument lists, place some arguments into
constant memory to save shared memory.

3.2.3 Local Memory
Local memory is so named because its scope is local to the thread, not because of its
physical location. In fact, local memory is off-chip. Hence, access to local memory is
as expensive as access to global memory. Like global memory, local memory is not
cached. In other words, the term “local” in the name does not imply faster access.

Local memory is used only to hold automatic variables. This is done by the nvcc
compiler when it determines that there is insufficient register space to hold the
variable. Automatic variables that are likely to be placed in local memory are large
structures or arrays that would consume too much register space and arrays that the
compiler determines may be indexed dynamically.

Inspection of the PTX assembly code (obtained by compiling with -ptx or -keep
command-line options to nvcc) reveals whether a variable has been placed in local
memory during the first compilation phases. If it has, it will be declared using the
.local mnemonic and accessed using the ld.local and st.local mnemonics. If
it has not, subsequent compilation phases might still decide otherwise, if they find
the variable consumes too much register space for the targeted architecture. There is
no way to check this for a specific variable, but the compiler reports total local
memory usage per kernel (lmem) when run with the --ptxas-options=-v option.

3.2.4 Texture Memory
The read-only texture memory space is cached. Therefore, a texture fetch costs one
device memory read only on a cache miss; otherwise, it just costs one read from the
texture cache. The texture cache is optimized for 2D spatial locality, so threads of
the same warp that read texture addresses that are close together will achieve best
performance. Texture memory is also designed for streaming fetches with a constant
latency; that is, a cache hit reduces DRAM bandwidth demand, but not fetch
latency.

 July 2009 33

CUDA Best Practices Guide

In certain addressing situations, reading device memory through texture fetching can
be an advantageous alternative to reading device memory from global or constant
memory.

3.2.4.1 Textured Fetch vs. Global Memory Read
Device memory reads through texture fetching present several benefits over reads
from global memory:

 They are cached, potentially exhibiting higher bandwidth if there is 2D locality
in the texture fetches.

 Textures can be used to avoid uncoalesced loads from global memory.

 Packed data can be unpacked into separate variables in a single operation.

 8-bit and 16-bit integer input data may be optionally converted to 32-bit
floating-point values in the range [0.0, 1.0] or [-1.0, 1.0].

Listings 3.12 and 3.13 illustrate how textures can be used to avoid uncoalesced
global memory accesses in the following variation of the offsetCopy kernel. This
copy performs a shift in data, as demonstrated in the following kernel.
__global__ void shiftCopy(float *odata, float *idata, int shift)
{
 int xid = blockIdx.x * blockDim.x + threadIdx.x;
 odata[xid] = idata[xid+shift];
}

Listing 3.12 Unoptimized data shifts

This copy kernel applies a shift to the global memory location when reading from
idata, but writes to unshifted global memory locations in odata. The amount of
shift is specified as a function argument to the kernel. Some degradation of
performance occurs when the shift is neither zero nor a multiple of 16 because
reading from idata will be either uncoalesced (compute capability 1.1 or lower) or
result in transactions with wasted bandwidth (compute capability 1.2 or higher).
Note that regardless of compute capability, writing to odata is fully coalesced.

The version of this code that uses textures to perform the shifted read is shown in
Listing 3.13.
__global__ void textureShiftCopy(float *odata, float *idata,
 int shift)
{
 int xid = blockIdx.x * blockDim.x + threadIdx.x;
 odata[xid] = tex1Dfetch(texRef, xid+shift);
}

Listing 3.13 Data shifts optimized by use of texture memory

Here, the texture reference texRef is bound to the idata array in the host code and
the function tex1Dfetch() reads the shifted memory locations of idata via a
texture fetch. The results of both kernels (using global memory and textures for
loads) on an NVIDIA GeForce GTX 280 and an NVIDIA Quadro FX 5600 are
given in Figure 3.12.

34 July 2009

Memory Optimizations

Figure 3.12 Results of using texture memory to avoid uncoalesced global

memory access

The benefit of using textures for cases that are not optimally coalesced is clear.
Textured reads can maintain effective bandwidth of the unshifted, fully coalesced
cases within a few percent. Note that shifts that are neither zero nor multiples of 16
show greater effective bandwidth than the offsetCopy kernel in Figure 3.7. Because
all the stores in the shift kernels are fully coalesced with no wasted bandwidth, the
shift applies only to the loads.

3.2.4.2 Additional Texture Capabilities
If textures are fetched using tex1D(), tex2D(), or tex3D() rather than
tex1Dfetch(), the hardware provides other capabilities that might be useful for
some applications, such as image processing. (See Table 3.4.)

