
Programování ve Windows
Cvičení 2 – Aplikace a Procesy

Andrea Číková

Martin Osovský

2

Windows Processes
• What is a process?

– Represents an instance of a running program
• you create a process to run a program
• starting an application creates a process

– Process defined by:
• Address space
• Resources (e.g. open handles)
• Security profile (token)

• Every process starts with one thread
– First thread executes the program’s “main”

function
• Can create other threads in the same process
• Can create additional processes

Per-process

address space

Systemwide Address
Space

Thread

Thread

Thread

3

Processes & Threads
Internal Data Structures

Process
Object

Handle Table

VAD VAD VAD

object

object

Virtual Address Space Descriptors

Access Token

Thread Thread Thread . . .
Access Token

See kernel debugger
commands:

dt (see next slide)
!process
!thread
!token
!handle
!object

4

Per-Process Data
• Each process has its own…

– Virtual address space (including program code, global
storage, heap storage, threads’ stacks)

– processes cannot corrupt each other’s address space
by mistake

– Working set (physical memory “owned” by the
process)

– Access token (includes security identifiers)
– Handle table for Windows kernel objects
– Environment strings
– Command line
– These are common to all threads in the process, but

separate and protected between processes

5

Why Do Processes Exit?
(or Terminate?)

• Normal: Application decides to exit
(ExitProcess)

– Usually due to a request from the UI

– or: C RTL does ExitProcess when primary
thread function (main, WinMain, etc.)
returns to caller

• this forces TerminateThread on the
process’s remaining threads

• or, any thread in the process can do an
explicit ExitProcess

• Orderly exit requested from the desktop
(ExitProcess)

– e.g. “End Task” from Task Manager “Tasks”
tab

– Task Manager sends a WM_CLOSE
message to the window’s message loop…

– …which should do an ExitProcess (or
equivalent) on itself

• Forced termination (TerminateProcess)

– if no response to “End Task” in five
seconds, Task Manager presents End
Program dialog (which does a
TerminateProcess)

– or: “End Process” from Task Manager
Processes tab

• Unhandled exception

– Covered in Unit 4.3 (Process and Thread
Internals)

6

Process APIs
• CreateProcess

• OpenProcess

• GetCurrentProcessId - returns a global ID

• GetCurrentProcess - returns a handle

• ExitProcess

• TerminateProcess - no DLL notification

• Get/SetProcessShutdownParameters

• GetExitCodeProcess

• GetProcessTimes

• GetStartupInfo

7

Process Creation

• No parent/child relation in Win32

• CreateProcess() – new process with primary thread

BOOL CreateProcess(
LPCSTR lpApplicationName,
LPSTR lpCommandLine,
LPSECURITY_ATTRIBUTES lpProcessAttributes,
LPSECURITY_ATTRIBUTES lpThreadAttributes,
BOOL bInheritHandles,
DWORD dwCreationFlags,
LPVOID lpEnvironment,
LPCSTR lpCurrentDirectory,
LPSTARTUPINFO lpStartupInfo,
LPPROCESS_INFORMATION lpProcessInformation)

8

typedef struct _PROCESS_INFORMATION {
HANDLE hProcess;
HANDLE hThread;
DWORD dwProcessId;
DWORD dwThreadId;

} PROCESS_INFORMATION;

Parameters

• fdwCreate:

– CREATE_SUSPENDED, DETACHED_PROCESS, CREATE_NEW_CONSOLE,
CREATE_NEW_PROCESS_GROUP

• lpStartupInfo:

– Main window appearance

– Parent‘s info: GetStartupInfo

– hStdIn, hStdOut, hStdErr fields for I/O redirection

• lpProcessInformation:

– Ptr to handle & ID
of new proc/thread

9

UNIX & Win32 comparison

• Windows API has no equivalent to fork()

• CreateProcess() similar to fork()/exec()

• UNIX $PATH vs. lpCommandLine argument

– Win32 searches in dir of curr. Proc. Image; in curr. Dir.;

in Windows system dir. (GetSystemDirectory); in Windows dir.

(GetWindowsDirectory); in dir. Given in PATH

• Windows API has no parent/child relations for processes

• No UNIX process groups in Windows API

– Limited form: group = processes to receive a console event

