
CS 388: CS 388: 

Natural Language Processing:Natural Language Processing:

Part-Of-Speech Tagging,Part-Of-Speech Tagging,

Sequence Labeling, and

Hidden Markov Models (HMMs)Hidden Markov Models (HMMs)

Raymond J. MooneyRaymond J. Mooney

University of Texas at Austin

11



Part Of Speech TaggingPart Of Speech Tagging

• Annotate each word in a sentence with a • Annotate each word in a sentence with a 

part-of-speech marker.part-of-speech marker.

• Lowest level of syntactic analysis.

John  saw  the  saw  and  decided  to  take  it     to   the   table.

NNP VBD DT  NN  CC  VBD     TO VB  PRP IN DT    NN

• Useful for subsequent syntactic parsing and 

NNP VBD DT  NN  CC  VBD     TO VB  PRP IN DT    NN

• Useful for subsequent syntactic parsing and 

word sense disambiguation.
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English POS TagsetsEnglish POS Tagsets

• Original Brown corpus used a large set of • Original Brown corpus used a large set of 

87 POS tags.87 POS tags.

• Most common in NLP today is the Penn 

Treebank set of 45 tags.Treebank set of 45 tags.

– Tagset used in these slides.– Tagset used in these slides.

– Reduced from the Brown set for use in the 

context of a parsed corpus (i.e. treebank).context of a parsed corpus (i.e. treebank).

• The C5  tagset used for the British National • The C5  tagset used for the British National 

Corpus (BNC) has 61 tags.
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English Parts of SpeechEnglish Parts of Speech

• Noun (person, place or thing)• Noun (person, place or thing)
– Singular (NN):  dog, fork

– Plural (NNS):  dogs, forks– Plural (NNS):  dogs, forks

– Proper (NNP, NNPS): John, Springfields

– Personal pronoun (PRP): I, you, he, she, it– Personal pronoun (PRP): I, you, he, she, it

– Wh-pronoun  (WP): who, what

• Verb (actions and processes)• Verb (actions and processes)
– Base, infinitive (VB):  eat

– Past tense (VBD):  ate

– Gerund (VBG):  eating– Gerund (VBG):  eating

– Past participle (VBN):  eaten

– Non 3rd person singular present tense (VBP): eat– Non 3rd person singular present tense (VBP): eat

– 3rd person singular present tense: (VBZ): eats

– Modal (MD): should, can

4

– Modal (MD): should, can

– To (TO): to (to eat)



English Parts of Speech (cont.)English Parts of Speech (cont.)

• Adjective (modify nouns)• Adjective (modify nouns)
– Basic (JJ): red, tall

– Comparative (JJR): redder, taller– Comparative (JJR): redder, taller

– Superlative (JJS): reddest, tallest

• Adverb (modify verbs)
– Basic (RB): quickly– Basic (RB): quickly

– Comparative (RBR): quicker

– Superlative (RBS): quickest– Superlative (RBS): quickest

• Preposition (IN): on, in, by, to, with

• Determiner:• Determiner:
– Basic (DT) a, an, the

– WH-determiner (WDT): which, that

• Coordinating Conjunction (CC): and, but, or,• Coordinating Conjunction (CC): and, but, or,

• Particle (RP): off (took off), up (put up)
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Closed vs. Open Class Closed vs. Open Class 

• Closed class categories are composed of a • Closed class categories are composed of a 

small, fixed set of grammatical function small, fixed set of grammatical function 

words for a given language.

– Pronouns, Prepositions, Modals, Determiners, – Pronouns, Prepositions, Modals, Determiners, 

Particles, ConjunctionsParticles, Conjunctions

• Open class categories have large number of 

words and new ones are easily invented.words and new ones are easily invented.

– Nouns (Googler, textlish), Verbs (Google), – Nouns (Googler, textlish), Verbs (Google), 

Adjectives (geeky), Abverb (chompingly) 
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Ambiguity in POS TaggingAmbiguity in POS Tagging

• “Like” can be a verb or a preposition• “Like” can be a verb or a preposition

– I like/VBP candy.– I like/VBP candy.

– Time flies like/IN an arrow.

• “Around” can be a preposition, particle, or 

adverbadverb

– I bought it at the shop around/IN the corner.

– I never got around/RP to getting a car.

– A new Prius costs around/RB $25K.– A new Prius costs around/RB $25K.
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POS Tagging ProcessPOS Tagging Process

• Usually assume a separate initial tokenization process that • Usually assume a separate initial tokenization process that 
separates and/or disambiguates punctuation, including 
detecting sentence boundaries.detecting sentence boundaries.

• Degree of ambiguity in English (based on Brown corpus)
– 11.5% of word types are ambiguous.– 11.5% of word types are ambiguous.

– 40% of word tokens are ambiguous.