Table 3.4 Useful features for tex1D(), tex2D(), and tex3D() fetches

Feature Use Caveat

Filtering Fast, low-precision
interpolation between texels

Valid only if the texture
reference returns floating-point
data

Normalized texture
coordinates

Resolution-independent coding

Addressing modes Automatic handling of
boundary cases¹

Can be used only with
normalized texture coordinates

¹The automatic handling of boundary cases in the bottom row of Table 3.4 refers to how a texture coordinate is
resolved when it falls outside the valid addressing range. There are two options: clamp and wrap. If x is the
coordinate and N is the number of texels for a one-dimensional texture, then with clamp, x is replaced by 0 if x < 0
and by 1-1/N if 1 ≤x. With wrap, x is replaced by frac(x) where frac(x) = x – floor(x). Floor returns the largest
integer less than or equal to x. So, in clamp mode where N = 1, an x of 1.3 is clamped to 1.0; whereas in wrap
mode, it is converted to 0.3

 July 2009 35

CUDA Best Practices Guide

36 July 2009

Within a kernel call, the texture cache is not kept coherent with respect to global
memory writes, so texture fetches from addresses that have been written via global
stores in the same kernel call return undefined data. That is, a thread can safely read
a memory location via texture if the location has been updated by a previous kernel
call or memory copy, but not if it has been previously updated by the same thread or
another thread within the same kernel call. This is relevant only when fetching from
linear or pitch-linear memory because a kernel cannot write to CUDA arrays.

3.2.5 Constant Memory
There is a total of 64 KB constant memory on a device. The constant memory space
is cached. As a result, a read from constant memory costs one memory read from
device memory only on a cache miss; otherwise, it just costs one read from the
constant cache.

For all threads of a half warp, reading from the constant cache is as fast as reading
from a register as long as all threads read the same address. Accesses to different
addresses by threads within a half warp are serialized, so cost scales linearly with the
number of different addresses read by all threads within a half warp.

3.2.6 Registers
Generally, accessing a register consumes zero extra clock cycles per instruction, but
delays may occur due to register read-after-write dependencies and register memory
bank conflicts.

The latency of read-after-write dependencies is approximately 24 cycles, but this
latency is completely hidden on multiprocessors that have at least 192 active threads
(that is, 6 warps).

The compiler and hardware thread scheduler will schedule instructions as optimally
as possible to avoid register memory bank conflicts. They achieve the best results
when the number of threads per block is a multiple of 64. Other than following this
rule, an application has no direct control over these bank conflicts. In particular,
there is no register-related reason to pack data into float4 or int4 types.

3.2.6.1 Register Pressure
Register pressure occurs when there are not enough registers available for a given
task. Even though each multiprocessor contains either 8,192 or 16,384 32-bit
registers, these are partitioned among concurrent threads. To prevent the compiler
from allocating too many registers, the –maxrregcount=N command-line option
specifies the maximum number of registers, N, to allocate per thread.

 July 2009 37

Chapter 4.
Execution Configuration Optimizations

One of the keys to good performance is to keep the multiprocessors on the device
as busy as possible. A device in which work is poorly balanced across the
multiprocessors will deliver suboptimal performance. Hence, it’s important to
design your application to use threads and blocks in a way that maximizes hardware
utilization and to limit practices that impede the free distribution of work. A key
concept in this effort is occupancy, which is explained in the following sections.

Another important concept is the management of system resources allocated for a
particular task. How to manage this resource utilization is discussed in the final
sections of this chapter.

4.1 Occupancy

Thread instructions are executed sequentially in CUDA, and, as a result, executing
other warps when one warp is paused or stalled is the only way to hide latencies and
keep the hardware busy. Some metric related to the number of active warps on a
multiprocessor is therefore important in determining how effectively the hardware is
kept busy. This metric is occupancy.

Occupancy is the ratio of the number of active warps per multiprocessor to the
maximum number of possible active warps. (To determine the latter number, see
the deviceQuery.cu program in the CUDA SDK or refer to Appendix A in the
CUDA Programming Guide.) Another way to view occupancy is the percentage of the
hardware’s ability to process warps that are actively in use.

Higher occupancy does not always equate to higher performance—there is a point
above which additional occupancy does not improve performance. However, low
occupancy always interferes with the ability to hide memory latency, resulting in
performance degradation.

4.2 Calculating Occupancy

One of several factors that determine occupancy is register availability. Register
storage enables threads to keep local variables nearby for low-latency access.
However, the set of registers (known as the register file) is a limited commodity that
all threads resident on a multiprocessor must share. Registers are allocated to an
entire block all at once. So, if each thread block uses many registers, the number of
thread blocks that can be resident on a multiprocessor is reduced, thereby lowering
the occupancy of the multiprocessor. The maximum number of registers per thread

CUDA Best Practices Guide

can be set manually at compilation time using the –maxrregcount option. It is
discussed in section 3.2.6.1.

