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Example: Assume that each user A uses a public-key cryptosystem (eA,dA).

Signing a message w by a user A, so that any user can verify the signature;

dA(w)

Signing a message w by a user A so that only user B can verify the signature;

eB(dA(w))

Sending a message w, and a signed message digest of w, obtained through a hash 
function h:

(w, dA(h(w)))

Example Assume Alice succeeds to factor the integer that Bob used, as modulus, 
to sign his will, using RSA, 20 years ago. Even  the key has already expired, Alice 
could rewrite Bob's will, leaving fortune to her, and date it 20 years ago.

Moral: It may pay of to factor a single integers using many years of many 
computers power.
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Indeed, if an active enemy, called tamperer,  intercepts the message, then he can 
compute

dT(eA(c)) = dT(eB(w))

and can  send the outcome  to Bob, pretending that it is from him/tamperer (without 
being able to decrypt/know the message).

Any public-key cryptosystem in which the plaintext and cryptotext spaces are the 
same can be used for digital signature.
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Signature of  a bit b:

(b, kb).

Verification of such a signature

sb = f (kb)

SECURITY?
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Attacks

• It might happen that Bob accepts a signature not produced by Alice. Indeed, 

let Eve, using Alice's public key, compute we and say that (we, w) is a message 

signed by Alice.

Everybody verifying Alice's signature gets we = we.

• Some new  signatures can be produced without knowing the secret key.

Indeed, is     and     are signatures for w1 and w2, then          and        are 

signatures for w1w2 and w1
-1.



9Digital signatures

ENCRYPTION versus SIGNATUREENCRYPTION versus SIGNATURE

ENCRYPTION versus SIGNATUREENCRYPTION versus SIGNATURE

IV054

PUBLIC-KEY SIGNATURES

Signing: dU (w) 

Verification of the signature: eU (dU (w))
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Signing of  a message w by a user A so that only user B can verify the 

signature;

eB (dA (w)).

Sending of a message w and a signed message digest of w obtained by using 

a (standard) hash function h:

(w, dA (h (w))).

If only signature (but not the encryption of the message) are of importance, 

then it suffices that Alice sends to Bob

(w, dA (w)).
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Signature of a message w: Let r Z p-1* be randomly chosen and kept secret.

sig(w, r) = (a, b),

where a = q r mod p

and b = (w - xa)r -1 (mod (p –1)).

Verification: accept a signature (a,b) of w as valid if

yaab qw (mod p)

(Indeed: yaab qaxqrb qax + w – ax + k(p -1) qw (mod p))
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1. If Eve chooses a and b and tries to determine such w that (a,b) is signature of w, 
then she has to compute discrete logarithm

lg q y a a b.

Hence, Eve can not sign a “random” message this way.
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Design of DSA
1. The following global public key components are chosen:

• p - a random l-bit prime, 512 l 1024,  l = 64k. 

• q - a random 160-bit prime dividing p -1.

• r = h (p –1)/q mod p, where h is a random primitive element of Zp, such that  r>1                         

(observe that r is a q-th root of 1 mod p).

2. The following user's private key components are chosen: 

• x - a random integer (once),   0 < x < q,  and  y = r x mod p is made public.

3. Key is K = (p, q, r, x, y)
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Verification of  signature (a, b)

• compute z = b -1 mod q

• compute u1 = wz mod q,

u2 = az mod q

verification:

ver K(w, a, b) =  true <=> (r u1y u2 mod p) mod q = a
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Any proposal for digital signature standard has to go through a very careful 
scrutiny. Why?

Encryption of a message is usually done only once and therefore it usually suffices 
to use a cryptosystem that is secure at the time of the encryption.

On the other hand, a signed message could be a contract or a will and it can 
happen that it will be needed to verify a signature many years after the message 
is  signed.

Since ElGamal signature is no more secure than discrete logarithm, it is necessary 
to use large p, with at least 512 bits.

However, with ElGamal this would lead to signatures with at least 1024 bits what is 
too much for such applications as smart cards.