• Average POS tagging disagreement amongst expert human • Average POS tagging disagreement amongst expert human 
judges for the Penn treebank was 3.5%
– Based on correcting the output of an initial automated tagger, 
which was deemed to be more accurate than tagging from scratch.which was deemed to be more accurate than tagging from scratch.

• Baseline: Picking the most frequent tag for each specific 
word type gives about 90% accuracyword type gives about 90% accuracy
– 93.7% if use model for unknown words for Penn Treebank tagset.
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POS Tagging ApproachesPOS Tagging Approaches

• Rule-Based: Human crafted rules based on lexical • Rule-Based: Human crafted rules based on lexical 
and other linguistic knowledge.

• Learning-Based: Trained on human annotated • Learning-Based: Trained on human annotated 
corpora like the Penn Treebank.

– Statistical models:  Hidden Markov Model (HMM), 
Maximum Entropy Markov Model (MEMM), 
Conditional Random Field (CRF)Conditional Random Field (CRF)

– Rule learning: Transformation Based Learning (TBL)

• Generally, learning-based approaches have been 
found to be more effective overall, taking into found to be more effective overall, taking into 
account the total amount of human expertise and 
effort involved.
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Classification LearningClassification Learning

• Typical machine learning addresses the problem • Typical machine learning addresses the problem 
of classifying a feature-vector description into a 
fixed number of classes.fixed number of classes.

• There are many standard learning methods for this 
task:task:

– Decision Trees and Rule Learning– Decision Trees and Rule Learning

– Naïve Bayes and Bayesian Networks

– Logistic Regression / Maximum Entropy (MaxEnt)– Logistic Regression / Maximum Entropy (MaxEnt)

– Perceptron and Neural Networks

– Support Vector Machines (SVMs)– Support Vector Machines (SVMs)

– Nearest-Neighbor / Instance-Based
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Beyond Classification LearningBeyond Classification Learning

• Standard classification problem assumes • Standard classification problem assumes 

individual cases are disconnected and independent 

(i.i.d.: independently and identically distributed).

• Many NLP problems do not satisfy this • Many NLP problems do not satisfy this 

assumption and involve making many connected 

decisions, each resolving a different ambiguity, decisions, each resolving a different ambiguity, 

but which are mutually dependent.

• More sophisticated learning and inference 

techniques are needed to handle such situations in techniques are needed to handle such situations in 

general.
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Sequence Labeling ProblemSequence Labeling Problem

• Many NLP problems can viewed as sequence • Many NLP problems can viewed as sequence 

labeling.

• Each token in a sequence is assigned a label.

• Labels of tokens are dependent on the labels of • Labels of tokens are dependent on the labels of 

other tokens in the sequence, particularly their 

neighbors (not i.i.d).neighbors (not i.i.d).

foo        bar         blam     zonk       zonk            bar           blam
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Information ExtractionInformation Extraction

• Identify phrases in language that refer to specific types of • Identify phrases in language that refer to specific types of 
entities and relations in text.

• Named entity recognition is task of identifying names of • Named entity recognition is task of identifying names of 
people, places, organizations, etc. in text.

people organizations placespeople organizations places
– Michael Dell is the CEO of  Dell Computer Corporation and lives 
in Austin Texas. in Austin Texas. 

• Extract pieces of information relevant to a specific  
application, e.g. used car ads:

make model year mileage price
– For sale, 2002 Toyota Prius,  20,000 mi, $15K or best offer. 
Available starting July 30, 2006.Available starting July 30, 2006.
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Semantic Role LabelingSemantic Role Labeling

• For each clause, determine the semantic role • For each clause, determine the semantic role 
played by each noun phrase that is an 
argument to the verb.
played by each noun phrase that is an 
argument to the verb.

agent patient source destination instrumentagent patient source destination instrument

– John drove Mary from Austin to Dallas in his 
Toyota Prius.Toyota Prius.

– The hammer broke the window.

• Also referred to a “case role analysis,” 
“thematic analysis,” and “shallow semantic “thematic analysis,” and “shallow semantic 
parsing”
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BioinformaticsBioinformatics

• Sequence labeling also valuable in labeling • Sequence labeling also valuable in labeling 

genetic sequences in genome analysis.genetic sequences in genome analysis.

extron intron

– AGCTAACGTTCGATACGGATTACAGCCT– AGCTAACGTTCGATACGGATTACAGCCT
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Sequence Labeling as ClassificationSequence Labeling as Classification

• Classify each token independently but use • Classify each token independently but use 

as input features, information about the as input features, information about the 

surrounding tokens (sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NNP
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Sequence Labeling as ClassificationSequence Labeling as Classification

• Classify each token independently but use • Classify each token independently but use 

as input features, information about the as input features, information about the 

surrounding tokens (sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD
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Sequence Labeling as ClassificationSequence Labeling as Classification

• Classify each token independently but use • Classify each token independently but use 

as input features, information about the as input features, information about the 

surrounding tokens (sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT
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Sequence Labeling as ClassificationSequence Labeling as Classification

