Tomas Miller — IT Architekt
tomas_muller@cz.ibm.com
22/11/2010

FI MU:
SCA and SDO

© 2010 IBM Corporation

Building a smarter planet

A brief history of SOA

Why SCA makes life simpler

Composing and assembling SCA applications
Code and other details

Customer scenarios

Service Data Objects

Resources

2 © 2010 IBM Corporation

Building a smarter planet

Why SCA makes life simpler

Composing and assembling SCA applications
Code and other details

Customer scenarios

Service Data Objects

Resources

3 © 2010 IBM Corporation

Building a smarter planet

= When we started with Web services (SOAP over HTTP), we used XML to
move data the idea was to send XML to a URL, invoking a service
synchronously.
= Things have gotten more complicated since then:
— Protocols other than HTTP
— Document-style SOAP services instead of RPC
— Asynchronous invocation with JIMS
— Encryption, conversations, reliable messaging, WS-*
— Etc.

4 © 2010 IBM Corporation

Building a smarter planet

*\When dealing with a component (in an SOA or not),
there are three important pieces of information:
—The interface of the component
—The implementation of the component
—The access method to invoke the component

=\\Ve'll consider how we use this information to invoke
components.

5 © 2010 IBM Corporation

Building a smarter planet

= Originally, most components were hardwired into an application:
— The application knew the details of the component’s interface at build time.
— The application accessed the component’s implementation at build time.

— The application knew the details of the component’s access method at build
time.

» This worked (and still does), but the application is relatively brittle.

— If the implementation or access method changes, we have to modify our code,
rebuild it, retest it and redeploy it.

6 © 2010 IBM Corporation

Building a smarter planet

= SOAP introduced a way to invoke a remote service with an XML envelope.

» The SOAP infrastructure built the envelope and sent it to a particular URL,;
the SOAP service’s host invoked a service and sent XML back to us.

— The application knew the details of the component’s interface at build time.

— The application did not access the component’s impl ementation at build
time; the component is invoked at run time by the S OAP infrastructure.

— The application knew the details of the component’s access method at build
time (usually SOAP/HTTP).

7 © 2010 IBM Corporation

Building a smarter planet

Next-generation SOA with SCA

= An SCA application is even more dynamic:
—The application knows the details of the component’s interface at build

time.

—The application does not access the component’s imp lementation
at build time; the component is invoked by the SCA Invocation
framework.

—The application does not know the details of the com ponent’s
access method at build time; this is also handled b y the SCA
iInvocation framework.

8 © 2010 IBM Corporation

Building a smarter planet

0s0a.org

#Sud

= SCA and SDO were developed by the Open Service Oriented Architecture group
(osoa.org):

.,# "oy
‘e B
Thinkliauid QPECLEAR INTERFAGE2:

SOFTWARE
&
Drearct poere T Gsoftware e KA/

SYBASE‘ WITIBCO xcala ., Zend

Service Your [ata
ywer of No < & ‘I < The php Company

9 © 2010 IBM Corporation

Building a smarter planet

OASIS 9

» The specifications work of osoa.org has been turned over to OASIS.

= The Open Composite Services Architecture group is being formed now.
— See oasis-opencsa.org for more details.

— Yes, the CA work has moved to a group named C A.

— http://lwww.osoa.org/display/Main/Service+Component+Architecture+Specifications

10 © 2010 IBM Corporation

Building a smarter planet

© 2010 IBM Corporatioril 1

(12005) (2006) (2007) (2008) (2009)

O
?
S
9p)
9]
o
O
a
=
%
o

A Brief History of SCA
(2004

NG ayoedy ®IIOSUO0D

11

Building a smarter planet

12

A brief history of SOA

Composing and assembling SCA applications
Code and other details

Customer scenarios

Service Data Objects

Resources

© 2010 IBM Corporation

Building a smarter planet

= SCA gives your developers a single programming model for using
services .

= As your SOA gets more complicated, your developers have to learn more
and more interfaces.

— In Java alone, you might have EJBs, RMI, JCA, JAX-WS or JAX-RPC.

= Similarly, SDO gives your developers a single programming model for
using data sources

13 © 2010 IBM Corporation

Building a smarter planet

14

You're committed to SOA, but

SCA solves these problems:

It's not convenient to convert everything to
a Web service.