For purposes of calculating occupancy, the following factors can be important.
Devices with compute capability 1.1 or lower have 8,192 32-bit registers per
multiprocessor. Devices with compute capability 1.2 or 1.3 have 16,384 32-bit
registers per multiprocessor. Multiprocessors with compute capability 1.1 and lower
can have a maximum of 768 simultaneous threads resident (24 warps x 32 threads
per warp). This means that in a multiprocessor with 100 percent occupancy, every
thread can use 10 registers before occupancy is reduced. For compute capability 1.2
and 1.3, the corresponding number is 16 registers per thread (16,384 / (32 warps x
32 threads per warp)). The –ptax-options = -v switch in the nvcc compiler
details the number of registers used by each thread.

The preceding approach of determining how register count affects occupancy does
not take into account allocation granularity because register allocation is performed
per block. For example, on a device of compute capability 1.0, a kernel with 128-
thread blocks using 12 registers per thread results in an occupancy of 83 percent
with 5 active 128-thread blocks per multiprocessor, whereas a kernel with 256-
thread blocks using the same 12 registers per thread results in an occupancy of 66
percent because only two 256-thread blocks can reside on a multiprocessor. Not
only is register allocation performed per block, but it also is rounded to the nearest
256 registers per block on devices with compute capability 1.0 and 1.1, and it’s
rounded to the nearest 512 registers on devices with compute capability 1.2 and 1.3.
Because of these nuances in register allocation and the fact that a multiprocessor’s
shared memory is also partitioned between resident thread blocks, the relation
between register usage and occupancy can be difficult to determine.

NVIDIA provides an occupancy calculator in the form of an Excel spreadsheet that
enables developers to hone in on the optimal balance and to test different possible
scenarios. This spreadsheet, shown in Figure 4.1, is
CUDA_Occupancy_calculator.xls located in the tools directory of the SDK.

38 July 2009

Execution Configuration Optimizations

Figure 4.1 Use the CUDA GPU Occupancy Calculator to project occupancy

In addition to the calculator spreadsheet, occupancy can be determined using the
CUDA profiler.

4.3 Hiding Register Dependencies

Medium Priority: To hide latency arising from register dependencies, maintain at least
25 percent occupancy on devices with CUDA compute capability 1.1 and lower, and
18.75 percent occupancy on later devices.

Register dependencies arise when an instruction uses a result stored in a register
written by an instruction before it. The latency on current CUDA-enabled GPUs is
approximately 24 cycles, so threads must wait 24 cycles before using an arithmetic
result. However, this latency can be completely hidden by the execution of threads
in other warps. To hide arithmetic latency completely, multiprocessors should be
running at least 192 threads (6 warps). This equates to 25 percent occupancy on
devices with compute capability 1.1 and lower, and 18.75 percent occupancy on
devices with compute capability 1.2 and higher.

 July 2009 39

CUDA Best Practices Guide

4.4 Thread and Block Heuristics

Medium Priority: The number of threads per block should be a multiple of 32 threads,
because this provides optimal computing efficiency and facilitates coalescing.

The dimension and size of blocks per grid and the dimension and size of threads
per block are both important factors. The multidimensional aspect of these
parameters allows easier mapping of multidimensional problems to CUDA and does
not play a role in performance. As a result, this section discusses size but not
dimension.

Latency hiding and occupancy depend on the number of active warps per
multiprocessor, which is implicitly determined by the execution parameters along
with resource (register and shared memory) constraints. Choosing execution
parameters is a matter of striking a balance between latency hiding (occupancy) and
resource utilization.

Choosing the execution configuration parameters should be done in tandem;
however, there are certain heuristics that apply to each parameter individually. When
choosing the first execution configuration parameter—the number of blocks per
grid or grid size—the primary concern is keeping the entire GPU busy. The number
of blocks in a grid should be larger than the number of multiprocessors so that all
multiprocessors have at least one block to execute. Furthermore, there should be
multiple active blocks per multiprocessor so that blocks that aren’t waiting for a
__syncthreads() can keep the hardware busy. This recommendation is subject to
resource availability; therefore, it should be determined in the context of the
blocksize execution parameter, as well as shared memory usage. To scale to future
devices, the number of blocks per kernel launch should be in the hundreds, as
kernels with thousands of blocks will scale across multiple future generations.

When choosing the number of threads per block, or the blocksize, it is important to
remember that multiple concurrent blocks can reside on a multiprocessor, so
occupancy is not determined by blocksize alone. In particular, a larger blocksize
does not imply a higher occupancy. For example, on a device of compute capability
1.1 or lower, a kernel with a maximum blocksize of 512 threads results in an
occupancy of 66 percent because the maximum number of threads per
multiprocessor on such a device is 768. Hence, only a single block can be active per
multiprocessor. However, a kernel with 256 threads per block on such a device can
result in 100 percent occupancy with three resident active blocks.

As mentioned in section 4.1 et seq., higher occupancy does not always equate to
better performance. For example, improving occupancy from 66 percent to
100 percent generally does not translate to a similar increase in performance. A
lower occupancy kernel will have more registers available per thread than a higher
occupancy kernel, which may result in less register spilling to local memory. In fact,
once an occupancy of 50 percent has been reached, additional increases in
occupancy do not translate into improved performance.

