
© 2010 IBM Corporation

FI MU:
SCA and SDO

Tomáš Müller – IT Architekt

tomas_muller@cz.ibm.com

22/11/2010

© 2010 IBM Corporation

Building a smarter planet

2

Agenda

� A brief history of SOA
� Why SCA makes life simpler

� Composing and assembling SCA applications

� Code and other details
� Customer scenarios

� Service Data Objects

� Resources

© 2010 IBM Corporation

Building a smarter planet

3

Agenda

� A brief history of SOA
� Why SCA makes life simpler

� Composing and assembling SCA applications

� Code and other details
� Customer scenarios

� Service Data Objects

� Resources

© 2010 IBM Corporation

Building a smarter planet

4

A brief history of SOA

� When we started with Web services (SOAP over HTTP), we used XML to
move data the idea was to send XML to a URL, invoking a service
synchronously.

� Things have gotten more complicated since then:
– Protocols other than HTTP

– Document-style SOAP services instead of RPC

– Asynchronous invocation with JMS
– Encryption, conversations, reliable messaging, WS-*

– Etc.

© 2010 IBM Corporation

Building a smarter planet

5

A component

�When dealing with a component (in an SOA or not),
there are three important pieces of information:

–The interface of the component
–The implementation of the component
–The access method to invoke the component

�We’ll consider how we use this information to invoke
components.

© 2010 IBM Corporation

Building a smarter planet

6

The bad old days

� Originally, most components were hardwired into an application:
– The application knew the details of the component’s interface at build time.

– The application accessed the component’s implementation at build time.
– The application knew the details of the component’s access method at build

time.

� This worked (and still does), but the application is relatively brittle.
– If the implementation or access method changes, we have to modify our code,

rebuild it, retest it and redeploy it.

© 2010 IBM Corporation

Building a smarter planet

7

The early days of Web services

� SOAP introduced a way to invoke a remote service with an XML envelope.

� The SOAP infrastructure built the envelope and sent it to a particular URL;
the SOAP service’s host invoked a service and sent XML back to us.

– The application knew the details of the component’s interface at build time.

– The application did not access the component’s impl ementation at build
time; the component is invoked at run time by the S OAP infrastructure.

– The application knew the details of the component’s access method at build
time (usually SOAP/HTTP).

© 2010 IBM Corporation

Building a smarter planet

8

Next-generation SOA with SCA

�An SCA application is even more dynamic:
– The application knows the details of the component’s interface at build

time.
– The application does not access the component’s imp lementation

at build time; the component is invoked by the SCA invocation
framework.

– The application does not know the details of the com ponent’s
access method at build time; this is also handled b y the SCA
invocation framework.

© 2010 IBM Corporation

Building a smarter planet

9

osoa.org

� SCA and SDO were developed by the Open Service Oriented Architecture group
(osoa.org):

© 2010 IBM Corporation

Building a smarter planet

10

� The specifications work of osoa.org has been turned over to OASIS.

� The Open Composite Services Architecture group is being formed now.
– See oasis-opencsa.org for more details.

– Yes, the SCA work has moved to a group named CSA.

– http://www.osoa.org/display/Main/Service+Component+Architecture+Specifications

© 2010 IBM Corporation

Building a smarter planet

11 11

A Brief History of SCA

20082007200620052004

co
ns

or
tia

A
pa

ch
e

IB
M

Apache Tuscany
enters incubation

Apache Tuscany
graduates

OSOA
Founded

Open SCA
submitted to OASIS

Open SCA
collaboration begins

Open
SCA 0.9

V6.1 SOA
FeP Beta

V7.0 SCA
FeP Beta

V7.0 SCA
FeP GA

RAD 7.5.2
SCA GA

2009

RAD 7.5.1
SCA Beta

V6.0

RAD Open SCA

WAS Open SCA

WPS / WID Classic SCA
V6.1 V6.2

V7.0 SCA
v1.0.1
FeP GA

V7.0

RAD 7.5.5
SCA GA

First Public
OASIS Drafts

© 2010 IBM Corporation

Building a smarter planet

12

Agenda

� A brief history of SOA
� Why SCA makes life simpler
� Composing and assembling SCA applications

� Code and other details
� Customer scenarios

� Service Data Objects

� Resources

© 2010 IBM Corporation

Building a smarter planet

13

Why SCA matters

� SCA gives your developers a single programming model for using
services .