• Classify each token independently but use • Classify each token independently but use 

as input features, information about the as input features, information about the 

surrounding tokens (sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN
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Sequence Labeling as ClassificationSequence Labeling as Classification

• Classify each token independently but use • Classify each token independently but use 

as input features, information about the as input features, information about the 

surrounding tokens (sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

CC
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Sequence Labeling as ClassificationSequence Labeling as Classification

• Classify each token independently but use • Classify each token independently but use 

as input features, information about the as input features, information about the 

surrounding tokens (sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD
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Sequence Labeling as ClassificationSequence Labeling as Classification

• Classify each token independently but use • Classify each token independently but use 

as input features, information about the as input features, information about the 

surrounding tokens (sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

TOTO
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Sequence Labeling as ClassificationSequence Labeling as Classification

• Classify each token independently but use • Classify each token independently but use 

as input features, information about the as input features, information about the 

surrounding tokens (sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBVB
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Sequence Labeling as ClassificationSequence Labeling as Classification

• Classify each token independently but use • Classify each token independently but use 

as input features, information about the as input features, information about the 

surrounding tokens (sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

PRP
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Sequence Labeling as ClassificationSequence Labeling as Classification

• Classify each token independently but use • Classify each token independently but use 

as input features, information about the as input features, information about the 

surrounding tokens (sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

IN
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Sequence Labeling as ClassificationSequence Labeling as Classification

• Classify each token independently but use • Classify each token independently but use 

as input features, information about the as input features, information about the 

surrounding tokens (sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT
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Sequence Labeling as ClassificationSequence Labeling as Classification

• Classify each token independently but use • Classify each token independently but use 

as input features, information about the as input features, information about the 

surrounding tokens (sliding window).

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN
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Sequence Labeling as Classification

Using Outputs as InputsUsing Outputs as Inputs

• Better input features are usually the • Better input features are usually the 

categories of the surrounding tokens, but categories of the surrounding tokens, but 

these are not available yet.

• Can use category of either the preceding or • Can use category of either the preceding or 

succeeding tokens by going forward or back succeeding tokens by going forward or back 

and using previous output.

28



Forward ClassificationForward Classification

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NNP
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Forward ClassificationForward Classification

NNPNNP

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD
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Forward ClassificationForward Classification

NNP  VBDNNP  VBD

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT
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Forward ClassificationForward Classification

NNP VBD DTNNP VBD DT

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN
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Forward ClassificationForward Classification

NNP VBD DT  NNNNP VBD DT  NN

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

CC
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Forward ClassificationForward Classification

NNP VBD DT NN  CCNNP VBD DT NN  CC

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD
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Forward ClassificationForward Classification

NNP VBD DT NN  CC    VBDNNP VBD DT NN  CC    VBD

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

TO
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Forward ClassificationForward Classification

NNP VBD DT NN  CC    VBD   TONNP VBD DT NN  CC    VBD   TO

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VB
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Forward ClassificationForward Classification

NNP VBD DT NN  CC    VBD   TO  VBNNP VBD DT NN  CC    VBD   TO  VB

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

PRP
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Forward ClassificationForward Classification

NNP VBD DT NN  CC    VBD   TO  VB PRPNNP VBD DT NN  CC    VBD   TO  VB PRP

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

IN
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Forward ClassificationForward Classification

NNP VBD DT NN  CC    VBD   TO  VB PRP  INNNP VBD DT NN  CC    VBD   TO  VB PRP  IN

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT
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Forward ClassificationForward Classification

NNP VBD DT NN  CC    VBD   TO  VB PRP  IN  DTNNP VBD DT NN  CC    VBD   TO  VB PRP  IN  DT

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN
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Backward ClassificationBackward Classification

• Disambiguating “to” in this case would be • Disambiguating “to” in this case would be 

even easier backward.even easier backward.

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NN
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Backward ClassificationBackward Classification

• Disambiguating “to” in this case would be • Disambiguating “to” in this case would be 

even easier backward.even easier backward.

NNNN

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT
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Backward ClassificationBackward Classification

• Disambiguating “to” in this case would be • Disambiguating “to” in this case would be 

even easier backward.even easier backward.

DT   NNDT   NN

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

IN
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Backward ClassificationBackward Classification

• Disambiguating “to” in this case would be • Disambiguating “to” in this case would be 

even easier backward.even easier backward.

IN   DT     NNIN   DT     NN

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

PRP
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Backward ClassificationBackward Classification

• Disambiguating “to” in this case would be • Disambiguating “to” in this case would be 

even easier backward.even easier backward.

PRP IN  DT   NNPRP IN  DT   NN

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VB
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Backward ClassificationBackward Classification

• Disambiguating “to” in this case would be • Disambiguating “to” in this case would be 

even easier backward.even easier backward.