You can integrate many kinds of components, not
just Web services.

You want to minimize the learning curve
for your developers.

Your developers don't have to learn the details of
each component, they just connect them without
learning a new API.

As you have more components and data
sources, you'll want to rewire your
applications more often.

When you integrate an SCA component or an SDO
data source, you can replace the component/data
source without changing your code.

Your developers don't understand how to
exploit the power of an SOA.

Your developers focus on reusable business logic.
SCA provides the SOA model and hides the
middleware complexity from them.

© 2010 IBM Corporation

Building a smarter planet

= An executable model for assembling services

= A simplified component programming model for implementing services

— Write ‘em as BPEL processes, Java POJOs, EJBs, COBOL apps, PHP scripts,
C++ apps...

= We won't focus on this today, but an SCA composite definition includes all
of the services that our composite depends upon.

— Dependency management is much simpler.

15 © 2010 IBM Corporation

Building a smarter planet

= A workflow model
—Use BPEL for that

=\Web services

—Many SCA implementations will use Web services, but you can create
SCA solutions with no Web services content

* Tied to a specific programming language, protocol,
technology, runtime, etc.

16 © 2010 IBM Corporation

Building a smarter planet

*» There are four parts to the specs:
—The Assembly Model
How to define composite applications
—The Client and Implementation specifications
Java, C++, BPEL
—Binding specifications

How to use access methods — Web services, JMS, RMI-IIOP,
REST...

—Policy Framework

How to add security, transactions, conversations, reliable
messaging, etc. declaratively

17 © 2010 IBM Corporation

Building a smarter planet

18

A brief history of SOA
Why SCA makes life simpler

Code and other details
Customer scenarios
Service Data Objects
Resources

© 2010 IBM Corporation

Building a smarter planet

* How do you package a service so it can be integrated with
other services?

» SCA has a consistent model:
—A simple service in SCA is called a component .
—Components can be grouped into composites .
—Components and composites are hooked together with wires .

»\We'll use SCA diagrams to illustrate these concepts.
= All of the definitions and configuration are done in XML.

19 © 2010 IBM Corporation

Building a smarter planet

» Here are the symbols used in SCA assembly diagrams:

> > Agreen chevron represents a service . This is an entry point to the SCA
component or composite.

> > Anpurple chevron represents a reference . This points to a service
provided by something else.

|:| A yellow rectangle represents a property . This is a value you can set
when you invoke the component or composite.

> D> > DA line represents a wire. This is the connection between a
service reference and the service itself.

20 © 2010 IBM Corporation

Building a smarter planet

SCA symbols

= More symbols:

A rounded rectangle represents a
component . A component can have
services, references and properties.

A large rounded rectangle represents a composite . A composite contains
one or more components. Like a component, it can have services, references
and properties. A composite can also contain a composite.

(Composite C]‘ =S \
d 4

21 © 2010 IBM Corporation

Building a smarter planet

service
\
\
\
\

interface
binding D

reference
\
\
\
\

interface
’ binding

22

= A service or a reference has an
interface and a binding .

» The interface might be a Java
interface, a WSDL port type, a BPEL
partner link, a C++ class, etc.

» The binding defines the access
method. It might be SOAP/HTTP,
JMS, JSON, RMI-IIOP, SCA, etc.

© 2010 IBM Corporation

Building a smarter planet

Properties and implementations

property
\

\
\
\

type
value D

/
/
/

implementation

23

= A property has a type and a value.

= A component has an implementation ;
that's the code that actually provides
the service.

» The implementation might be BPEL,
Java, C++, Spring, etc.