40 July 2009

Execution Configuration Optimizations

There are many such factors involved in selecting blocksize, and inevitably some
experimentation is required. However, a few rules of thumb should be followed:

 Threads per block should be a multiple of warp size to avoid wasting
computation on underpopulated warps and to facilitate coalescing.

 A minimum of 64 threads per block should be used, but only if there are
multiple concurrent blocks per multiprocessor.

 Between 128 and 256 threads per block is a better choice and a good initial
range for experimentation with different block sizes.

Note that when a thread block allocates more than the available registers on a
multiprocessor, the kernel invocation fails, as it will when too much shared memory
or too many threads are requested.

4.5 Effects of Shared Memory

Shared memory can be helpful in several situations, such as helping to coalesce or
eliminate redundant access to global memory. However, it also can act as a
constraint on occupancy. In many cases, the amount of shared memory used in a
kernel is related to the block size, but the mapping of threads to shared memory
elements does not need to be one-to-one. For example, it may be desirable to use a
32x32 element shared memory array in a kernel, but because the maximum number
of threads per block is 512, it is not possible to launch a kernel with 32x32 threads
per block. In such cases, kernels with 32x16 or 32x8 threads can be launched with
each thread processing two or four elements, respectively, of the shared memory
array. The approach of using a thread to process multiple elements of a shared
memory array can be beneficial even if limits such as threads per block are not an
issue. This is because some common operations can be performed by a thread once
and the cost amortized over the number of shared memory elements processed by a
thread.

A useful technique to determine the sensitivity of performance to occupancy is
through experimentation with the amount of dynamically allocated shared memory,
as specified in the third parameter of the execution configuration. By simply
increasing this parameter (without modifying the kernel), it is possible to effectively
reduce the occupancy of the kernel and measure its effect on performance.

As mentioned in the previous section, once an occupancy of more than 50 percent
has been reached, it generally does not pay to optimize parameters to obtain higher
occupancy ratios. The previous technique can be used to determine whether such a
plateau has been reached.

 July 2009 41

CUDA Best Practices Guide

42 July 2009

 July 2009 43

Chapter 5.
Instruction Optimizations

Awareness of how instructions are executed often permits low-level optimizations
that can be useful, especially in code that is run frequently (the so-called hot spot in
a program). Best practices suggest that this optimization be performed after all
higher-level optimizations have been completed.

In this chapter, throughputs are given in number of operations per clock cycle per
multiprocessor. For a warp size of 32, an instruction consists of 32 operations.

Therefore, if T is the number of operations per clock cycle, the instruction
throughput is one instruction every 32/T clock cycles. All throughputs are for one
multiprocessor. They must be multiplied by the number of multiprocessors in the
device to get throughput for the whole device.

5.1 Arithmetic Instructions

Single-precision floats provide the best performance and their use is highly
encouraged.

The throughput of single-precision floating-point add, multiply, and multiply-add is
8 operations per clock cycle.

The throughput of single-precision reciprocal, reciprocal square root, and
__logf(x)are 2 operations per clock cycle. (Refer to Appendix B of the CUDA
Programming Guide.)

The throughput of 32-bit integer multiplication is 2 operations per clock cycle, but
__mul24 and __umul24 (refer to Appendix C of the CUDA Programming Guide)
provide signed and unsigned 24-bit integer multiplication with a throughput of 8
operations per clock cycle. On future architectures, however, __[u]mul24 will be
slower than 32-bit integer multiplication, so you should provide two kernels, one
using __[u]mul24 and the other using generic 32-bit integer multiplication, to be
called appropriately by the application.

5.1.1 Division and Modulo Operations

Low Priority: Use shift operations to avoid expensive division and modulo calculations.

Integer division and modulo operations are particularly costly and should be avoided
or replaced with bitwise operations whenever possible: If n is a power of 2, (i/n) is
equivalent to (i ب log2(n)) and (i % n) is equivalent to (i & (n-1)).

CUDA Best Practices Guide

The compiler will perform these conversions if n is literal. (For further information,
refer to Chapter 5 of the CUDA Programming Guide).

5.1.2 Reciprocal Square Root
The reciprocal square root should always be invoked explicitly as rsqrtf() for
single precision and rsqrt() for double precision. The compiler optimizes
1.0f/sqrtf(x) into rsqrtf() only when this does not violate IEEE-754 semantics.

5.1.3 Other Arithmetic Instructions

Low Priority: Avoid automatic conversion of doubles to floats.

The compiler must on occasion insert conversion instructions, introducing
additional execution cycles. This is the case for

 Functions operating on char or short whose operands generally need to be
converted to an int

 Double-precision floating-point constants (defined without any type suffix)
used as input to single-precision floating-point computations

The latter case can be avoided by using single-precision floating-point constants,
defined with an f suffix such as 3.141592653589793f, 1.0f, 0.5f. This
specification has accuracy implications in addition to its ramifications on
performance. The effects on accuracy are discussed in Chapter 7.

