# 2. IPv6 - advanced functionalities

PA159: Net-Centric Computing I.

#### Eva Hladká

Faculty of Informatics Masaryk University

#### Autumn 2010

# Lecture Overview I

- Lecture Overview
- Brief IPv6 Introduction
  - IPv6 Addresses
  - Path MTU discovery
- IPv6 Neighbor Discovery Protocol in Detail
  - L2 address resolution
  - Duplicate Address Detection
  - Neighbor Unreachability Detection
  - Autoconfiguration
  - Summary
  - IPv6 Mobility Support in Detail
    - Return Routability Procedure

# Lecture overview I

#### Lecture Overview

- Brief IPv6 Introduction
  - IPv6 Addresses
  - Path MTU discovery

#### 3 IPv6 Neighbor Discovery Protocol in Detail

- L2 address resolution
- Duplicate Address Detection
- Neighbor Unreachability Detection
- Autoconfiguration
- Summary
- IPv6 Mobility Support in Detail
  - Return Routability Procedure

# IP Protocol version 6 (IPv6) – Why a new protocol?

- *the master pulse for a new protocol proposal:* relatively fast exhaustion of IPv4 address space
- further reasons: the issues, that arose during IPv4 usage, especially:
  - weak support of real-time applications
  - no support of communication security
  - no devices' autoconfiguration support
  - no mobility support
  - etc.
- (many features retroactively implemented into IPv4)

# IP Protocol version 6 (IPv6) – Basic Features

- bigger address space 128-bit IPv6 address, theoretically 2<sup>128</sup> of unique addresses
- *simpler header format* basic 40B header containing just the most necessary information
- possibilities of further extensions through so-called extension headers
- support of real-time transmissions streams' tagging and priorities
- *support of secure communication* authentication, encryption and integrity verification support
- mobility support using so-called home agents
- devices' autoconfiguration support stateful and stateless autoconfiguration

# IPv6 Datagram – Basic Header



- fixed basic header size (40 B)
- checksum, options, and fragmentation information not included in basic header
  - options and fragmentation information has to be ensured via extension headers
  - checksum was removed at all (it's ensured on L2 and L4)

Eva Hladká (FI MU)

# IPv6 Datagram – Extension Headers



IPv6 Datagram With No Extension Headers Carrying TCP Segment



IPv6 Datagram With Two Extension Headers Carrying TCP Segment

Several extension headers have been defined

• e.g., Hop-By-Hop Options, Routing, Fragment, Encapsulating Security Payload, Authentication Header, etc.

Eva Hladká (FI MU)

# IPv6 Addresses

- (currently) final solution to address space shortage
- IPv6 address has 128 bits (= 16 bytes):
  - $2^{128}$  of unique addresses ( $\approx 3 \times 10^{38}$  addresses  $\Rightarrow \approx 5 \times 10^{28}$  addresses for every human on the Earth)
  - written in a hexadecimal form instead of decadic (pairs of bytes divided by ":" character)



128 bits = 16 bytes = 32 hex digits

# IPv6 addresses – Address Abbreviation

The leading 0s might be omitted in each address group:

- 0074 might be written as 74, 000F as F, ...
- 3210 cannot be abbreviated!



Consecutive groups of zeros might be replaced by "::" character)

• just a single group might be replaced!



# IPv6 addresses – Hierarchy

- the goal is to simplicity the routing
- the structure of unicast IPv6 addresses is defined by RFC 3587
- basic structure:

| n bits                | 64-n bits      | 64 bits           |
|-----------------------|----------------|-------------------|
| global routing prefix | subnet address | interface address |

- global routing prefix  $\approx$  network address
- $\bullet\,$  subnetwork address is usually 16 bits long  $\Rightarrow\,$  global routing prefix thus has 48 bits
  - first 16 bits contain the value 2001 (hexadecimal form)
  - next 16 bits are assigned by Regional Internet Registry (RIR)
  - next 16 bits are assigned by Local Internet Registry (LIR)

| 16 bits | 16 bits         | 16 bits         | 16 bits        | 64 bits           |
|---------|-----------------|-----------------|----------------|-------------------|
| 2001    | assigned by RIR | assigned by LIR | subnet address | interface address |