© 2010 IBM Corporation

Building a smarter planet

A component

24

services

interface
binding

interface
binding

= This diagram is a component with
services, references and properties.

value value _ properties

interface
binding

interface
binding

references

© 2010 IBM Corporation

Building a smarter planet

Wiring

» Here are two components wired together:

25

© 2010 IBM Corporation

Building a smarter planet

A composite

= Here are two components grouped together in a composite:

Composite C

services - properties

-

references

26 © 2010 IBM Corporation

Building a smarter planet

Promotion

composite
service

\ senvices

interface
binding promoted

seryice

27

type _ composite
value - property

Composite C

_ properties

[elerences

-ﬁ-,
\
A
A
\

-
-
L
b
—

promoted
reference

interface
binding

composite
reference

© 2010 IBM Corporation

Building a smarter planet

A composite implementation

,/ Implementation
— 1 —composite
7

28

© 2010 IBM Corporation

Building a smarter planet

A composite using another component

,/ Implementation
— composite

29 © 2010 IBM Corporation

Building a smarter planet

A composite that includes a composite

Composite F

N

,/ Implementation
— composite

i

30 © 2010 IBM Corporation

Building a smarter planet

= SCA provides the ability for services to be called synchronously or asynchronously

= Synchronous Model = Asynchronous Model
— Blocking — Non-Blocking
Client waits for a response Client doesn’t wait for a response

Client] | Client

invoke () S invokeAsync()

Synchronous Model Asynchronous Model

31 © 2010 IBM Corporation

Building a smarter planet

Asynchronous Model

» There 3 types of asynchronous invocation models

Cier oo | Clnt ervce | crent

invokeAsync() S : invokeAsync() b : i invokeAsync()
further ;‘urther
1further . 1processing E lprocessing
processing : :
invokeResponse() EgnlnvokeResponse()
D i | A ,
One Way Deferred Response Request with Callback

32 © 2010 IBM Corporation

Building a smarter planet

Asynchronous Model

33

» Synchronous vs. Pseudo Synchronous
» Synchronous Model

— Blocking
Client waits for a response

Client

invoke ()

S

lfurther
processing

Synchronous Model

Client

invokeAsync()

: >
1further :
processing

_invokeResponse()

Deferred Responée

© 2010 IBM Corporation

Building a smarter planet

SCA Summary
Interface Propert; Interface
« WSDL « WSDL
e Java e Java

L/ L/
Service Reference
Binding |1 Binding |[]
« SCA e SCA
e« WS e« WS
- EJB / : - EJB
. IMS Implementation . IMS
e Java e C
* Spring o C++
 BPEL e COBOL
» Composite

34 © 2010 IBM Corporation

Building a smarter planet

35

A brief history of SOA
Why SCA makes life simpler
Composing and assembling SCA applications

Customer scenarios
Service Data Objects
Resources

© 2010 IBM Corporation

Building a smarter planet

= Here’s an SCA client that uses SOAP/HTTP:
public class CalculatorClient {

public static void main... {

SCADomain scaDomain =
SCADomain.newlnstance("calc.composite");

CalculatorService calcServ =

scaDomain.getService(CalculatorService.class,

"CalculatorServiceComponent");
System...printin(calcServ.add(3,2));
scaDomain.close();

36

© 2010 IBM Corporation

Building a smarter planet

= Here's an SCA client that uses RMI:
public class CalculatorClient {

public static void main... {

SCADomain scaDomain =
SCADomain.newlnstance("calc.composite");

CalculatorService calcServ =

scaDomain.getService(CalculatorService.class,

"CalculatorServiceComponent");
System...printin(calcServ.add(3,2));
scaDomain.close();

37

© 2010 IBM Corporation

Building a smarter planet

38

package service;
@Remotable
public interface HelloService

{

String hello (String message);

package service;
@Service (HelloService.class)
public class HelloServicelmpl

{

@Reference public AnotherService anotherService;

<

locale
||

HelloService another
Component Service

HeIIoServiceImpIpJ

implements HglloServic

String hello (String message) {
return anotherService.howdy(message);

HelloComposite

<

© 2010 IBM Corporation

Building a smarter planet

<?xml version="1.0" encoding="ASCII"?>

<composite name="HelloComposite" Q—
xmlins="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://foo.com">

<component name="HelloServiceComponent">

Hello
Service

A

<property name="locale"> ()
</property>

<service name="HelloService"> Q-
</service>

<reference name="anotherService“>

</reference>

<implementation.java class="services.HelloServicelmp

</component>
</composite>

39

locale l HelloComposite
|
HelloService another
Component Service

| !