For single-precision code, use of the float type and the single-precision math
functions are highly recommended. When compiling for devices without native
double-precision support, such as devices of compute capability 1.2 and earlier, each
double variable is converted to single-precision floating-point format (but retains its
size of 64 bits) and double-precision arithmetic is demoted to single-precision
arithmetic.

It should also be noted that the CUDA math library function for complementary
error function, erfcf(), is particularly fast with full single-precision accuracy.

5.1.4 Math Libraries

Medium Priority: Use the fast math library whenever speed trumps precision.

Two types of runtime math operations are supported. They are __functionName()
and functionName(). Functions using __functionName() map directly to the
hardware level. They are faster but provide somewhat lower accuracy. (Examples:
__sinf(x), __expf(x), and so forth.) Functions using functionName() are
slower but have higher accuracy. (Examples: sinf(x), expf(x), and so forth.) The
throughput of __sinf(x), __cosf(x), __expf(x) is 1 operation per clock cycle,
while sinf(x), cosf(x), tanf(x) are much more expensive and become even

44 July 2009

Instruction Optimizations

 July 2009 45

more so (about an order of magnitude slower) if the absolute value of x needs to be
reduced. Moreover, in such cases, the argument-reduction code uses local memory,
which can affect performance even more because of the high latency of local
memory. More details are available in the CUDA Programming Guide.

Note also that whenever sine and cosine of the same argument are computed, the
sincos… family of instructions should be used to optimize performance:

 __sincosf() for single-precision fast math (see next paragraph)

 sincosf() for regular single-precision

 sincos() for double precision

The –use_fast_math compiler option of nvcc coerces every functionName() call
to the equivalent __func() call. This switch should be used whenever accuracy is a
lesser priority than the performance. This is frequently the case with transcendental
functions. Note this switch is effective only on single-precision floating point.

5.2 Memory Instructions

High Priority: Minimize the use of global memory. Prefer shared memory access
where possible.

Memory instructions include any instruction that reads from or writes to shared,
local, or global memory. The throughput of memory optimizations is 8 operations
per clock cycle. When accessing local or global memory, there are, in addition, 400
to 600 clock cycles of memory latency.

As an example, the throughput for the assignment operator in the following sample
code
__shared__ float shared[32];
__device__ float device[32];
shared[threadIdx.x] = device[threadIdx.x];

is 8 operations per clock cycle to issue a read from global memory, 8 operations per
clock cycle to issue a write to shared memory, but, crucially, there is a latency of 400
to 600 clock cycles to read data from global memory.

Much of this global memory latency can be hidden by the thread scheduler if there
are sufficient independent arithmetic instructions that can be issued while waiting
for the global memory access to complete. However, it is best to avoid accessing
global memory whenever possible.

 July 2009 47

Chapter 6.
Control Flow

6.1 Branching and Divergence

High Priority: Avoid different execution paths within the same warp.

Any flow control instruction (if, switch, do, for, while) can significantly affect
the instruction throughput by causing threads of the same warp to diverge; that is,
to follow different execution paths. If this happens, the different execution paths
must be serialized, increasing the total number of instructions executed for this
warp. When all the different execution paths have completed, the threads converge
back to the same execution path.

To obtain best performance in cases where the control flow depends on the thread
ID, the controlling condition should be written so as to minimize the number of
divergent warps.

This is possible because the distribution of the warps across the block is
deterministic as mentioned in section 3.1 of the CUDA Programming Guide. A trivial
example is when the controlling condition depends only on (threadIdx / WSIZE)
where WSIZE is the warp size.

In this case, no warp diverges because the controlling condition is perfectly aligned
with the warps.

6.2 Branch Predication

Low Priority: Make it easy for the compiler to use branch predication in lieu of loops
or control statements.

Sometimes, the compiler may unroll loops or optimize out if or switch statements
by using branch predication instead. In these cases, no warp can ever diverge. The
programmer can also control loop unrolling using
#pragma unroll

For more information on this pragma, refer to the CUDA Programming Guide.

When using branch predication, none of the instructions whose execution depends
on the controlling condition is skipped. Instead, each such instruction is associated
with a per-thread condition code or predicate that is set to true or false according to

CUDA Best Practices Guide

48 July 2009

the controlling condition. Although each of these instructions is scheduled for
execution, only the instructions with a true predicate are actually executed.
Instructions with a false predicate do not write results, and they also do not evaluate
addresses or read operands.

The compiler replaces a branch instruction with predicated instructions only if the
number of instructions controlled by the branch condition is less than or equal to a
certain threshold: If the compiler determines that the condition is likely to produce
many divergent warps, this threshold is 7; otherwise it is 4.

