Büchi Automata & Model checking

Tomáš Babiak

DTEDI

November 11, 2010

T. Babiak: Büchi Automata & Model checking

2 LTL

- Büchi automata classes
- 5 Connections between LTL and BA

6 Research areas

Introduction to Model checking

The automata-theoretic approach to LTL model checking.

Advantages:

- General technique applicable on hardware and software.
- Decision process can be fully automatized. (Tools are available.)
- Soundness is proven:
 - If $\mathcal{M} \models \varphi$ then system has the given property.
 - If $\mathcal{M} \not\models \varphi$ then system can violate the given property.
- A counterexample is generated when the property is violated.

Advantages:

- General technique applicable on hardware and software.
- Decision process can be fully automatized. (Tools are available.)
- Soundness is proven:
 - If $\mathcal{M} \models \varphi$ then system has the given property.
 - If $\mathcal{M} \not\models \varphi$ then system can violate the given property.
- A counterexample is generated when the property is violated.

Disadvantages:

- Only a model of a system is verified.
- Applicable only on finite state systems.
- Number of states of A_M is often exponential in the size of implicit description of the system - state explosion problem.

- abstraction
- partial order reduction
- symetry reduction
- on-the-fly algorithms
- symbolic model checking
- distributed algorithms

• . . .

Linear Temporal Logic (LTL) is defined by

$$\varphi ::= tt \mid a \mid \neg \varphi \mid \varphi_1 \land \varphi_2 X \varphi \mid \varphi_1 U \varphi_2$$

where *tt* stands for true and *a* ranges over a countable set *AP* of atomic propositions.

Linear Temporal Logic (LTL) is defined by

$$\varphi \ ::= \ tt \mid \ a \ \mid \ \neg\varphi \ \mid \ \varphi_1 \land \varphi_2 \ \mathsf{X}\varphi \ \mid \ \varphi_1 \ \mathsf{U} \ \varphi_2$$

where *tt* stands for true and *a* ranges over a countable set *AP* of atomic propositions.

Abbreviations: $ff \equiv \neg tt$ $F\varphi \equiv tt U \varphi$ $G\varphi \equiv \neg F \neg \varphi$

Linear Temporal Logic (LTL) is defined by

$$\varphi ::= tt \mid a \mid \neg \varphi \mid \varphi_1 \land \varphi_2 X \varphi \mid \varphi_1 U \varphi_2$$

where *tt* stands for true and *a* ranges over a countable set *AP* of atomic propositions.

Abbreviations: $ff \equiv \neg tt$ $F\varphi \equiv tt \cup \varphi$ $G\varphi \equiv \neg F \neg \varphi$

We interpret LTL on infinite words $w \in (2^{AP})^{\omega}$.

Semantics of modal operators:

Büchi automata (BA)

Similar to finite automata (FA), but interpreted over infinite words. Accepts a word w if some accepting state is visited infinitely often during some computation over w.

For example:

- Accepts infinite words cca(b)^ω or ccc(ca)^ω.
- Does not accept infinite word cacac(c)^ω.

T. Babiak: Büchi Automata & Model checking

Generalized Büchi automata (GBA)

Several sets of accepting states. Accepts a word *w* if some accepting state of each set is visited infinitely often.

For example:

- Accepts infinite word *cbb(ac)^ω*.
- Does not accept infinite words $cacac(c)^{\omega}$ and $cca(b)^{\omega}$.

T. Babiak: Büchi Automata & Model checking

Alternating Büchi automata (GBA)

A run of an alternating BA A on an infinite word w is a tree. A run is accepting if along any infinite branch some accepting state occurs infinitely often.

Alternating Büchi automata (GBA)

A run of an alternating BA A on an infinite word w is a tree. A run is accepting if along any infinite branch some accepting state occurs infinitely often.

Accepts the language $l^*m(l + m + n)^*n^{\omega}$.

T. Babiak: Büchi Automata & Model checking

terminal BA = each accepting state have transitions under each input symbol and there is no transition leading from an accepting state to a non-accepting one

weak BA = each SCC contains only accepting states or only non-accepting states

linear BA = 1-weak BA = very weak BA = each SCC contains just one state

Hierarchy of Büchi automata classes

Each LTL formula φ can be translated into language equivalent BA A_{ω} such that the number of states of \mathcal{A}_{φ} is $2^{\mathcal{O}(|\varphi|)}$.

(Wolper, Vardi & Sistla '83)

Each LTL formula φ can be translated into language equivalent BA \mathcal{A}_{φ} such that the number of states of \mathcal{A}_{φ} is $2^{\mathcal{O}(|\varphi|)}$. (Wolper, Vardi & Sistla '83)

Several translations of LTL to BA using different intermediate formalisms were developed:

LTL \rightarrow VWAA \rightarrow BA (Vardi '94)
LTL \rightarrow GBA \rightarrow BA (Gerth, Peled, Vardi & Wolper '95)
LTL \rightarrow VWAA \rightarrow TGBA \rightarrow BA (Gastin & Oddoux '01)
LTL \rightarrow TGBA \rightarrow BA (Giannakopoulou & Lerda '02)

Connections between LTL and BA [ČP2003]

Connections between LTL and BA [ČP2003]

• Contemporary translations are far from perfect.

```
(Rozier & Vardi '07)
```

- For specific formulae, translation itself may take a significant time of the whole model checking process.
- Quality (i.e. size, determinism) of resulting automaton has impact on the overall model checking performance.
- In past the focus was on the size of the produced automaton. Todays research indicate that determinism of produced automaton has bigger impact on model checking performance than its size. (Sebastiani & Tonetta '03)

(Geldenhuys & Hansen '06)

Traditional approach uses BA for LTL model checking. During the translation of LTL \rightarrow BA several intermediate automata are produced.

Traditional approach uses BA for LTL model checking. During the translation of LTL \rightarrow BA several intermediate automata are produced.

Natural question arises:

Can those automata be directly used for model checking?

Traditional approach uses BA for LTL model checking. During the translation of LTL \rightarrow BA several intermediate automata are produced.

Natural question arises:

Can those automata be directly used for model checking?

Example of using TGBA instead of BA: SPOT

(Couvreur '99)

(Couvreur, Duret-Lutz & Poitrenaud '05)

Thank you for your attention.