VB  PRP IN  DT   NNVB  PRP IN  DT   NN

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

TO
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Backward ClassificationBackward Classification

• Disambiguating “to” in this case would be • Disambiguating “to” in this case would be 

even easier backward.even easier backward.

TO  VB  PRP IN  DT   NN TO  VB  PRP IN  DT   NN 

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD

47



Backward ClassificationBackward Classification

• Disambiguating “to” in this case would be • Disambiguating “to” in this case would be 

even easier backward.even easier backward.

VBD   TO  VB  PRP IN  DT   NN VBD   TO  VB  PRP IN  DT   NN 

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

CC
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Backward ClassificationBackward Classification

• Disambiguating “to” in this case would be • Disambiguating “to” in this case would be 

even easier backward.even easier backward.

CC    VBD   TO  VB  PRP IN  DT   NN CC    VBD   TO  VB  PRP IN  DT   NN 

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD
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Backward ClassificationBackward Classification

• Disambiguating “to” in this case would be • Disambiguating “to” in this case would be 

even easier backward.even easier backward.

VBD  CC   VBD   TO  VB  PRP IN  DT   NNVBD  CC   VBD   TO  VB  PRP IN  DT   NN

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

DT
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Backward ClassificationBackward Classification

• Disambiguating “to” in this case would be • Disambiguating “to” in this case would be 

even easier backward.even easier backward.

DT VBD  CC  VBD   TO  VB  PRP IN  DT   NNDT VBD  CC  VBD   TO  VB  PRP IN  DT   NN

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

VBD
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Backward ClassificationBackward Classification

• Disambiguating “to” in this case would be • Disambiguating “to” in this case would be 

even easier backward.even easier backward.

VBD DT VBD CC   VBD   TO  VB  PRP IN  DT   NN VBD DT VBD CC   VBD   TO  VB  PRP IN  DT   NN 

John saw the  saw  and  decided  to  take  it     to   the   table.

classifier

NNP
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Problems with Sequence Labeling as 

ClassificationClassification

• Not easy to integrate information from • Not easy to integrate information from 

category of tokens on both sides.category of tokens on both sides.

• Difficult to propagate uncertainty between 

decisions and “collectively” determine the decisions and “collectively” determine the 

most likely joint assignment of categories to most likely joint assignment of categories to 

all of the tokens in a sequence. 
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Probabilistic Sequence ModelsProbabilistic Sequence Models

• Probabilistic sequence models allow • Probabilistic sequence models allow 

integrating uncertainty over multiple, integrating uncertainty over multiple, 

interdependent classifications and 

collectively determine the most likely collectively determine the most likely 

global assignment.global assignment.

• Two standard models

– Hidden Markov Model  (HMM)– Hidden Markov Model  (HMM)

– Conditional Random Field (CRF)– Conditional Random Field (CRF)
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Markov Model / Markov ChainMarkov Model / Markov Chain

• A finite state machine with probabilistic • A finite state machine with probabilistic 

state transitions.state transitions.

• Makes Markov assumption that next state 

only depends on the current state and only depends on the current state and 

independent of previous history.independent of previous history.
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Sample Markov Model for POSSample Markov Model for POS
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Sample Markov Model for POSSample Markov Model for POS

0.050.05
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start
P(PropNoun Verb Det Noun) = 0.4*0.8*0.25*0.95*0.1=0.0076



Hidden Markov ModelHidden Markov Model

• Probabilistic generative model for sequences.• Probabilistic generative model for sequences.

• Assume an underlying set of hidden (unobserved) 
states in which the model can be (e.g. parts of states in which the model can be (e.g. parts of 
speech).

• Assume probabilistic transitions between states over 
time (e.g. transition from POS to another POS as time (e.g. transition from POS to another POS as 
sequence is generated).

• Assume a probabilistic generation of tokens from • Assume a probabilistic generation of tokens from 
states (e.g. words generated for each POS).
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Sample HMM for POSSample HMM for POS
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Sample HMM GenerationSample HMM Generation
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Sample HMM GenerationSample HMM Generation
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Sample HMM GenerationSample HMM Generation
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Sample HMM GenerationSample HMM Generation
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Sample HMM GenerationSample HMM Generation
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Sample HMM GenerationSample HMM Generation
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Sample HMM GenerationSample HMM Generation
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Formal Definition of an HMMFormal Definition of an HMM

• A set of N +2 states S={s ,s ,s , … s s }• A set of N +2 states S={s0,s1,s2, … sN, sF}
– Distinguished start state:  s0
– Distinguished final state: s– Distinguished final state: sF

• A set of M possible observations V={v1,v2…vM}

• A state transition probability distribution A={a }• A state transition probability distribution A={aij}

FjiNjisqsqPa itjtij ==≤≤=== + ,0 and ,1         )|( 1 FjiNjisqsqPa itjtij ==≤≤=== + ,0 and ,1         )|( 1