� As your SOA gets more complicated, your developers have to learn more
and more interfaces.
– In Java alone, you might have EJBs, RMI, JCA, JAX-WS or JAX-RPC.

� Similarly, SDO gives your developers a single programming model for
using data sources .

© 2010 IBM Corporation

Building a smarter planet

14

You're committed to SOA, butYou're committed to SOA, but …… SCA solves these problems:SCA solves these problems:

It's not convenient to convert everything to
a Web service.

You can integrate many kinds of components, not
just Web services.

You want to minimize the learning curve
for your developers.

Your developers don't have to learn the details of
each component, they just connect them without
learning a new API.

As you have more components and data
sources, you'll want to rewire your
applications more often.

When you integrate an SCA component or an SDO
data source, you can replace the component/data
source without changing your code.

Your developers don't understand how to
exploit the power of an SOA.

Your developers focus on reusable business logic.
SCA provides the SOA model and hides the
middleware complexity from them.

Why SCA matters

© 2010 IBM Corporation

Building a smarter planet

15

What SCA is

� An executable model for assembling services
� A simplified component programming model for implementing services

– Write ‘em as BPEL processes, Java POJOs, EJBs, COBOL apps, PHP scripts,
C++ apps…

� We won’t focus on this today, but an SCA composite definition includes all
of the services that our composite depends upon.

– Dependency management is much simpler.

© 2010 IBM Corporation

Building a smarter planet

16

What SCA isn’t

�A workflow model
– Use BPEL for that

�Web services
– Many SCA implementations will use Web services, but you can create

SCA solutions with no Web services content

�Tied to a specific programming language, protocol,
technology, runtime, etc.

© 2010 IBM Corporation

Building a smarter planet

17

The SCA specs

�There are four parts to the specs:
– The Assembly Model

How to define composite applications
– The Client and Implementation specifications

Java, C++, BPEL
– Binding specifications

How to use access methods – Web services, JMS, RMI-IIOP,
REST…

– Policy Framework
How to add security, transactions, conversations, reliable

messaging, etc. declaratively

© 2010 IBM Corporation

Building a smarter planet

18

Agenda

� A brief history of SOA
� Why SCA makes life simpler

� Composing and assembling SCA applications
� Code and other details
� Customer scenarios

� Service Data Objects

� Resources

© 2010 IBM Corporation

Building a smarter planet

19

Composition and assembly

�How do you package a service so it can be integrated with
other services?

�SCA has a consistent model:
– A simple service in SCA is called a componentcomponent .
– Components can be grouped into compositescomposites .
– Components and composites are hooked together with wireswires .

�We’ll use SCA diagrams to illustrate these concepts.
�All of the definitions and configuration are done in XML.

© 2010 IBM Corporation

Building a smarter planet

20

Symbols in SCA assembly diagrams

� Here are the symbols used in SCA assembly diagrams:
– A green chevron represents a service . This is an entry point to the SCA

component or composite.

– A purple chevron represents a reference . This points to a service
provided by something else.

– A yellow rectangle represents a property . This is a value you can set
when you invoke the component or composite.

– A line represents a wire . This is the connection between a
service reference and the service itself.

© 2010 IBM Corporation

Building a smarter planet

21

SCA symbols

� More symbols:

A rounded rectangle represents a
component . A component can have
services, references and properties.

A large rounded rectangle represents a composite . A composite contains
one or more components. Like a component, it can have services, references
and properties. A composite can also contain a composite.

Component

Composite C

Component
A

Component
B

© 2010 IBM Corporation

Building a smarter planet

22

Services and references

� A service or a reference has an
interface and a binding .

� The interface might be a Java
interface, a WSDL port type, a BPEL
partner link, a C++ class, etc.

� The binding defines the access
method. It might be SOAP/HTTP,
JMS, JSON, RMI-IIOP, SCA, etc.

serviceservice

interface

binding

referencereference

interface

binding

© 2010 IBM Corporation

Building a smarter planet

23

Properties and implementations

� A property has a type and a value.

� A component has an implementation ;
that’s the code that actually provides
the service.

� The implementation might be BPEL,
Java, C++, Spring, etc.

