
OpenSSL

What is it?
OpenSSL is an application that is able to provide (by setting parameters on the
command line) a set of cryptographic functions (hash functions, symmetric and
asymmetric encryption, CA); at the same time OpenSSL can be used as a
cryptographic library in our own applications. As the name suggests, originally the
library offered primarily the SSL protocol support. This functionality has been offered
up to now, but the library is offering much wider portfolio of cryptographic functions
nowadays.

Address, version, license
OpenSSL is downloadable in the form of source code at the URL
http://www.openssl.org. The binary form is part of many operating systems or can be
downloaded from other source (use Google). OpenSSL can be compiled under many
operating systems including MS Windows and UNIX systems. The authors are Eric
A. Young and Tim J. Hudson. The license is better (more permittable) than GPL, the
OpenSSL license is close to the Apache license and permits both noncommercial
and commercial use AND MODIFICATION. Currently the latest version is 1.0.0.a and
0.9.8o, some time ago there used to be two the versions of the library – the „engine”
version (which included support of cryptographic HW devices) and the non-engine
version, today all the versions include the HW device support automatically.

Documentation
Documentation of the OpenSSL program is fairly good and is available in the form of
man pages (directory openssl/doc/apps), documentation of the API of the library is
not so good, some functions are sufficiently documented (openssl/doc/crypto, for SSL
API it’s openssl/doc/ssl), but many functions remain undocumented and for a correct
use the inspiration in the source codes of particular modules of the program
(openssl/apps) or header files (openssl/include/openssl) is necessary.

Advantages/Disadvantages
The advantages of OpenSSL include good licensing terms (commercial use of
modified code is permitted), availability of source codes, platform independence and
wide functionality. On the other hand the disadvantages include poor documentation,
and poor code quality (“hacks”) in some parts of the library. The library also does not
support all latest crypto standards (like RSA-PSS in certificates, latest CMS format).

Program
The functionality offered by the OpenSSL program (command line) is divided into
following modules (further info on parameters „openssl module help”):

o asn1parse - ASN.1 parsing tool
o ca - sample minimal CA application
o crl2pkcs7 - Create a PKCS#7 structure from a CRL and certificates.
o crl - CRL utility
o dgst, md5, md4, md2, sha1, sha, mdc2, ripemd160 - message digests
o dhparam - DH parameter manipulation and generation
o dsa - DSA key processing

http://www.openssl.org/

o dsaparam - DSA parameter manipulation and generation
o ec - EC key processing
o ecparam - EC parameter manipulation and generation
o enc - symmetric cipher routines
o gendsa - generate a DSA private key from a set of parameters
o genrsa - generate an RSA private key
o ocsp - Online Certificate Status Protocol utility
o passwd - compute password hashes
o pkcs7 - PKCS#7 utility
o pkcs8 - PKCS#8 format private key conversion tool
o pkcs12 - PKCS#12 file utility
o rand - generate pseudo-random bytes
o req - PKCS#10 certificate request and certificate generating utility.
o rsa - RSA key processing tool
o rsautl - RSA utility
o s_client - SSL/TLS client program
o s_server - SSL/TLS server program
o sess_id - SSL/TLS session handling utility
o smime - S/MIME utility
o speed - test library performance
o spkac - SPKAC printing and generating utility
o verify - Utility to verify certificates.
o x509 - Certificate display and signing utility
o x509v3_config - X509 V3 certificate extension configuration format

OpenSSL supports algorithms RC4, RC2, DES3, DES, CAST, BLOWFISH, AES, (to
get the full list of modes use „openssl list-cipher-commands“), MD2, MD4, MD5,
RMD160, SHA, SHA1, RSA, DSS, DH (see openssl ciphers -v).

Usage of the program
Let’s look at one of the typical uses of the OpenSSL program i.e. at the certificate
requesting, signing and revoking (CRL generation).

1. Generate the RSA key of the CA
o openssl genrsa -out ca.key 2048

2. Creation of the self-signed certificate of the CA
o openssl req -new -x509 -days 365 -key ca.key -out ca.crt [-md5]

[-sha1] [-sha256] [-sha224] [-sha384] [sha512]
3. Generate RSA key of a user (e.g. server)

o openssl genrsa -out server.key 2048
4. Generate the certificate request

o openssl req -new -key server.key -out server.csr
5. Certificate signature

o openssl ca -cert ca.crt -in server.csr -keyfile ca.key -days
365 –out server.crt

o this command requires a specific directory structure, therefore we better
use sign.sh script from the mod-ssl package (directory pkg.contrib) and
we comment the deletion of the ca.config file at the end of the script.

o ./sign.sh server.csr
6. Prepare the PKCS#12 file (certificate plus the private key)

o openssl pkcs12 -export -out server.p12 -in server.crt -inkey
server.key

7. Issue the CRL (it’s empty now)
o openssl ca -gencrl -config ca.config -keyfile ca.key -cert

ca.crt -out ca1.crl [-md md5/sha1/sha224/...]
8. Revoke the user’s certificate

o openssl ca -config ca.config -revoke server.crt -keyfile ca.key
-cert ca.crt

9. Issue a new CRL
o openssl ca -gencrl -config ca.config -keyfile ca.key -cert

ca.crt -out ca2.crl
10. Let’s examine the CRLs

o openssl crl -in ca1.crl -noout -text
o openssl crl -in ca2.crl -noout -text

Next we can focus on the symmetric encryption:

1. file encryption
o openssl enc -aes-256-cbc -salt -in file.txt -out file.enc

2. file decryption
o openssl enc -d -aes-256-cbc -in file.enc

Library
The OpenSSL library consists of two parts: libeay and ssleay. The library can be
linked statically or dynamically. The library is written in C and although can be used
from any other programming language by default only the C API is provided (i.e.
header files for includes).