Niaa iF

N

ij ≤≤=+∑ 01

• Observation probability distribution for each state j 
B={b (k)}

Niaa iF

j

ij ≤≤=+∑
=

01
1

B={bj(k)}

Mk1   1     )|at  ()( ≤≤≤≤== NjsqtvPkb jtkj

70• Total parameter set λ={A,B}
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HMM Generation ProcedureHMM Generation Procedure

• To generate a sequence of T observations:  • To generate a sequence of T observations:  

O = o1 o2… oTO = o1 o2… oT

Set initial state q1=s0Set initial state q1=s0
For t = 1 to T

Transit to another state qt+1=sj based on transition Transit to another state qt+1=sj based on transition 

distribution aij for state qt
Pick an observation ot=vk based on being in state qt using Pick an observation ot=vk based on being in state qt using 

distribution bqt(k)
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Three Useful HMM TasksThree Useful HMM Tasks

• Observation Likelihood: To classify and • Observation Likelihood: To classify and 

order sequences.order sequences.

• Most likely state sequence (Decoding): To 

tag each token in a sequence with a label.tag each token in a sequence with a label.

• Maximum likelihood training (Learning): To • Maximum likelihood training (Learning): To 

train models to fit empirical training data.
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HMM: Observation LikelihoodHMM: Observation Likelihood

• Given a sequence of observations, O, and a model • Given a sequence of observations, O, and a model 
with a set of parameters, λ, what is the probability 
that this observation was generated by this model: that this observation was generated by this model: 
P(O| λ) ?

• Allows HMM to be used as a language model: A • Allows HMM to be used as a language model: A 
formal probabilistic model of a language that 
assigns a probability to each string saying how assigns a probability to each string saying how 
likely that string was to have been generated by 
the language.

• Useful for two tasks:
– Sequence Classification– Sequence Classification

– Most Likely Sequence
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Sequence ClassificationSequence Classification

• Assume an HMM is available for each category • Assume an HMM is available for each category 
(i.e. language).

• What is the most likely category for a given • What is the most likely category for a given 
observation sequence, i.e. which category’s HMM 
is most likely to have generated it?is most likely to have generated it?

• Used in speech recognition to find most likely 
word model to have generate a given  sound or word model to have generate a given  sound or 
phoneme sequence.

O

ah  s  t  e  n

O

? ?

74Austin BostonP(O | Austin) > P(O | Boston) ?



Most Likely SequenceMost Likely Sequence

• Of two or more possible sequences, which • Of two or more possible sequences, which 
one was most likely generated by a given 
model?
one was most likely generated by a given 
model?

• Used to score alternative word sequence • Used to score alternative word sequence 
interpretations in speech recognition.

dice precedent core

O1

? dice precedent core?

?

Ordinary English

vice president Gore

O2

?

75
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HMM: Observation Likelihood

Naïve SolutionNaïve Solution

• Consider all possible state sequences, Q, of length • Consider all possible state sequences, Q, of length 
T that the model could have traversed in 
generating the given observation sequence.generating the given observation sequence.

• Compute the probability of a given state sequence 
from A, and multiply it by the probabilities of from A, and multiply it by the probabilities of 
generating each of given observations in each of 
the corresponding states in this sequence to get the corresponding states in this sequence to get 
P(O,Q| λ) = P(O| Q, λ) P(Q| λ) .

• Sum this over all possible state sequences to get 
P(O| λ).P(O| λ).

• Computationally complex: O(TNT).
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HMM: Observation Likelihood

Efficient SolutionEfficient Solution

• Due to the Markov assumption, the probability of • Due to the Markov assumption, the probability of 

being in any state at any given time t only relies 

on the probability of being in each of the possible 

states at time t−1.states at time t−1.

• Forward Algorithm: Uses dynamic programming 

to exploit this fact to efficiently compute to exploit this fact to efficiently compute 

observation likelihood in O(TN2) time.

– Compute a forward trellis that compactly and implicitly 

encodes information about all possible state paths.
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Forward ProbabilitiesForward Probabilities

• Let αt(j) be the probability of being in state • Let αt(j) be the probability of being in state 
j after seeing the first t observations (by 

summing over all initial paths leading to j).summing over all initial paths leading to j).

)|  ,,...,()( λα sqoooPj == )|  ,,...,()( 21 λα jttt sqoooPj ==
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Forward StepForward Step

s a

• Consider all possible ways of 

getting to sj at time t by coming s1

s2

••••

a1j
a2j
a2j

getting to sj at time t by coming 

from all possible states si and 

determine probability of each.••••
••••
••••

sj

aNj

a2j determine probability of each.

• Sum these to get the total 

sN

••••

αααα αααα

probability of being in state sj  at 

time t while accounting for the 
ααααt-1(i) ααααt(i)

time t while accounting for the 

first t −1 observations.