# IPv6 Addresses & CIDR

- IPv6 addresses are just *classless* (classes do not exist)
- IPv6 networks are defined using CIDR notation (similarly as in the IPv4 case)
- e.g., FDEC:0:0:0:0:BBFF:0:FFFF/60

#### IPv6 addresses – address types

- *unicast addresses* same as in IPv4 (a single network interface identification)
- multicast addresses same as in IPv4, used for addressing a group of devices/hosts
  - data is delivered to all the group members
  - prefix ff00::/8
- anycast addresses a newbie in IPv6
  - identify a group of devices/hosts as well
  - but data is delivered just to a single member of the group (the closest one)
- IPv4 broadcast addresses are not used in IPv6
  - replaced by special multicast addresses (e.g., FF02::1 all the nodes on the particular LAN)

# IPv6 Path MTU discovery

- just source devices must decide on the correct size of fragments
  - routers can't fragment datagrams, just end nodes can!
  - if a datagram is too large for a router, it must drop the datagram
    - and send back to the source a feedback about this occurrence (in the form of an ICMPv6 *Packet Too Big* message)

#### • Path MTU Discovery

- a special technique used for determining what size of fragments should be used
- uses the feedback mechanism performed by ICMPv6 Packet Too Big messages
  - the source node sends a datagram that has the MTU of its local physical link (it represents an upper bound on the MTU)
  - if this goes through without any errors, that value for future datagrams to that destination can be used
  - if it gets back any *Packet Too Big* messages, it tries again using a smaller datagram size (indicated in the Packet Too Big message)

# IPv6 Path MTU discovery

The Schema



# Lecture overview I

- Lecture Overview
- 2 Brief IPv6 Introduction
  - IPv6 Addresses
  - Path MTU discovery

IPv6 Neighbor Discovery Protocol in Detail

- L2 address resolution
- Duplicate Address Detection
- Neighbor Unreachability Detection
- Autoconfiguration
- Summary
- IPv6 Mobility Support in Detail
  - Return Routability Procedure

# Neighbor Discovery Protocol I.

- How can we obtain a link (e.g., Ethernet) address of a node (having its IP address)?
  - IPv4: ARP protocol
  - IPv6: a new mechanism called Neighbor Discovery Protocol proposed
- Neighbor Discovery for IP version 6 (RFC 2461)
  - a part of ICMPv6
  - in comparison with the IPv4's ARP, new functionalities has been added
  - IPv6 nodes use Neighbor Discovery for/to:
    - autoconfiguration of IPv6 address (stateful/stateless autoconfiguration)
    - determine network prefixes, routers and other configuration information
    - duplicate IP address detection (DAD)
    - determine layer two addresses of nodes on the same link
    - find neighboring routers that can forward their packets
    - keep track of which neighbors are reachable and which are not (NUD)
    - detect changed link-layer address

# Neighbor Discovery Protocol II.

• consists of five ICMP messages:

- Router Solicitation (RS)
- Router Advertisement (RA)
- Neighbor Solicitation (NS)
- Neighbor Advertisement (NA)
- ICMP Redirect

- Inverse Neighbor Discovery also possible
  - see the literature for details

# Neighbor Discovery – L2 address resolution I.

- very similar to ARP in IPv4
- based on Neighbor Solicitation and Neighbor Advertisement messages
  - a common multicast prefix is defined (FF02:0:0:0:0:1:FF00::/104)
  - the node looking for an L2-layer address takes last 24 bits of the IP address, whose L2-address it is looking for, and concatenates it with the prefix
    - e.g., looking for L2-address of 2AC0:56:A319:15:022A:FFF:FE32:5ED1 it receives FF02:0:0:0:0:1:FF32:5ED1
    - i.e., the destination address is a multicast address
    - the 24 bits ensure that the multicast group will contain just a few nodes (typically 1 or 0)
  - a Neighbor Solicitation message is sent to such a multicast address
    - the message contains the IPv6 address being resolved and the L2 address of the sending node
    - the neighbor has to listen for such messages in his multicast group(s) (based on his IPv6 address(es))