 July 2009 49

Chapter 7.
Getting the Right Answer

Obtaining the right answer is clearly the principal goal of all computation. On
parallel systems, it is possible to run into difficulties not typically found in traditional
serial-oriented programming. These include threading issues, unexpected values due
to the way floating-point values are computed, and challenges arising from
differences in the way CPU and GPU processors operate. This chapter examines
issues that can affect the correctness of returned data and points to appropriate
solutions.

7.1 Checking Defective Code

The CUDA programming environment includes debugging options for code that
runs on the device. As explained in section 7.2, a debugger is available. Another
options is to run the code using device emulation (with the –deviceemu option on
the compiler) to step through the code.

This emulation runs the code on the host in an emulated environment. For example,
threads normally created on the device are now created on the host environment.
This enables developers to use the native programming environment that can permit
breakpoints on the threads and the inspection of data.

Another benefit is that other development tools can be used for diagnostic
purposes, such as valgrind (http://valgrind.org), which checks for threading errors,
memory leaks, and similar infelicities. In addition, traditional debugging techniques,
such as embedded printf() statements to dump data values, can be used.

Some aspects of device emulation do not exactly match the CUDA-enabled devices.
These limitations are discussed in Chapter 3 of the CUDA Programming Guide.

7.2 Debugging

In addition to using the device emulation (see section 7.1), the CUDA debugger
CUDA-GDB is a valuable debugging tool. It is a port of the GNU Debugger,
version 6.6. As of CUDA Toolkit 2.2, it runs on 32-bit and 64-bit Linux (Red Hat
Enterprise 4 or 5). The manual can be found at:
http://developer.download.nvidia.com/compute/cuda/2_1/cudagdb/CUDA_GD
B_User_Manual.pdf

http://developer.download.nvidia.com/compute/cuda/2_1/cudagdb/CUDA_GDB_User_Manual.pdf
http://developer.download.nvidia.com/compute/cuda/2_1/cudagdb/CUDA_GDB_User_Manual.pdf

CUDA Best Practices Guide

7.3 Numerical Accuracy and Precision

Incorrect or unexpected results arise principally from issues of floating-point
accuracy due to the way floating-point values are computed and stored. The
following sections explain the principal items of interest. Other peculiarities of
floating-point arithmetic are presented in Appendix B of the CUDA Programming
Guide.

7.3.1 Single vs. Double Precision
As of compute capability 1.3, CUDA provides native support for double-precision
floating-point values (that is, values 64 bits wide). Results obtained using double-
precision arithmetic will frequently differ from the same operation performed via
single-precision arithmetic due to the greater precision of the former and to
rounding issues. Therefore, it’s important to be sure to compare like with like and to
express the results within a certain tolerance, rather than expecting them to be exact.

Whenever doubles are used, it is imperative to use the –arch=sm_13 switch on the
nvcc command line.

7.3.2 Floating-Point Math Is Not Associative
Each floating-point arithmetic operation involves a certain amount of rounding.
Consequently, the order in which arithmetic operations are performed is important.
If A, B, and C are floating-point values, (A+B)+C is not guaranteed to equal
A+(B+C) as it is in symbolic math. When you parallelize computations, you
potentially change the order of operations and therefore the parallel results might
not match sequential results. This limitation is not specific to CUDA, but an
inherent part of parallel computation.

7.3.3 Promotions to Doubles and Truncations to Floats
When comparing the results of computations of float variables between the host
and device, make sure that promotions to double precision on the host do not
account for different numerical results. For example, if the code segment
float a;
…
a = a*1.02;

were performed on a device of compute capability 1.2 or less, or on a device with
compute capability 1.3 but compiled without enabling double precision (that is,
compiling with the –arch=sm_13 flag), then the multiplication would be performed
in single precision. However, if the code were performed on the host, the literal 1.02
would be interpreted as a double-precision quantity and a would be promoted to a
double, the multiplication would be performed in double precision, and the result
would be truncated to a float—thereby yielding a slightly different result. If,
however, the literal 1.02 were replaced with 1.02f, the result would be the same in

50 July 2009

Getting the Right Answer

all cases because no promotion to doubles would occur. To ensure that
computations use single-precision arithmetic, always use float literals.

In addition to accuracy, the conversion between doubles and floats (and vice versa)
has a detrimental effect on performance, as discussed in Chapter 5.

7.3.4 IEEE 754 Compliance
All CUDA compute devices follow the IEEE 754 standard for binary floating-point
representation, with some small exceptions. These exceptions, which are detailed in
Appendix A of the CUDA Programming Guide, can lead to results that differ from
IEEE 754 values computed on the host system.

One of the key differences is the fused multiply-add (FMAD) instruction, which
combines multiply-add operations into a single instruction execution and truncates
the intermediate result of the multiplication. Its result will differ at times from
results obtained by doing the two operations separately.

7.3.5 x86 80-bit Computations
x86 processors can use an 80-bit “double extended precision” math when
performing floating-point calculations. The results of these calculations can
frequently differ from pure 64-bit operations performed on the CUDA device. To
get a closer match between values, set the x86 host processor to use regular double
or single precision (64 bits and 32 bits, respectively). This is done with the FLDCW
assembly instruction or the equivalent operating system API.