• Then multiply by the probability • Then multiply by the probability 

of actually observing ot in sj.
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Forward Trellis Forward Trellis 

s •••• •••• ••••s1

s2

•••• •••• •••• •••• ••••

•••• •••• ••••
•••• •••• ••••

••••
••••
••••

••••
••••
••••

s0 sF
••••
••••
••••

••••
••••
••••

••••
••••
••••

•••• •••• ••••

sN

•••• •••• •••• •••• ••••

•••• •••• ••••

t1 t2 t3 tT-1 tT

• Continue forward in time until reaching final time • Continue forward in time until reaching final time 

point and sum probability of ending in final state.
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Computing the Forward ProbabilitiesComputing the Forward Probabilities

• Initialization• Initialization

Njobaj jj ≤≤= 1)()( 101α
• Recursion

Njobaj jj ≤≤= 1)()( 101α
• Recursion
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• Termination
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Forward Computational ComplexityForward Computational Complexity

• Requires only O(TN2) time to compute the • Requires only O(TN2) time to compute the 

probability of an observed sequence given a probability of an observed sequence given a 

model.

• Exploits the fact that all state sequences • Exploits the fact that all state sequences 

must merge into one of the N possible states must merge into one of the N possible states 

at any point in time and the Markov 

assumption that only the last state effects assumption that only the last state effects 

the next one.the next one.
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Most Likely State Sequence (Decoding)Most Likely State Sequence (Decoding)

• Given an observation sequence, O, and a model, λ,  • Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence,Q=q1,q2,…qT, 1 2 T

that generated this sequence from this model?

• Used for sequence labeling, assuming each state • Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 

assignment of tags to all tokens in a sequence using a assignment of tags to all tokens in a sequence using a 

principled approach grounded in probability theory.

John gave the dog an apple. 
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Most Likely State SequenceMost Likely State Sequence

• Given an observation sequence, O, and a model, λ,  • Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence,Q=q1,q2,…qT, 1 2 T

that generated this sequence from this model?

• Used for sequence labeling, assuming each state • Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 

assignment of tags to all tokens in a sequence using a assignment of tags to all tokens in a sequence using a 

principled approach grounded in probability theory.

John gave the dog an apple. 

Det Noun PropNoun Verb 
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Most Likely State SequenceMost Likely State Sequence
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Most Likely State SequenceMost Likely State Sequence

• Given an observation sequence, O, and a model, λ,  • Given an observation sequence, O, and a model, λ,  
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• Used for sequence labeling, assuming each state • Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 
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Most Likely State SequenceMost Likely State Sequence
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Most Likely State SequenceMost Likely State Sequence
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Most Likely State SequenceMost Likely State Sequence

• Given an observation sequence, O, and a model, λ,  • Given an observation sequence, O, and a model, λ,  

what is the most likely state sequence,Q=q1,q2,…qT, 1 2 T

that generated this sequence from this model?

• Used for sequence labeling, assuming each state • Used for sequence labeling, assuming each state 

corresponds to a tag, it determines the globally best 

assignment of tags to all tokens in a sequence using a assignment of tags to all tokens in a sequence using a 

principled approach grounded in probability theory.
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89

Det Noun PropNoun Verb 



HMM: Most Likely State Sequence

Efficient SolutionEfficient Solution

• Obviously, could use naïve algorithm based • Obviously, could use naïve algorithm based 

on examining every possible state sequence of on examining every possible state sequence of 

length T.

• Dynamic Programming can also be used to • Dynamic Programming can also be used to 

exploit the Markov assumption and efficiently exploit the Markov assumption and efficiently 

determine the most likely state sequence for a 

given observation and model.given observation and model.

• Standard procedure is called the Viterbi • Standard procedure is called the Viterbi 

algorithm (Viterbi, 1967) and also has O(N2T) 

time complexity.
90
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Viterbi ScoresViterbi Scores

• Recursively compute the probability of the most • Recursively compute the probability of the most 

likely subsequence of states that accounts for the 

first t observations and ends in state sj.

)|  ,,...,  ,,...,,(max)( λsqooqqqPjv == )|  ,,...,  ,,...,,(max)( 1110
,...,, 110

λjttt
qqq

t sqooqqqPjv
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== −
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• Also record “backpointers” that subsequently allow 

backtracing the most probable state sequence.backtracing the most probable state sequence.

� btt(j) stores the state at time t-1 that maximizes the 

probability that system was in state s at time t (given probability that system was in state sj at time t (given 

the observed sequence).
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Computing the Viterbi ScoresComputing the Viterbi Scores

• Initialization• Initialization

Njobajv jj ≤≤= 1)()( 101

• Recursion

Njobajv jj ≤≤= 1)()( 101

• Recursion
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• Termination
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Computing the Viterbi BackpointersComputing the Viterbi Backpointers

• Initialization• Initialization

Njsjbt ≤≤= 1)( 01

• Recursion
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• Recursion
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• Termination
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Final state in the most probable state sequence. Follow 
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Viterbi Backpointers Viterbi Backpointers 

s •••• •••• ••••s1

s2

•••• •••• •••• •••• ••••
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Viterbi Backtrace Viterbi Backtrace 

s •••• •••• ••••s1

s2

•••• •••• •••• •••• ••••
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t1 t2 t3 tT-1 tT

Most likely Sequence: s0 sN s1 s2…s2 sF
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HMM LearningHMM Learning

• Supervised Learning:  All training • Supervised Learning:  All training 

sequences are completely labeled (tagged).sequences are completely labeled (tagged).