# Neighbor Discovery – L2 address resolution II.

- once a node belonging to the particular multicast group receives a NS message, it answers with a **Neighbor Advertisement message** 
  - *note:* there might be several nodes in the particular multicast group just the one having the IPv6 address being resolved answers
- the answer contains:
  - $\bullet\,$  all the IPv6 and L2 addresses the node has
  - an attribute:
    - *R* (*Router*) the sender is a router
    - *S* (*Solicited*) indicates whether the NA has been solicited or not (unsolicited NAs are possible)
    - *O* (*Override*) indicates whether the new information should override the old information previously saved on the node(s)
- unsolicited Neighbor Advertisement
  - used in situations, when the node knows that his L2-address has changed
  - these messages are sent to multicast address containing all the nodes (FF02::1)

IPv6 Neighbor Discovery Protocol in Detail L2 address resolution

#### Neighbor Discovery – L2 address resolution II. The mechanism





# Neighbor Discovery – L2 address resolution II.

The mechanism - Neighbor Solicitation message format



### Neighbor Discovery – L2 address resolution II.

The mechanism - Neighbor Advertisement message format



#### Neighbor Discovery – Duplicate Address Detection (DAD)

- Duplicate Address Detection (DAD)
  - used during autoconfiguration process (see later)
  - the host sends NS message with its own address as the target address
    - destination address in the IPv6 header is set to the solicited-node multicast address
    - the source address is set to the unspecified address (::, i.e. all zeros)
  - if there is another node on the link that is using the same address as the hosts's address, it will reply with a NA message (sent to the all-nodes multicast address), thus exposing the duplicated address to the host



#### Neighbor Discovery – Neighbor Unreachability Detection

- a node periodically controls the reachability of its neighbors (just the ones it is communicating with)
- can be achieved by two ways:
  - a higher-level protocol (e.g., the TCP) informs IPv6 that the communication proceeds and thus the host is alive
  - $\bullet\,$  otherwise, the IPv6 has to perform such a detection on its own
- a cached address might be in one of the following states:
  - *incomplete* address resolution is currently being performed and awaiting either a response or timeout (a NS has been sent, but the corresponding NA has not been received yet)
  - *reachable* this neighbor is currently reachable (positive confirmation within the last *ReachableTime* has been received)
  - *stale* more than *ReachableTime* milliseconds have elapsed since the last positive confirmation was received
  - *delay* the neighbor's reachable time has expired; an upper layer protocol might confirm the reachability within a specific time
  - probe a reachability confirmation is being actively attempted

# Neighbor Discovery – Neighbor Unreachability Detection The schema



# Neighbor Discovery – Autoconfiguration

- designed to ensure that manually configuring hosts before connecting them to the network is not required
  - even larger sites should not need a DHCP server to configure hosts
  - a key feature when all sorts of devices (TVs, refrigerators, DVD players, etc.) will use IP addresses
- IPv6 supports two types of autoconfiguration:
  - *Stateful autoconfiguration* like DHCP in IPv4 world (here called DHCPv6)
  - Stateless autoconfiguration new type of autoconfiguration
  - they might be combined
    - stateless configuration can be used to generate IPv6 address and stateful autoconfiguration for additional parameters (e.g., DNS servers)

# Neighbor Discovery – Stateless autoconfiguration

- RFC 2462
- assumes that there are clever wisemen (routers) in the network, who know everything necessary
  - from time to time, they inform all the nodes about current configuration (Router Advertisements)
  - a new node just waits for an RA or asks for it (Router Solicitation)
- router advertisements:
  - periodically sent by every router
    - in random intervals to all the connected networks (via multicast to all connected hosts), or
    - as an answer to router solicitation message (via unicast to the host that has sent the RS)
  - contains specific information about the router
    - MTU
    - prefixes
    - L2-address of the router's interface through which the RA has been sent
    - etc.