Component

propertyproperty

type

value

implementationimplementation

© 2010 IBM Corporation

Building a smarter planet

24

A component

� This diagram is a component with
services, references and properties.

servicesservices

referencesreferences

propertiesproperties

type

value

type

value

interface

binding

interface

binding

interface

binding

interface

binding

Component
A

… …

© 2010 IBM Corporation

Building a smarter planet

25

Component
A

Component
B

Wiring

wirewire

… …

� Here are two components wired together:

© 2010 IBM Corporation

Building a smarter planet

26

Component
A

services

references

properties

Component
B

A composite

wire

Composite C

… …

� Here are two components grouped together in a composite:

© 2010 IBM Corporation

Building a smarter planet

27

Component
A

services

references

properties

Component
B

compositecomposite
referencereference

compositecomposite
serviceservice

Promotion

compositecomposite
propertyproperty

promotedpromoted
referencereference

wirepromotedpromoted
serviceservice

interface

binding
interface

binding

type

value

Composite C

… …

© 2010 IBM Corporation

Building a smarter planet

28

A

B

Component
D

C

ImplementationImplementation
–– compositecomposite

A composite implementation

© 2010 IBM Corporation

Building a smarter planet

29

A

B

Component
D

Component
E

C

A composite using another component

… …

ImplementationImplementation
–– compositecomposite

© 2010 IBM Corporation

Building a smarter planet

30

A

… …

B

Component
D

Component
E

C

Composite F

A composite that includes a composite

ImplementationImplementation
–– compositecomposite

© 2010 IBM Corporation

Building a smarter planet

31

Synchronous / Asynchronous Model

� SCA provides the ability for services to be called synchronously or asynchronously

� Synchronous Model
– Blocking

Client waits for a response

invokeAsync()

Client Service

further
processing

Asynchronous Model

invoke ()

Client Service

further
processing

Synchronous Model

� Asynchronous Model
– Non-Blocking

Client doesn’t wait for a response

© 2010 IBM Corporation

Building a smarter planet

32

Asynchronous Model

� There 3 types of asynchronous invocation models

invokeAsync()

Client Service

further
processing

One Way

invokeAsync()

Client Service

invokeResponse()

further
processing

Deferred Response

invokeAsync()

Client Service

onInvokeResponse()

Request with Callback

further
processing

© 2010 IBM Corporation

Building a smarter planet

33

Asynchronous Model

� Synchronous vs. Pseudo Synchronous

� Synchronous Model
– Blocking

Client waits for a response

invoke ()

Client Service

further
processing

Synchronous Model

invokeAsync()

Client Service

invokeResponse()

further
processing

Deferred Response

© 2010 IBM Corporation

Building a smarter planet

34
34

SCA Summary

Implementation

ComponentService Reference

• Java
• Spring
• BPEL
• Composite

…

• C
• C++
• COBOL

…

PropertyInterface
• WSDL
• Java

…

Binding

Interface
• WSDL
• Java

…

Binding
• SCA
• WS
• EJB
• JMS
• JCA
• (JSON-RPC)
• (AJAX)

…

• SCA
• WS
• EJB
• JMS
• JCA
• (JSON-RPC)
• (AJAX)

…

**

*

Policy Set
*

PolicyIntent

*

© 2010 IBM Corporation

Building a smarter planet

35

Agenda

� A brief history of SOA
� Why SCA makes life simpler

� Composing and assembling SCA applications

� Code and other details
� Customer scenarios

� Service Data Objects

� Resources

© 2010 IBM Corporation

Building a smarter planet

36

An SCA client

� Here’s an SCA client that uses SOAP/HTTPSOAP/HTTP:
public class CalculatorClient {

public static void main… {

SCADomain scaDomain =

SCADomain.newInstance("calc.composite");

CalculatorService calcServ =

scaDomain.getService(CalculatorService.class,

"CalculatorServiceComponent");

System…println(calcServ.add(3,2));

scaDomain.close();

}

}

© 2010 IBM Corporation

Building a smarter planet

37

An SCA client

� Here’s an SCA client that uses RMIRMI:
public class CalculatorClient {

public static void main… {

SCADomain scaDomain =

SCADomain.newInstance("calc.composite");

CalculatorService calcServ =

scaDomain.getService(CalculatorService.class,

"CalculatorServiceComponent");

System…println(calcServ.add(3,2));

scaDomain.close();

}

}

© 2010 IBM Corporation

Building a smarter planet

38
38

SCA Annotated Java

package service;
@Remotable
public interface HelloService
{

String hello (String message);
}

package service;
@Service (HelloService.class)
public class HelloServiceImpl implements HelloServic e
{

@Reference public AnotherService anotherService;

String hello (String message) {
return anotherService.howdy(message);