• Unsupervised Learning: All training 

sequences are unlabelled (but generally sequences are unlabelled (but generally 

know the number of tags, i.e. states).know the number of tags, i.e. states).

• Semisupervised Learning: Some training 

sequences are labeled, most are unlabeled.sequences are labeled, most are unlabeled.
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Supervised HMM TrainingSupervised HMM Training

• If training sequences are labeled (tagged) with the • If training sequences are labeled (tagged) with the 
underlying state sequences that generated them, 
then the parameters, λ={A,B} can all be estimated then the parameters, λ={A,B} can all be estimated 
directly.

Training Sequences

John ate the apple

A dog bit Mary

Training Sequences

Supervised

HMM

A dog bit Mary

Mary hit the dog

John gave Mary the cat.

.
HMM

Training.
.
..

Det Noun PropNoun Verb 
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Supervised Parameter EstimationSupervised Parameter Estimation

• Estimate state transition probabilities based on tag • Estimate state transition probabilities based on tag 

bigram and unigram statistics in the labeled data.
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• Use appropriate smoothing if training data is sparse.
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Learning and Using HMM TaggersLearning and Using HMM Taggers

• Use a corpus of labeled sequence data to • Use a corpus of labeled sequence data to 

easily construct an HMM using supervised easily construct an HMM using supervised 

training.

• Given a novel unlabeled test sequence to • Given a novel unlabeled test sequence to 

tag, use the Viterbi algorithm to predict the tag, use the Viterbi algorithm to predict the 

most likely (globally optimal) tag sequence.
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Evaluating TaggersEvaluating Taggers

• Train on training set of labeled sequences.• Train on training set of labeled sequences.

• Possibly tune parameters based on performance on • Possibly tune parameters based on performance on 

a development set.

• Measure accuracy on a disjoint test set.• Measure accuracy on a disjoint test set.

• Generally measure tagging accuracy, i.e. the 

percentage of tokens tagged correctly.

• Accuracy of most modern POS taggers, including • Accuracy of most modern POS taggers, including 

HMMs is 96−97% (for Penn tagset trained on 

about 800K words) .about 800K words) .

– Generally matching human agreement level.– Generally matching human agreement level.
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Unsupervised 

Maximum Likelihood TrainingMaximum Likelihood Training

Training Sequences

ah  s  t  e  n

a  s  t  i  na  s  t  i  n

oh  s  t  u  n

eh  z  t  en 

.

HMM

Training.
.
.

Training

Austin.
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Maximum Likelihood TrainingMaximum Likelihood Training

• Given an observation sequence, O, what set of • Given an observation sequence, O, what set of 
parameters, λ, for a given model maximizes the 
probability that this data was generated from this probability that this data was generated from this 
model (P(O| λ))?

• Used to train an HMM model and properly induce • Used to train an HMM model and properly induce 
its parameters from a set of training data.

• Only need to have an unannotated observation 
sequence (or set of sequences) generated from the sequence (or set of sequences) generated from the 
model. Does not need to know the correct state 
sequence(s) for the observation sequence(s). In sequence(s) for the observation sequence(s). In 
this sense, it is unsupervised.
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Bayes TheoremBayes Theorem
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Maximum Likelihood vs. 

Maximum A Posteriori (MAP)Maximum A Posteriori (MAP)

• The MAP parameter estimate is the most likely • The MAP parameter estimate is the most likely 
given the observed data, O.
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• If all parameterizations are assumed to be equally 
likely a priori, then MLE and MAP are the same.likely a priori, then MLE and MAP are the same.

• If parameters are given priors (e.g. Gaussian or 
Lapacian with zero mean), then MAP is a Lapacian with zero mean), then MAP is a 
principled way to perform smoothing or 
regularization.regularization.



HMM: Maximum Likelihood Training

Efficient SolutionEfficient Solution

• There is no known efficient algorithm for finding • There is no known efficient algorithm for finding 

the parameters, λ, that truly maximizes P(O| λ).

• However, using iterative re-estimation, the Baum-

Welch algorithm (a.k.a. forward-backward) , a Welch algorithm (a.k.a. forward-backward) , a 

version of a standard statistical procedure called 

Expectation Maximization (EM), is able to locallyExpectation Maximization (EM), is able to locally

maximize P(O| λ).