#### Neighbor Discovery – Stateless autoconfiguration The mechanism I.

- to generate its IP address, a host uses a combination of local information (such as its MAC address or a randomly chosen ID), and information received from routers
- steps, which a device takes when using stateless autoconfiguration:
  - Link-Local Address Generation the device generates a link-local address (so-called *tentative address*)
    - link-local addresses have 1111 1110 10 as first 10 bits (prefix FE80)
    - the generated address uses **those ten bits** followed by **54 zeroes** and then the **64 bit interface identifier** (the MAC address or a randomly chosen ID)
  - Link-Local Address Uniqueness Test the node tests to ensure that the address it generated isn't for some reason already in use on the local network
    - this is very unlikely an issue if the link-local address came from a MAC address but more likely if it was based on a generated ID
    - it sends NS message and listens for NA response (see *Duplicate Address Detection* mentioned before)

#### Neighbor Discovery – Stateless autoconfiguration The mechanism II.

- cont'd:
  - Link-Local Address Assignment assuming the uniqueness test passes, the device assigns the link-local address to its IP interface
    - this address can be used for communication on the local network, but not on the wider Internet (since link-local addresses are not routed)
  - **Router Contact** the node next attempts to contact a local router for more information on continuing the configuration
    - this is done either by listening for RA messages sent periodically by routers, or by sending a specific RS message to ask a router for information on what to do next (to the all-routers multicast group, i.e. FF02::2)
  - **Router Direction** the router provides direction to the node on how to proceed with the autoconfiguration
    - it may tell the node that on this network the "stateful" autoconfiguration is in use, and tell it the address of a DHCP server to use. Alternatively, it may tell the host how to determine its global Internet address.

#### Neighbor Discovery – Stateless autoconfiguration The mechanism III.

- cont'd:
  - Global Address Configuration assuming that stateless autoconfiguration is in use on the network, the host configures itself with its globally-unique Internet address
    - this address is generally formed from a network prefix provided to the host by the router, combined with the device's identifier as generated in the first step

# Neighbor Discovery – Stateless autoconfiguration The schema



Eva Hladká (FI MU)

#### Neighbor Discovery – Stateless autoconfiguration Router Advertisement I.



#### Neighbor Discovery – Stateless autoconfiguration Router Advertisement II.

- autoconfiguration flags:
  - M (Managed Address Configuration Flag) tells hosts to use stateful method for address configuration (e.g., the DHCPv6)
  - **O** (*Other Stateful Configuration Flag*) tells hosts to use stateful method for information other than addresses
- router lifetime tells the host receiving this message how long this router should be used as a default router; if set to 0, tells the host this router should not be used as a default router
- *reachable time* tells hosts how long they should consider a neighbor to be reachable after they have received reachability confirmation
- *retransmission timer* the amount of time, in milliseconds, that a host should wait before retransmitting
- *ICMPv6 options* RA messages may contain three possible options:
  - source L2 Address included when the router sending the RA knows its L2 address
  - $\bullet~MTU$  used to tell local hosts the MTU of the local network
  - prefix information informs what prefix(es) to use for the local network

IPv6 Neighbor Discovery Protocol in Detail Autoconfiguration

#### Neighbor Discovery – Stateless autoconfiguration Router Solicitation I.



**ICMPv6 options:** if the device sending the RS knows its L2 address, it should be included

# Neighbor Discovery Protocol

Summary

- Neighbor solicitation (NS) message
  - used to acquire the link-layer address of a neighbor
  - used to verify whether the neighbor is reachable
  - used to perform a duplicate address detection
- Neighbor advertisement (NA) message
  - used to respond to a neighbor solicitation message
  - when the link layer address changes, the local node initiates a neighbor advertisement message to notify neighbor nodes of the change
- Router solicitation (RS) message
  - once started, a host sends a router solicitation message to request the router for an address prefix and other configuration information (autoconfiguration)
- Router advertisement (RA) message
  - used to respond to a router solicitation message
  - a router regularly sends a router advertisement message containing information such as address prefix and flag bits
- Redirect message
  - the default gateway might send a redirect message to the source host so that the host can reselect a better/correct next hop router to forward its packets

