

Testing Java EE applications

Karel Piwko
JBoss WFK QA

November 2010

Testing Java EE applications | Karel Piwko2

Outline

Testing applications
 Why do we test applications?
 How do we test applications?

Testing Java EE applications
 Problems
 Useful tools
 Testing Java EE the JBoss way

Testing Java EE applications | Karel Piwko3

Why do we test applications?

 Developers tend to see their application often as a
perfect piece of code

Testing Java EE applications | Karel Piwko4

Why do we test applications?

 But often...

Testing Java EE applications | Karel Piwko5

Why do we test applications?

 Last fix was a two-liner...

Testing Java EE applications | Karel Piwko6

Why do we test applications?

 Ensure the software contains the least bugs possible
 Verification vs. validation

 complies with specifications and conditions specified in a
development phase

 accomplishes expected requirements

 Sooner means cheaper

Testing Java EE applications | Karel Piwko7

How do we test applications?

 Test approach
 white box testing
 black box testing
 gray box testing

 Test type
 code analysis
 unit test
 integration test
 functional test
 system test

Testing Java EE applications | Karel Piwko8

White box testing

 Tests internal structure of the application
 branching, control flow, data flow

 Usually unit level

 Drawback
 can't test code which is not written

Testing Java EE applications | Karel Piwko9

White box testing

Testing Java EE applications | Karel Piwko10

Black box testing

 Internal structure of the application not known or not
required

 Specification and requirements are used to validate
functional behavior

 Usually integration or functional level

 Drawback
 results can be influenced by state of the black-box

component

Testing Java EE applications | Karel Piwko11

Black box testing

GET /index.jsp

black-box

<html>...

Does application
welcome page
contain our logo?

yes /no

Testing Java EE applications | Karel Piwko12

Code analysis

 Code verification
 Static analysis

 type analysis, bug pattern searching
 Dynamic analysis

 code coverage
 debuggers, profilers

 Formal methods
 based on mathematical theories
 full automation, soundness, completeness, termination

Testing Java EE applications | Karel Piwko13

Code coverage

 Determine how much of the code is tested
=> use the information to add test cases

 Tool: EMMA, Cobertura
 branch, live, method, class, package coverage reports

 Unit versus integration tests
 generally the possible coverage result will decrease with test

level
 test coverage results can be misleading if we sum different

levels

Testing Java EE applications | Karel Piwko14

Unit tests

 Tests individual units of source code in isolation
 enforces code style
 stubs and mock objects

 Usually created by programmers
 test driven development possible

 Can run in an IDE
 The granularity of unit matters
 It is difficult to cover all execution paths of the

application

Testing Java EE applications | Karel Piwko15

Unit test granularity

We coupled two units together!

Testing Java EE applications | Karel Piwko16

Unit test granularity

 Solution
 Decouple contracts and its implementation (constructor)
 Provide better interface for Quest

We cannot easily find out what happened inside!

Testing Java EE applications | Karel Piwko17

Integration and functional tests

 Tests groups of verified units together
 Complex
 Cannot be easily run in an IDE

 Continuous integration testing
 run unit and integration tests after each modification
 version control system (SVN, Git, Hq, ...)
 automation of the process (Hudson)

=> feature and nightly builds

Testing Java EE applications | Karel Piwko18

System tests

 Compliance of the system to its specified requirements
 Smoke tests

 Verification of the system before performance tests
 Load tests

 Behavior under load
 Stress tests

 Behavior under load beyond usual expectations
 Soak tests

 Behavior with a long period of the time

Testing Java EE applications | Karel Piwko19

Testing Java EE applications

 Problems
 Java EE applications are complex, thus it is difficult to isolate

components
 application server (JBoss AS, GlassFish, WebSphere, ...)
 communication (JMS, HornetQ, ...)
 UI (web based - JSF, JSP, RichFaces, ...)
 database layer (JPA, Hibernate, ...)
 ...

 Testing is highly time consuming, not enjoyable and hard to
be done properly

=> Leads to even more stubbing, mocking and
innovative approaches

Testing Java EE applications | Karel Piwko20

What do we need to test Java EE applications?

 Build tool
 Maven, Ant, Ivy, Gradle

 Test framework
 TestNG, JUnit

 Mock framework
 Mockito, jMock, JMockit, EasyMock

 UI testing frameworks
 Selenium, WebDriver, JSFUnit, Ajocado, HTMLUnit

... and lot of others

Testing Java EE applications | Karel Piwko21

Testing Java EE the JBoss way

 Goal
 make active mocks easier to use
 configure applications to use test data sources
 deal with classpath isolation in container
 create/deploy application archive
 handle “too many frameworks involved” problem

=> give developers tools to make Java EE testing fun
again

Testing Java EE applications | Karel Piwko22

ShrinkWrap

 Simple API to assemble
archives like JARs, WARs and EARs
 allows building integration bits directly in the code
 keeps the isolation in test execution

 Used by Arquillian internally

http://community.jboss.org/wiki/Shrinkwrap
Skip the Build!

http://community.jboss.org/wiki/Shrinkwrap

Testing Java EE applications | Karel Piwko23

ShrinkWrap

 How to build WAR in application?

 Many other ways how to include files in an Archive
 by package, class name, file, stream, zip

Testing Java EE applications | Karel Piwko24

ShrinkWrap extensions

 ShrinkWrap dependencies
 Resolves dependencies from Maven repositories
 Can reuse information in POM file to reduce verbosity

Testing Java EE applications | Karel Piwko25

Arquillian

 Brings you the way to write
integration tests in a same way as you do for unit tests
 manages lifecycle of a container
 bundles and deploys test archive
 enriches test classes
 captures test results and

 Does not bind a build to the test, configuration is kept
externally

Arquillian makes integration testing a breeze!

Testing Java EE applications | Karel Piwko26

Arquillian

 Can be used within multiple build tools, containers and
test frameworks, specialized on EE testing

 Expendable via SPI interface

Testing Java EE applications | Karel Piwko27

Arquillian and @Inject (In-container testing)

Testing Java EE applications | Karel Piwko28

Arquillian and @EJB (In-container testing)

Testing Java EE applications | Karel Piwko29

Arquillian As-Client Testing (Out of container)

Testing Java EE applications | Karel Piwko30

Questions?

kpiwko@redhat.com | www.redhat.com

	Snímek 1
	Snímek 2
	Snímek 3
	Snímek 4
	Snímek 5
	Snímek 6
	Snímek 7
	Snímek 8
	Snímek 9
	Snímek 10
	Snímek 11
	Snímek 12
	Snímek 13
	Snímek 14
	Snímek 15
	Snímek 16
	Snímek 17
	Snímek 18
	Snímek 19
	Snímek 20
	Snímek 21
	Snímek 22
	Snímek 23
	Snímek 24
	Snímek 25
	Snímek 26
	Snímek 27
	Snímek 28
	Snímek 29
	Snímek 30