In DSA a 160 bit message is signed using 320-bit signature, but computation is 
done modulo with 512-1024 bits.

Observe that y and a are also q-roots of 1. Hence any exponents of r,y and a can 
be reduced module q without affecting the verification condition.

This allowed to change ElGamal verification condition: y a a b = q w.
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(2) Alice uses a publically known hash function h to compute

H=h(wx1x2… xt)

and then uses first kt bits of H, denoted as bij, 1 i t, 1 j k as follows.

(3) Alice computes y 1,…,y t

(4) Alice sends to Bob w, all bij all y i and also h                                                                          
{ Bob already knows Alice's public key      v 1,…,v k } 

(5) Bob computes z 1,…,z k

and verifies that the first k t bits of h(wx1x2… xt) are the bij values that Alice has 
sent to him.

Security of this signature scheme is 2 -kt.

Advantage over the RSA-based signature scheme: only about 5% of modular 
multiplications are needed.
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Sad story
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Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate  h = k -2 mod n = (k -1) 2 mod n.

Public key: h, n

Trapdoor information: k

Let secret message Alice wants to send be w (it has to be such that gcd(w, n) =1)

Denote a harmless  message she uses by w ' (it has to be such that gcd(w ',n) = 1)

Signing by Alice:

Signature: (S 1, S 2). Alice then sends  to Bob (w ', S 1, S 2)

Signature verification by Walter: w ' = S 1
2 – hS 2

2 (mod n)

Decryption by Bob:

OngOng--SchnorrSchnorr--Shamir subliminal channel schemeShamir subliminal channel scheme

OngOng--SchnorrSchnorr--Shamir subliminal channel schemeShamir subliminal channel scheme
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Signing of a message x = x 1… x k {0,1} k

sig(x 1… x k) = (y 1,x1,…, y k,xk) = (a 1,…, a k) - notation

and 

ver K(x 1… x k, a 1,…, a k) = true <=> f(a i) = z i,xi, 1 i k

Eve cannot forge a signature  because she is unable to invert one-way functions.

Important note: Lampert signature scheme can be used to sign only one message.
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Chaum-van Antwerpen undeniable signature schemes (CAUSS)

• p, r are primes p = 2r + 1

• q Zp* is of order r;

• 1 x r -1, y = q x mod p;

• G is a multiplicative subgroup of Zp* of order q (G consists of quadratic residues 
modulo p).

Key space: K = {p, q, x, y }; p, q, y are public, x € G is secret.

Signature: s = sig K (w) = w x mod p.
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Disallowed protocol

Basic idea: After receiving a signature s Alice initiates two independent and 
unsuccessful runs of the verification protocol. Finally, she performs a “consistency 
check'' to determine whether Bob has formed his responses according to the 
protocol.

• Alice chooses e1, e2 Zr*.

• Alice computes c = se1ye2 mod p and sends it to Bob.

• Bob computes d = cx^(-1) mod r mod p and sends it to Alice.

• Alice verifies that d w e1q e2 (mod p).

• Alice chooses f1, f2 Zr*.

• Alice computes C = s f1y f2 mod p and sends it to Bob.

• Bob computes D = Cx^(-1) mod r mod p and sends it to Alice.

Fooling and Disallowed protocolFooling and Disallowed protocol

Fooling and Disallowed protocolFooling and Disallowed protocol
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CONCLUSIONS
It can be shown:

Bob can convince Alice that an invalid signature is a forgery. In order to that it is 

sufficient to show that if s w x, then

(dq -e2) f1 (Dq -f2) e1 (mod p)

what can be done using congruency relation from the design of the signature 

system and from the disallowed protocol.

Bob cannot make Alice believe that a  valid signature is a forgery, except with a 

very small probability.

• Alice verifies that D w f1q f2 (mod  p).

• Alice concludes that s is a forgery iff

(dq -e2) f1 (Dq -f2) e1 (mod p).

Fooling and Disallowed protocolFooling and Disallowed protocolIV054
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Definition A hash function h is strongly collision-free if it is computationally 

infeasible to find messages w and w ' such that h(w) = h(w ').