HeIIoServiceImpIpJ

"> ©

© 2010 IBM Corporation

Building a smarter planet

Qualities of Service — Intents and Policies

X

_>< requires="authentication")

Lookup

7 \\
4 \
U \

‘ Pollcy Set |H

(requires="authentication"

rComposite

WebServi
Component - erv'ce]

Binding

1

‘ Interaction \ ‘Implementation\ ‘ Interaction \

<component name="Component">
<implementation.java class="..."/>
<service name="MyService">

— o e o o e e e e e e e e e e
e e e e e S e e e e e

<interface.java interface="..."/> WS- Pollcy
<binding.ws ‘
requires=“authentication” .../> P
</service> ‘ \)
</component>- ~________ =T _____.

40 © 2010 IBM Corporation

Building a smarter planet

» [n SCA, a binding specifies how to access a service.
— Current bindings include WSDL, JMS, JCA and EJBs.
— More bindings are coming all the time at osoa.org
— Like all of SCA, the binding specification is open, SO you can create your own.

» Add asynchronous support, conversational support, etc. declaratively:

— <interface.java interface="..."
callbacklinterface="...InvoiceCallback"/>

— sca:requires="conversational"
— sca:endsConversation="true"

41 © 2010 IBM Corporation

Building a smarter planet

» Previous standards efforts, WSDL in particular, didn’'t include
how to define general policies for services.
—Nowadays is situation better due to WS-Policy, WS-PolicyAttachment

» SCA gives you a single declarative way to establish policies.
—“This component must provide this level of QoS.”
—“All traffic on this wire must be digitally signed.”

42 © 2010 IBM Corporation

Building a smarter planet

= The data structures
— Defined with XML Schema

= The Interface

— There’s a method called get St ockQuot e, it takes a string as input and returns a string
as output

* The binding(s)
— SOAP over HTTP

* The endpoint(s)
—http://xyz.com 8080/ nyService

= |deally the bindings and endpoints are in a separate file.
— Unfortunately, that doesn’t always happen.

43 © 2010 IBM Corporation

Building a smarter planet

» Send a SOAP envelope to a particular service over a particular protocol.
— That's it.

= A Service-Oriented Architecture needs a far more sophisticated way of working
with services.

44 © 2010 IBM Corporation

Building a smarter planet

Doing more sophisticated things

= “Everyone using this service must be authenticated.”
— The WSDL file won't tell you that.

= “Every request sent to this service must be digitally signed.”
— The WSDL file won't tell you that.

= “Any message sent to this service is guaranteed to be delivered.”
— The WSDL file won't tell you that.

= “Particular service ensures specific QoS.”
— The WSDL file won't tell you that.

= “Every message sent to this service must be encrypted.”
— The WSDL file won't tell you that.

= “Every request to this service ...”
— SCA tells you everything you need to know.

45

© 2010 IBM Corporation

Building a smarter planet

= Without this information, nothing works.
— That’s a big problem.

= SCA solves this problem in an elegant way.
— The details we just mentioned are handled by the SCA runtime.

— Those details can be changed without any changes to the client application or the
service.

46 © 2010 IBM Corporation

Building a smarter planet

= A brief history of SOA

» Why SCA makes life simpler

» Composing and assembling SCA applications
= Code and other detalls

= Resources

47

© 2010 IBM Corporation

Building a smarter planet

48

SDO gives you a single API to a wide variety of data sources.

You and | as developers focus on CRUD operations, we don’t know or
care what the data source actually is.

Relational database

XML database or XML file
EJB

Web service

JCA

© 2010 IBM Corporation

Building a smarter planet

Data graph _
Data object XPath/
XQuery
: Data Access
e Service

XML/HTTP

Change summary

CCl/
Proprietary

49 © 2010 IBM Corporation

Building a smarter planet

= | have some data.

» | use the data wherever and however it's stored (RDBMS, XML file, LDAP,
etc.)

» | use the most convenient language for CRUD operations on the data
(SQL, XQuery, modified XPath, etc.)