 July 2009 51

CUDA Best Practices Guide

52 July 2009

 July 2009 53

Appendix A.
Recommendations and Best Practices

This appendix contains a list of all the recommendations for optimization and the
list of best practices that are explained in this document.

A.1 Overall Performance Optimization Strategies

Performance optimization revolves around three basic strategies:

 Maximizing parallel execution

 Optimizing memory usage to achieve maximum memory bandwidth

 Optimizing instruction usage to achieve maximum instruction throughput

Maximizing parallel execution starts with structuring the algorithm in a way that
exposes as much data parallelism as possible. Once the parallelism of the algorithm
has been exposed, it needs to be mapped to the hardware as efficiently as possible.
This is done by carefully choosing the execution configuration of each kernel
invocation. The application should also maximize parallel execution at a higher level
by explicitly exposing concurrent execution on the device through streams, as well
as maximizing concurrent execution between host and device.

Optimizing memory usage starts with minimizing data transfers between the host
and the device because those transfers have much lower bandwidth than internal
device data transfers. Kernel access to global memory also should be minimized by
maximizing the use of shared memory on the device. Sometimes, the best
optimization might even be to avoid any data transfer in the first place by simply
recomputing the data whenever it is needed.

The effective bandwidth can vary by an order of magnitude depending on the access
pattern for each type of memory. The next step in optimizing memory usage is
therefore to organize memory accesses according to the optimal memory access
patterns. This optimization is especially important for global memory accesses,
because latency of access costs hundreds of clock cycles. Shared memory accesses,
in counterpoint, are usually worth optimizing only when there exists a high degree
of bank conflicts.

As for optimizing instruction usage, the use of arithmetic instructions that have low
throughput should be avoided. This suggests trading precision for speed when it
does not affect the end result, such as using intrinsics instead of regular functions or
single precision instead of double precision. Finally, particular attention must be
paid to control flow instructions due to the SIMT (single instruction multiple
thread) nature of the device.

CUDA Best Practices Guide

54 July 2009

A.2 High-Priority Recommendations

 To get the maximum benefit from CUDA, focus first on finding ways to
parallelize sequential code. (Section 1.1.3)

 Use the effective bandwidth of your computation as a metric when measuring
performance and optimization benefits. (Section 2.2)

 Minimize data transfer between the host and the device, even if it means
running some kernels on the device that do not show performance gains when
compared with running them on the host CPU. (Section 3.1)

 Ensure global memory accesses are coalesced whenever possible. (Section 3.2.1)

 Minimize the use of global memory. Prefer shared memory access where
possible. (Section 5.2)

 Avoid different execution paths within the same warp. (Section 6.1)

A.3 Medium-Priority Recommendations

 Accesses to shared memory should be designed to avoid serializing requests due
to bank conflicts. (Section 3.2.2.1)

 Use shared memory to avoid redundant transfers from global memory. (Section
3.2.2.2)

 To hide latency arising from register dependencies, maintain at least 25 percent
occupancy on devices with CUDA compute capability 1.1 and lower, and 18.75
percent occupancy on later devices. (Section 4.3)

 The number of threads per block should be a multiple of 32 threads, because
this provides optimal computing efficiency and facilitates coalescing. (Section
4.4)

 Use the fast math library whenever speed trumps precision. (Section 5.1.4)

A.4 Low-Priority Recommendations

 On version 2.2 of the CUDA Toolkit (and later), use zero-copy operations on
integrated GPUs. (Section 3.1.3)

 For kernels with long argument lists, place some arguments into constant
memory to save shared memory. (Section 3.2.2.4)

 Use shift operations to avoid expensive division and modulo calculations.
(Section 5.1.1)

 Avoid automatic conversion of doubles to floats. (Section 5.1.3)

 Make it easy for the compiler to use branch predication in lieu of loops or
control statements. (Section 6.2)

 July 2009 55

Appendix B.
Useful NVCC Compiler Switches

NVCC

nvcc is the compiler that converts .cu files into C for the host system and CUDA
assembly or binary instructions for the device. It supports a spate of switches, of
which the following are especially useful for optimization and related best practices:

 -arch=sm_13 is required for double precision.

 –maxrregcount=N specifies the maximum registers, N, a kernel can use. See
section 3.2.6.1.

 --ptxas-options=-v or -Xptxas=-v lists per-kernel register, shared, and
constant memory usage.

 –use_fast_math compiler option of nvcc coerces every functionName() call
to the equivalent __func() call. This makes the code run faster at the cost of
slightly diminished precision and accuracy. See section 5.1.4.