Example 2: Eve computes a  signature y on a random fingerprint z and then find an 

x such that z = h(x). Would she succeed (x,y) would be a valid signature.

In order to prevent the above attack, it is required that in signatures we use one-

way hash functions.

It is not difficult to show that for hash-functions (strong) collision-free property 

implies the one-way property.
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A method for timestamping of signatures: 

In the following pub denotes some publically known information that could not be 
predicted before the day of the signature (for example, stock-market data).

Timestamping by Bob of  a signature on a message w, using a hash functionusing a hash function h.

• Bob computes z = h(w);

• Bob computes z „ = h(z || pub);

• Bob computes y = sig(z ');

• Bob publishes (z, pub, y) in the next days's newspaper.

It is now clear that signature was not be done after triple (z, pub, y) was published, 
but also not before the date pub was known.
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Chum’s  blind signatures

Chum‟s  blind signatures
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Fail-then-stop signatures

Fail-then-stop signatures
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2. Alice encrypts the signed message:   eB(sA(w)) and sends it to Bob.

3. Bob decrypt the signed message:   dB(eB(sA(w))) = sA(w).

4. Bob verifies signature and recovers the message   vA(sA(w)) = w.

Resending the message as a receiptResending the message as a receipt

5. Bob signs and encrypts the message and sends to Alice eA(sB(w)).

6. Alice decrypts the message and verifies the signature.

Assume now: vx = ex, sx = dx for all users x.
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2. Later Mallot sends  eB(sA(w))  to Bob pretending it is from him (from Mallot).

3. Bob decrypts and “verifies” the message by computing

eM(dB(eB(dA(w)))) = eM(dA(w)) - a garbage.

4. Bob goes on with the protocol and returns Mallot the receipt:

eM(dB(eM(dA(w))))

5. Mallot can then get w.

Indeed,   Mallot can compute           eA(dM(eB(dM(eM(dB(eM(dA(w)))))))) = w.
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What can an active eavesdropperWhat can an active eavesdropper CC do?do?

• C can learn (eA(eA(w) B), A) and therefore  eA(w'), w „ = eA(w)B. 

• C can now send to Alice the pair (eA(eA(w ') C), A).

• Alice, thinking that this is the step 1 of the protocol, acknowledges by sending the 
pair  (eC(eC(w ') A), C) to C. 

• C is now able to learn w ' and therefore also eA(w).

• C now sends to Alice the pair (eA(eA(w) C), A).

• Alice acknowledges by sending the pair (eC(eC(w) A), C). 

• C is now able to learn w.
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,1,0  ,: nDDDf

wGwGwG klnkl
21,   ,1,01,01,0:

Signing: of a message w {0,1}*.

1. Choose random r {0,1} k and compute m = h (w || r).

2. Compute G(m) = (G1(m), G2(m)) and y = m || (G1(m) r) || G2(m).

3. Signature of w is = f -1(y).

Verification of a  signed message (w, ).

• Compute f( ) and decompose f( ) = m || t || u, where |m| = l, |t| = k and |u| = n -

(k+l).

• Compute r = t G1(m).

• Accept signature if h(w || r) = m and G2(m) = u; otherwise reject it.
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1. Alice chooses a random x and Bob chooses a random y.

2. Alice computes q x mod p, and Bob computes q y mod p.

3. Alice sends q x to Bob.

4. Bob computes K = q xy mod p.

5. Bob sends q y and eK (sB (q
y, q x)) to Alice.

6. Alice computes K = q xy mod p.

7. Alice decrypts eK (sB (q
y, q x)) to obtain sB (q

y, q x).

8. Alice  verifies, using an authority, that vB is Bob's verification algorithm.

9. Alice uses vB to verify Bob's signature.

10. Alice sends eK (sA (q
x, q y)) to Bob.

11. Bob decrypts, verifies vA, and verifies Alice's signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.
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GROUP SIGNATURESGROUP SIGNATURESIV054
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