# Lecture overview I

- Lecture Overview
- 2 Brief IPv6 Introduction
  - IPv6 Addresses
  - Path MTU discovery
- 3 IPv6 Neighbor Discovery Protocol in Detail
  - L2 address resolution
  - Duplicate Address Detection
  - Neighbor Unreachability Detection
  - Autoconfiguration
  - Summary
  - IPv6 Mobility Support in Detail
    - Return Routability Procedure

- main idea: even mobile devices are somewhere "at home"
  - i.e., their home network exists
- used addresses:
  - *Home Address* a global unicast persistent address, through which a mobile node is always accessible (even though not being in its home network)
  - Care-of Address a global unicast address for the mobile node while it is in a foreign network (the address is based on the network where the host is currently located)
- Correspondent Node (CN) a peer node with which a mobile node is communicating
- *Home Agent (HA)* a router in the home network, through which the mobile node is always accessible
  - receives datagram destined to the mobile node and forwards them (via a tunnel) to it
- *route optimization* direct communication of the mobile and corresponding nodes
  - in order to optimize the communication
  - not necessary (the communication might proceed through the home agent all the time)

How it works

- as long as the mobile node is at home, it receives packets through regular IP routing mechanism and behaves like any other host
- when the mobile node is away from the home network, it has an additional care-of address (received via a mechanism available in the foreign network)
  - the association of home address and care-of address is called *binding*
- the mobile node registers its care-of address with a router on its home link (its *Home Agent (HA)*)
- there are two ways to communicate for a correspondent node and a mobile node:
  - *bidirectional tunneling* packets from the correspondent node are sent to the HA, which encapsulates them and sends them to the mobile node's care-of address (and vice versa)
  - *route optimization* the communication between the mobile node and correspondent node can be direct without the usage of the HA
    - the mobile node has to register its care-of address with the correspondent node, and
    - the binding has to be authorized through the *Return Routability Procedure*

#### The schema



Figure: An illustration of home agent's functionality in IPv6.

Return Routability Procedure

- mobile node must prove to correspondent node that it owns both home address and care-of address
  - but mobile node does not share any secret with the correspondent node
  - initially performed using *IPsec* 
    - however, there is no world-wide Public Key Infrastructure (PKI) available for the nodes
- Return Routability (RR) Procedure
  - RFC 3775
  - enables the correspondent node to obtain some reasonable assurance that the mobile node is in fact addressable at its claimed care-of address as well as at its home address
    - only when successfully proven, the route optimization might take place
    - reduces the risk of a security attack (a harmful node working off the mobile node)

Return Routability Procedure - the steps

- MN sends a Home Test Init (HoTI) message via HA to the CN (this message carries a Home Init Cookie)
  - this way the CN learns the home address of the MN
- MN sends a Care-of Test Init (CoTI) message to the CN (this message carries a Care-of Init Cookie) this is sent to the CN directly (not through the HA)
  - this way the CN learns the care-of address of the MN
- ON replies to the Home Test Init message with a Home Test (HoT) message sent via HA (this message carries the Home Init Cookie and the Home Nonce Index)
  - the MN can now generate a Home Keygen Token
- CN replies to the Care-of Test Init message with a Care-of Test (CoT) message sent to the MN's care-of address (this message carries the Care-of Init Cookie and the Care-of Nonce Index)
  - the MN can now generate a Care-of Keygen Token
- South the MN and the CN compute a 20-byte Management Key, which is used to secure the Binding Update messages
  - having the correct *Management Key* the MN has proven that it is reachable both via its home and care-of addresses

Home Agent Functionality

Home Agent:

- maintains binding cache and a list of home agents
  - every router, that sits on the same link and provides home agent services, must be listed
- processes bindings
  - indicates primary care-of address
  - processes care-of addresses' changes/removals
- tunnels received packets to care-of address
  - performs Neighbor Advertisements by the name of mobile node
- supports Home Agent Address Discovery
  - normally, mobile nodes are configured statically with a home agent's address
  - once a home agent is renumbered (or goes down being replaced by another HA with a different IP), dynamic discovery of the HA's address takes place
    - Home Agent Address Discovery Request (sent using home agents' anycast address) and Home Agent Address Discovery Reply messages
    - see details in the literature

Eva Hladká (FI MU)

Return Routability Procedure - the schema