• In practice, EM is able to find a good set of 

parameters that provide a good fit to the training parameters that provide a good fit to the training 

data in many cases.
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Sketch of Baum-Welch  (EM) Algorithm 

for Training HMMsfor Training HMMs

Assume an HMM with N states.

Randomly set its parameters λ=(A,B) Randomly set its parameters λ=(A,B) 

(making sure they represent legal distributions)

Until converge (i.e. λ no longer changes) do:Until converge (i.e. λ no longer changes) do:

E Step:  Use the forward/backward procedure to  E Step:  Use the forward/backward procedure to  

determine the probability of various possible 

state sequences for generating the training datastate sequences for generating the training data

M Step: Use these probability estimates to 

re-estimate values for all of the parameters λre-estimate values for all of the parameters λ
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Backward ProbabilitiesBackward Probabilities

• Let βt(i) be the probability of observing the • Let βt(i) be the probability of observing the 
final set of observations from time t+1 to T

given that one is in state i at time t.given that one is in state i at time t.

) |,...,()( λβ sqoooPi == ) |,...,()( ,21 λβ itTttt sqoooPi == ++
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Computing the Backward ProbabilitiesComputing the Backward Probabilities

• Initialization• Initialization

Niai iFT ≤≤= 1)(β
• Recursion
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• Recursion
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Estimating Probability of State TransitionsEstimating Probability of State Transitions

• Let ξ (i,j) be the probability of being in state i at • Let ξt(i,j) be the probability of being in state i at 
time t and state j at time t + 1
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Re-estimating ARe-estimating A
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Estimating Observation Probabilities Estimating Observation Probabilities 

• Let γ (i) be the probability of being in state i at • Let γt(i) be the probability of being in state i at 
time t given the observations and the model.
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Re-estimating BRe-estimating B
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Pseudocode for Baum-Welch  (EM) 

Algorithm for Training HMMsAlgorithm for Training HMMs

Assume an HMM with N states.

Randomly set its parameters λ=(A,B) Randomly set its parameters λ=(A,B) 

(making sure they represent legal distributions)

Until converge (i.e. λ no longer changes) do:Until converge (i.e. λ no longer changes) do:

E Step:E Step:

Compute values for γt(j) and ξt(i,j) using current
values for parameters A and B.values for parameters A and B.

M Step:

Re-estimate parameters:Re-estimate parameters:
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EM PropertiesEM Properties

• Each iteration changes the parameters in a • Each iteration changes the parameters in a 

way that is guaranteed to increase the way that is guaranteed to increase the 

likelihood of the data: P(O|λ).
• Anytime algorithm: Can stop at any time • Anytime algorithm: Can stop at any time 

prior to convergence to get approximate prior to convergence to get approximate 

solution.

• Converges to a local maximum.• Converges to a local maximum.



Semi-Supervised LearningSemi-Supervised Learning

• EM algorithms can be trained with a mix of • EM algorithms can be trained with a mix of 
labeled and unlabeled data.

• EM basically predicts a probabilistic (soft) • EM basically predicts a probabilistic (soft) 
labeling of the instances and then iteratively 
retrains using supervised learning on these retrains using supervised learning on these 
predicted labels (“self training”).

• EM can also exploit supervised data: • EM can also exploit supervised data: 
– 1) Use supervised learning on labeled data to initialize 
the parameters (instead of initializing them randomly).the parameters (instead of initializing them randomly).

– 2) Use known labels for supervised data instead of 
predicting soft labels for these examples during 
retraining iterations.retraining iterations.



Semi-Supervised ResultsSemi-Supervised Results

• Use of additional unlabeled data improves on • Use of additional unlabeled data improves on 
supervised learning when amount of labeled data 
is very small and amount of unlabeled data is is very small and amount of unlabeled data is 
large.

• Can degrade performance when there is sufficient • Can degrade performance when there is sufficient 
labeled data to learn a decent model and when 
unsupervised learning tends to create labels that unsupervised learning tends to create labels that 
are incompatible with the desired ones.
– There are negative results for semi-supervised POS 
tagging since unsupervised learning tends to learn 

– There are negative results for semi-supervised POS 
tagging since unsupervised learning tends to learn 
semantic labels (e.g. eating verbs, animate nouns) that 
are better at predicting the data than purely syntactic are better at predicting the data than purely syntactic 
labels (e.g. verb, noun).



ConclusionsConclusions

• POS Tagging is the lowest level of syntactic • POS Tagging is the lowest level of syntactic 
analysis.

• It is an instance of sequence labeling, a collective • It is an instance of sequence labeling, a collective 
classification task that also has applications in 
information extraction, phrase chunking, semantic information extraction, phrase chunking, semantic 
role labeling, and bioinformatics.

• HMMs are a standard generative probabilistic 
model for sequence labeling that allows for model for sequence labeling that allows for 
efficiently computing the globally most probable 
sequence of labels and supports supervised, sequence of labels and supports supervised, 
unsupervised and semi-supervised learning.