In Windows we add libraries libeay32.lib and ssleay32.lib to our project
(Project/Properties; Linker/Input/Additional Dependencies); if dynamic linking is used
two dll files (libeay32.dll a ssleay32.dll) must be accessible for the application. Under
UNIX systems we link -lssl –lcrypto and include <openssl/crypto.h> and other header
files (depends on which parts of the library we need – the names of the header files
are intuitive).

For I/O operations the OpenSSL provides a general interface (so called “bio”), which
facilitates the use of I/O, makes the I/O independent on the storage type (memory
buffer, file etc.) and by using filters (which can be chained) it is easily possible to
cryptographically process data (e.g. by symmetric encryption).

The example processes a memory buffer by signing it digitally and encrypting it
symmetrically. The result is stored in a file, the file is subsequently read, the data is
decrypted and the digital signature is verified.

// header file for OpenSSL library
#include <openssl/crypto.h>
#include <openssl/x509.h>
#include <openssl/pkcs12.h>
#include <openssl/pkcs7.h>

// can be undefined in older versions of OpenSSL (otherwise in pkcs7.h)
#define PKCS7_NOCRL 0x2000

// reads a certificate and a private key from PKCS#12 file
// (in this case the file cannot be protected by password)

void load_pkcs12(BIO *in, EVP_PKEY **pkey, X509 **cert, STACK_OF(X509)
**ca)
{
 PKCS12 *p12;

 p12 = d2i_PKCS12_bio(in, NULL);
 if (p12 == NULL) …
 if (!PKCS12_verify_mac(p12, "", 0) && !PKCS12_verify_mac(p12, NULD,0))…
 int ret = PKCS12_parse(p12, "", pkey, cert, ca);
 if(p12)PKCS12_free(p12);
 if(!ret)…
}

int main()
{
// initialize library
CRYPTO_malloc_init();
ERR_load_crypto_strings();
OpenSSL_add_all_algorithms();
ERR_load_OBJ_strings();

// read the private key and corresponding certificate
X509 *signer=NULL;
EVP_PKEY *key = NULL;

BIO *pkcs12file = BIO_new_file("klic.p12", "rb");
load_pkcs12(pkcs12file,&key,&signer, NULL);
BIO_free(pkcs12file);

// fill in the data
struct data
{
char name[100], surname[100];
unsigned char minutiae[512];
} record1;

strcpy(record1.name,"Magda");

// sign and encrypt
BIO *in_record=BIO_new_mem_buf((void *)&record1, sizeof(struct data));
BIO *out_signed = BIO_new_file("signed_and_encrypted_file.txt", "wb");
PKCS7 *p7 = PKCS7_sign(signer, key, NULL, in_record, PKCS7_BINARY);

BIO *encipher = BIO_new(BIO_f_cipher());
BIO *out_encrypted = BIO_push(encipher,out_signed);
BIO_set_cipher(out_encrypted,EVP_aes_128_cbc(),(unsigned
char*)"12345678ABCDEFGH",(unsigned char*)"00000000",1);

i2d_PKCS7_bio(out_encrypted, p7);
BIO_flush(out_encrypted);

BIO_free(in_record);
BIO_free_all(out_encrypted);

// decrypt and verify signature
X509_STORE *store = X509_STORE_new();
X509_LOOKUP *lookup=X509_STORE_add_lookup(store,X509_LOOKUP_hash_dir());
X509_LOOKUP_add_dir(lookup,"root",X509_FILETYPE_PEM);
STACK_OF(X509) *othercerts = sk_X509_new_null();

sk_X509_push(othercerts, signer);

BIO *p7_in = BIO_new_file("signed_and_encrypted_file.txt", "rb");
BIO *decipher = BIO_new(BIO_f_cipher());
BIO_set_cipher(decipher,EVP_aes_128_cbc(),(unsigned
char*)"12345678ABCDEFGH",(unsigned char*)"00000000",0);
p7_in = BIO_push(decipher,p7_in);

BIO *data_out = BIO_new(BIO_s_mem());

PKCS7 *read_p7 = d2i_PKCS7_bio(p7_in, NULL);

if(PKCS7_verify(read_p7,othercerts,store,NULL,data_out,
PKCS7_NOCRL|PKCS7_BINARY))
printf("Signature verified\n");
else
printf("Signature verification failed\n");

BIO_free_all(p7_in);

struct data *record2;
int length = BIO_get_mem_data(data_out, &record2);
if(length!=sizeof(struct data))
 printf("Size of data does not match\n");

printf("The data is '%s'\n",record2->name);

BIO_free(data_out);
return 0;
}

For digital signatures we need to have a PKCS#12 file with the private key and the
certificate, the result is stored in the file “signed_and_encrypted_file.txt”. The
symmetric encryption is done by a fixed encryption key and initialization vector. To
verify the signature successfully we need a subdirectory “root” with a structure of
trusted root certificates (in this case PEM format is required) with names matching
the hash of certificate subjects (openssl x509 -hash) and extension .0 (or higher
numbers in the case of name hash collision).

Assignments

1. How do you obtain the SHA-1 hash of a file by using the openssl program?
[describe the command line parameters] {2}

2. Create a program (in C) that generates a 2048 bit RSA key. [Enclose the
source code] {4} (use function RSA_generate_key)

3. Create a program (in C) that connects to a POP3s server and outputs the
server headers (certificate does not have to be verified). [Enclose the source
code] {4} (use SSL_new, SSL_connect, SSL_read)