}

}

HelloComposite

HelloService
Component

another
Service

Hello
Service

locale

HelloServiceImpl

© 2010 IBM Corporation

Building a smarter planet

39
39

SCA Composite XML

<?xml version="1.0" encoding="ASCII"?>
<composite name=“HelloComposite"

xmlns="http://www.osoa.org/xmlns/sca/1.0"
targetNamespace="http://foo.com">

<component name=“HelloServiceComponent">
<property name=“locale">

...
</property>
<service name=“HelloService“>

...
</service>
<reference name=“anotherService“>

...
</reference>
<implementation.java class="services.HelloServiceImp l"/>

</component>
</composite>

HelloComposite

HelloService
Component

another
Service

Hello
Service

locale

HelloServiceImpl

© 2010 IBM Corporation

Building a smarter planet

40
40

Qualities of Service – Intents and Policies

Policies

Composite

<component name=“Component”>
<implementation.java class=“...”/>
<service name=“MyService”>

<interface.java interface=“...”/>
<binding.ws

requires=“authentication” .../>
</service>

</component>

Component WebService
Binding

Policy
Policy

WS-Policy

Policy Set

requires="authentication"

requires="authentication"

Lookup

Interaction
Intent

Implementation
Intent

Interaction
Intent

© 2010 IBM Corporation

Building a smarter planet

41

Bindings

� In SCA, a bindingbinding specifies how to access a service.
– Current bindings include WSDL, JMS, JCA and EJBs.
– More bindings are coming all the time at osoa.org .

– Like all of SCA, the binding specification is open, so you can create your own.

� Add asynchronous support, conversational support, etc. declaratively:
– <interface.java interface="..."

callbackInterface="...InvoiceCallback"/>

– sca:requires="conversational"

– sca:endsConversation="true"

© 2010 IBM Corporation

Building a smarter planet

42

Policies

�Previous standards efforts, WSDL in particular, didn’t include
how to define general policiespolicies for services.

– Nowadays is situation better due to WS-Policy, WS-PolicyAttachment

�SCA gives you a single declarative way to establish policies.
– “This component must provide this level of QoS.”
– “All traffic on this wire must be digitally signed.”

© 2010 IBM Corporation

Building a smarter planet

43

What’s in the WSDL file?

� The data structures
– Defined with XML Schema

� The interface
– There’s a method called getStockQuote, it takes a string as input and returns a string

as output

� The binding(s)
– SOAP over HTTP

� The endpoint(s)
– http://xyz.com:8080/myService

� Ideally the bindings and endpoints are in a separate file.
– Unfortunately, that doesn’t always happen.

© 2010 IBM Corporation

Building a smarter planet

44

What can I do with the WSDL file?

� Send a SOAP envelope to a particular service over a particular protocol.
– That’s it.

� A Service-Oriented Architecture needs a far more sophisticated way of working
with services.

© 2010 IBM Corporation

Building a smarter planet

45

Doing more sophisticated things

� “Everyone using this service must be authenticated.”
– The WSDL file won’t tell you that.

� “Every request sent to this service must be digitally signed.”
– The WSDL file won’t tell you that.

� “Any message sent to this service is guaranteed to be delivered.”
– The WSDL file won’t tell you that.

� “Particular service ensures specific QoS.”
– The WSDL file won’t tell you that.

� “Every message sent to this service must be encrypted.”
– The WSDL file won’t tell you that.

� “Every request to this service …”
– SCA tells you everything you need to know.

© 2010 IBM Corporation

Building a smarter planet

46

The problem with the missing stuff

� Without this information, nothing works.
– That’s a big problem.

�� SCA solves this problem in an elegant way. SCA solves this problem in an elegant way.
– The details we just mentioned are handled by the SCA runtime.

– Those details can be changed without any changes to the client application or the
service.

© 2010 IBM Corporation

Building a smarter planet

47

Agenda

� A brief history of SOA
� Why SCA makes life simpler
� Composing and assembling SCA applications
� Code and other details
� Service Data Objects
� Resources

© 2010 IBM Corporation

Building a smarter planet

48

Service Data Objects

� SDO gives you a single API to a wide variety of data sources.
� You and I as developers focus on CRUD operations, we don’t know or

care what the data source actually is.
– Relational database

– XML database or XML file

– EJB
– Web service

– JCA

© 2010 IBM Corporation

Building a smarter planet

49

A disconnected interface to many kinds of data sources

Client Data Access
Service

RDB

XML
DB

EJB

Web
service

JCA

Data object
Data graph

Change summary

JDBC

XPath/
XQuery

Local

XML/HTTP

CCI/
Proprietary

© 2010 IBM Corporation

Building a smarter planet

50

Accessing data in SDO

� I have some data.
� I use the data wherever and however it’s stored (RDBMS, XML file, LDAP,

etc.)
� I use the most convenient language for CRUD operations on the data

(SQL, XQuery, modified XPath, etc.)