Notice
ALL NVIDIA DESIGN SPECIFICATIONS, REFERENCE BOARDS, FILES, DRAWINGS, DIAGNOSTICS,
LISTS, AND OTHER DOCUMENTS (TOGETHER AND SEPARATELY, “MATERIALS”) ARE BEING
PROVIDED “AS IS.” NVIDIA MAKES NO WARRANTIES, EXPRESSED, IMPLIED, STATUTORY, OR
OTHERWISE WITH RESPECT TO THE MATERIALS, AND EXPRESSLY DISCLAIMS ALL IMPLIED
WARRANTIES OF NONINFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR
PURPOSE.

Information furnished is believed to be accurate and reliable. However, NVIDIA Corporation assumes no
responsibility for the consequences of use of such information or for any infringement of patents or other rights
of third parties that may result from its use. No license is granted by implication or otherwise under any patent
or patent rights of NVIDIA Corporation. Specifications mentioned in this publication are subject to change
without notice. This publication supersedes and replaces all information previously supplied. NVIDIA
Corporation products are not authorized for use as critical components in life support devices or systems
without express written approval of NVIDIA Corporation.

Trademarks
NVIDIA, the NVIDIA logo, CUDA, GeForce, NVIDIA Quadro, and Tesla are trademarks or registered
trademarks of NVIDIA Corporation. Other company and product names may be trademarks of the respective
companies with which they are associated.

Copyright
© 2009 NVIDIA Corporation. All rights reserved.

	Preface
	What Is This Document?
	Who Should Read This Guide?
	Recommendations and Best Practices
	Contents Summary

	Chapter 1.Introduction to Parallel Computing with CUDA
	1.1 Heterogeneous Computing with CUDA
	1.1.1 Differences Between Host and Device
	1.1.2 What Runs on a CUDA-Enabled Device?
	1.1.3 Maximum Performance Benefit

	1.2 Understanding the Programming Environment
	1.2.1 CUDA Compute Capability
	1.2.2 Additional Hardware Data
	1.2.3 C Runtime for CUDA and Driver API Version
	1.2.4 Which Version to Target

	1.3 CUDA APIs
	1.3.1 C Runtime for CUDA
	1.3.2 CUDA Driver API
	1.3.3 When to Use Which API
	1.3.4 Comparing Code for Different APIs

	Chapter 2.Performance Metrics
	2.1 Timing
	2.1.1 Using CPU Timers
	2.1.2 Using CUDA GPU Timers

	2.2 Bandwidth
	2.2.1 Theoretical Bandwidth Calculation
	2.2.2 Effective Bandwidth Calculation
	2.2.3 Throughput Reported by cudaprof

	Chapter 3.Memory Optimizations
	3.1 Data Transfer Between Host and Device
	 3.1.1 Pinned Memory
	3.1.2 Asynchronous Transfers and Overlapping Transfers with Computation
	3.1.3 Zero Copy

	3.2 Device Memory Spaces
	3.2.1 Coalesced Access to Global Memory
	3.2.1.1 A Simple Access Pattern
	3.2.1.2 A Sequential but Misaligned Access Pattern
	3.2.1.3 Effects of Misaligned Accesses
	3.2.1.4 Strided Accesses

	3.2.2 Shared Memory
	3.2.2.1 Shared Memory and Memory Banks
	3.2.2.2 Shared Memory in Matrix Multiplication (C = AB)
	3.2.2.3 Shared Memory in Matrix Multiplication (C = AAT)
	3.2.2.4 Shared Memory Use by Kernel Arguments

	3.2.3 Local Memory
	3.2.4 Texture Memory
	3.2.4.1 Textured Fetch vs. Global Memory Read
	3.2.4.2 Additional Texture Capabilities

	3.2.5 Constant Memory
	3.2.6 Registers
	3.2.6.1 Register Pressure

	Chapter 4.Execution Configuration Optimizations
	4.1 Occupancy
	4.2 Calculating Occupancy
	4.3 Hiding Register Dependencies
	4.4 Thread and Block Heuristics
	4.5 Effects of Shared Memory

	Chapter 5.Instruction Optimizations
	5.1 Arithmetic Instructions
	5.1.1 Division and Modulo Operations
	5.1.2 Reciprocal Square Root
	5.1.3 Other Arithmetic Instructions
	5.1.4 Math Libraries

	5.2 Memory Instructions

	Chapter 6.Control Flow
	6.1 Branching and Divergence
	6.2 Branch Predication

	Chapter 7.Getting the Right Answer
	7.1 Checking Defective Code
	7.2 Debugging
	7.3 Numerical Accuracy and Precision
	7.3.1 Single vs. Double Precision
	7.3.2 Floating-Point Math Is Not Associative
	7.3.3 Promotions to Doubles and Truncations to Floats
	7.3.4 IEEE 754 Compliance
	7.3.5 x86 80-bit Computations

	Appendix A.Recommendations and Best Practices
	A.1 Overall Performance Optimization Strategies
	A.2 High-Priority Recommendations
	A.3 Medium-Priority Recommendations
	A.4 Low-Priority Recommendations

	Appendix B.Useful NVCC Compiler Switches
	NVCC