50 © 2010 IBM Corporation

Building a smarter planet

= Mediation primitives process messages as SMOs
= The SMO is an extension of the Business Object (BO) structure

» |t contains: context, message headers, fault details, an array of properties and payload
information

[ServiceMessageObject}

\ 4 \ 4 \ 4

[headers } [context } [body

\ 4 \ 4 \ 4 \ 4 \ 4

[SMOHeader} [SOAPHeader} [correlation } [transient } [shared }

\ 4

[JMSHeader }

51 © 2010 IBM Corporation

Building a smarter planet

= Accessible by AP (com.ibm.websphere.sibx.smo.*)

\ 4

ServiceMessageObject smo = (ServiceMessageObject)a type;
DataObject context = smo.getContext()
DataObject transient = context.getTransientContext();
[ServiceMessageObject}
\ 4
context J [body

[headers

\ 4

A

4

A

4

A 4 \ 4

[SMOHeader } [SOAPHeader} [correlation } [

\ 4

[JMSHeader }

52

transient }[shared }

© 2010 IBM Corporation

Building a smarter planet

import com.ibm.websphere.sibx.smobo.ContextType;
import com.ibm.websphere.sibx.smobo.HeadersType;
import commonj.sdo.DataObiject;

public DataObject execute(DataObject a_type) {
ContextType context = (ContextType) a_type.get("/co ntext");
HeadersType headers = (HeadersType) a_type.get(“/he aders");
DataObject body = (DataObiject) a_type.get("/body");
return a_type;

}

53 © 2010 IBM Corporation

Building a smarter planet

Open Service Component Architecture (Open SCA)

An open, emerging standard programming model
for assembling flexible SOA business solutions
from diverse, reusable service enabled IT assets

Develop interfaces
and implementations.
Compose and Wire.
Bindings and Intents.

Define, install and run
contributions on
WebSphere
Application Server.

1= -
e n— II = 2T qumjj
RAD 7.5.2+ ™ ‘ D e B
| J o
SCA TOOlS D nnnnnnn ;

[l

WAS 7 SCA ™
Feature Pack

54

© 2010 IBM Corporation

Building a smarter planet

= A brief history of SOA

» Why SCA makes life simpler

» Composing and assembling SCA applications
= Code and other detalls

» Service Data Objects

55

© 2010 IBM Corporation

Building a smarter planet

» The home of everything related to SCA and SDO is osoa.org

— From here you can find the specs, white papers and tutorials.

» The OSOA'’s work is moving to OASIS. For more information on the Open CSA project, visit
oasis-opencsa.org

= |f you'd like to get involved in the standardization effort, a call for participation has recently
been issued.

» The oasis-opencsa.org/specifications page is another great way to find the
specifications and other technical resources.

OASIS 9

56 © 2010 IBM Corporation

Building a smarter planet

Books

= Get Ben Margolis’ book SOA for the
Business Developer: Concepts, BPEL
and SCA.

= As of August 2007, this is the best book on
SCA. It covers both the architecture and
the technical details.

= Many of the best minds in the SCA world
had a hand in this book.

FOR THE
= |[SBN 1-58347-065-4

BUSINESS
DEVELOPER

Concepts, BPEL, and SCA

Ben Margolis
with Josweph L, Shorpe

57 © 2010 IBM Corporation

Building a smarter planet

An overview of Service Component Architecture (2 parts):

— ibm.com/developerworks/webservices/library/ ws-soa- scadevl/ and .../ws-soa-
scadev2/
= Building SOA solutions with SCA (4 parts):
— ibm.com/developerworks/websphere/techjournal/0510 b rent/0510 brent.html
= Java SCA invocation styles:
— ibm.com/developerworks/webservices/library/ ws-soa- scajava/
= Using PHP’s SCA and SDO extensions:
— ibm.com/developerworks/webservices/library/ ws-soa- scasdo/

58 © 2010 IBM Corporation

Building a smarter planet

59

Introduction to Service Data Objects:
— ibm.com/developerworks/java/library/j-sdo/

Build a Web service client with JSF and SDO (Flash demo):

— ibm.com/developerworks/offers/lp/demos/ summary/jsf

SDO 2.0: Create and read an XML document based on a
— ibm.com/developerworks/webservices/library/ ws-sdox

More articles on SCA and SDO are coming all the time.

sdo.html/

n XML Schema:

mischema/

© 2010 IBM Corporation