© 2010 IBM Corporation

Building a smarter planet

51

Service Message Object

ServiceMessageObject

headers context body

SMOHeader

JMSHeader

SOAPHeader correlation transient shared

� Mediation primitives process messages as SMOs

� The SMO is an extension of the Business Object (BO) structure

� It contains: context, message headers, fault details, an array of properties and payload
information

© 2010 IBM Corporation

Building a smarter planet

52

Service Message Object API
� Accessible by API (com.ibm.websphere.sibx.smo.*)

ServiceMessageObject

headers context body

SMOHeader

JMSHeader

SOAPHeader correlation transient shared

ServiceMessageObject

context

transient

ServiceMessageObject smo = (ServiceMessageObject)a_ type;

DataObject context = smo.getContext()

DataObject transient = context.getTransientContext();

© 2010 IBM Corporation

Building a smarter planet

53

SMO – some Java APIs

import com.ibm.websphere.sibx.smobo.ContextType;

import com.ibm.websphere.sibx.smobo.HeadersType;

import commonj.sdo.DataObject;

public DataObject execute(DataObject a_type) {

ContextType context = (ContextType) a_type.get("/co ntext");

HeadersType headers = (HeadersType) a_type.get("/he aders");

DataObject body = (DataObject) a_type.get("/body");

return a_type;

}

© 2010 IBM Corporation

Building a smarter planet

54
54

Open Service Component Architecture (Open SCA)

An open, emerging standard programming model
for assembling flexible SOA business solutions

from diverse, reusable service enabled IT assets

RAD 7.5.2+
SCA Tools

WAS 7 SCA
Feature Pack

Develop interfaces
and implementations.
Compose and Wire.
Bindings and Intents.

Define, install and run
contributions on

WebSphere
Application Server.

© 2010 IBM Corporation

Building a smarter planet

55

Agenda

� A brief history of SOA
� Why SCA makes life simpler
� Composing and assembling SCA applications
� Code and other details
� Service Data Objects
� Resources

© 2010 IBM Corporation

Building a smarter planet

56

Resources

� The home of everything related to SCA and SDO is osoa.org .
– From here you can find the specs, white papers and tutorials.

� The OSOA’s work is moving to OASIS. For more information on the Open CSA project, visit
oasis-opencsa.org .

� If you’d like to get involved in the standardization effort, a call for participation has recently
been issued.

� The oasis-opencsa.org/specifications page is another great way to find the
specifications and other technical resources.

© 2010 IBM Corporation

Building a smarter planet

57

Books

� Get Ben Margolis’ book SOA for the
Business Developer: Concepts, BPEL
and SCA .

� As of August 2007, this is the best book on
SCA. It covers both the architecture and
the technical details.

� Many of the best minds in the SCA world
had a hand in this book.

� ISBN 1-58347-065-4

© 2010 IBM Corporation

Building a smarter planet

58

developer Works articles

� An overview of Service Component Architecture (2 parts):
– ibm.com/developerworks/webservices/library/ ws-soa- scadev1/ and .../ws-soa-

scadev2/

� Building SOA solutions with SCA (4 parts):
– ibm.com/developerworks/websphere/techjournal/0510_b rent/0510_brent.html

� Java SCA invocation styles:
– ibm.com/developerworks/webservices/library/ ws-soa- scajava/

� Using PHP’s SCA and SDO extensions:
– ibm.com/developerworks/webservices/library/ ws-soa- scasdo/

© 2010 IBM Corporation

Building a smarter planet

59

developer Works articles

� Introduction to Service Data Objects:
– ibm.com/developerworks/java/library/j-sdo/

� Build a Web service client with JSF and SDO (Flash demo):
– ibm.com/developerworks/offers/lp/demos/ summary/jsf sdo.html/

� SDO 2.0: Create and read an XML document based on a n XML Schema:
– ibm.com/developerworks/webservices/library/ ws-sdox mlschema/

� More articles on SCA and SDO are coming all the time.

