
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300

Sun Microsystems, Inc.

Java Card 2.1.2 Off-Card
Verifier

White Paper

Sun Confidential Beta Release
Revision 1.0
January 31, 2001

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303

U.S.A. All rights reserved. Use is subject to License terms.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this

product. In particular, and without limitation, these intellectual property rights may include one

or more of the U.S. patents listed at http://www.sun.com/patents and one or more additional

patents or pending patent applications in the U.S. and other countries.

This product is distributed under licenses restricting its use, copying, distribution, and

decompilation. No part of this product may be reproduced in any form by any means without

prior written authorization of Sun and its licensors, if any.

Sun, Sun Microsystems, the Sun logo, Java, Java Card, SunDocs and SunExpress are trademarks

or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries. Third-party

software, including font technology, is copyrighted and licensed from Sun suppliers.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License

Terms and Conditions.

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, Californie 94303

Etats-Unis. Tous droits reserves. Distribue-é par des licences qui en restreignent l'utilisation.

Sun Microsystems, Inc. a les droits de propriete intellectuels relatants la technologie incorporate

dans ce produit. En particulier, et sans la limitation, ces droits de proprieteéintellectuels peuvent

inclure un ou plus des brevets americains numores http://www.sun.com/patents et un ou les

brevets plus supplementaires ou les applications de brevet en attente dans les Etats-Unis et les

autres pays.

Ce produit ou document est protegeé par un copyright et distribue avec des licences qui en

restreignent l'utilisation, la copie, la distribution, et la decompilation. Aucune partie de ce produit

ou document ne peut etre reproduite sous aucune forme, par quelque moyen que ce soit, sans

l'autorisation prealable et écrite de Sun et de ses bailleurs de licence, s'il y en a.

Sun, Sun Microsystems, le logo Sun, Java, Java Card, SunDocs et SunExpress sont des marques

de fabrique ou des marques deposees de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres

pays. Le logiciel detenu par des tiers, et qui comprend la technologie relative aux polices de

caracteres, est protegé par un copyright et licencié par des fournisseurs de Sun.

L'accord du gouvernement americain est requis avant l'exportation du produit.

Contents

1. Java CardTM Off-Card Verifier 1

Introduction 1

Purpose of Off-Card Verification 1

Runtime Verification 2

Remote Verification 3

Limitations of Non-Incremental Remote Verification 4

Incremental Remote Verification 5

CAP File Verification 8

Export File Verification 9

Compatibility Verification 10

Security Considerations 11

2. Byte Code Verification Algorithm 13

Introduction 13

CAP File Format 13

Context of the Algorithm 14

Entry Point 14

Definitions of States 15

Java Virtual Machine State 15

Abstract Interpreter State 15
Contents iii

The Algorithm 16

The simulate method 17

The transition method 17

The enter_state method 18
iv Java Card 2.1.2 Off-Card Verifier • January 31, 2001

1

Java CardTM Off-Card Verifier
Introduction
This paper describes Sun’s Java Card 2.1.2 Off-Card Verifier, Beta Release. The
Off-Card Verifier provides functionality for verifying CAP files and export
files. When applied to the set of CAP files that will reside on a Java Card-
compliant smart card and the set of export files used to construct those CAP
files, the Off-Card Verifier provides the means to assert that the content of the
smart card has been verified.

Verification determines whether CAP and export files conform to the Java
Card 2.1.1 specifications. As such it is an enforcer of the Java Card
interoperability standards. The set of conformance checks provides that such
files do not attempt to compromise the integrity of a Java Card virtual machine
implementation, and hence other applets.

Purpose of Off-Card Verification
As is well known, many of today’s smart cards have extreme size limitations
making it often infeasible to place verifiers onto Java Card-compliant smart
cards. As larger smart cards continue to become cost-effective, the move to on-
card verification will almost certainly occur. Both under today’s circumstances
and as on-card verification becomes available, Off-Card verification can play
an integral role in the construction of secure Java Card-compliant smart cards.
1

1

Off-Card verification provides a means for evaluating CAP and export files in
a desktop environment. Since debugging in a desktop environment is far easier
than in a smart card emulator environment, it is advantageous to determine
whether a CAP or export file is corrupt in a user-friendly environment. In this
way the Off-Card Verifier serves as a gatekeeper, preventing a large set of
complex problems from occurring when debugging on a smart card emulator.

Off-Card verification provides a complete solution for Java Card when
additional security constructs are applied. Security constructs are beyond the
scope of verification and are implementation dependent. These features of Java
Card are described in more detail later in this paper.

Runtime Verification
In a Java virtual machine implementation, a class file is loaded into a runtime
environment, linked, initialized, and executed. Linking includes both
verification and resolution. Verification confirms whether the content of a
class file is structurally valid, while resolution matches symbolic references
in a class file with the referenced items. In Java Card-compliant smart cards,
installing a CAP file is equivalent to loading, resolving, and initializing. The
smart card constitutes a runtime environment. In both platforms while a binary
remains loaded it is maintained securely, preventing invalidation of
verification that may have been performed.

Linking in a Java-compliant runtime environment typically follows an
execution path, although there are many variations on timing. Resolution can
be performed when an executable is verified, just before a reference-type
instruction is executed, or at sometime in between. The common requirement
for each variation is that nothing be executed before it is verified and resolved.

Following an execution path, verification and resolution begins with the entry
method of an applet or application and proceeds into low-level, referenced
libraries. This method can be characterized as top-down. If a referenced item is
not located, resolution fails throwing a ClassNotFoundException or
NoSuchField/MethodException exception. It is required that the full set of
referenced binaries be present.

Figure 1-1 provides an example of this process. In the example the constructor
method in a MyApplet class invokes the constructor method in the Applet
class of the javacard.framework package. The constructor of the Applet
class in turn invokes the constructor method in the Object class in the
java.lang package.
2 Java Card 2.1.2 Off-Card Verifier—January 31, 2001

1

Verification and resolution follows this chain of invocations, examining each
class encountered. Assuming in the example that the constructor of the
MyApplet class is the first element referenced, the process begins by loading
linking (verifying and resolving), and initializing, the MyApplet class. While
examining the constructor of MyApplet, the method invocation of the
javacard.framework.Applet class is encountered. The same process of
loading, linking, and initializing can then be applied to the Applet class. This
process continues until java.lang.Object has been fully examined.

Figure 1-1 Verification Coupled with Execution

Remote Verification
Like runtime linking, verification and resolution that is decoupled from a
runtime environment also has numerous solutions, but all of the solutions have
the same fundamental requirement. Each binary unit must be examined to
determine not only whether it is internally consistent (verified), but also
consistent with the context of other binary units it references (resolved). In the
Java platform, remote verification of a class entails examining the class file
and the set of directly and indirectly referenced class files. In the Java Card

2. verify & execute

3. verify & execute

MyApplet.class

MyApplet()

javacard.framework.Applet.class

Applet()

java.lang.Object.class

Object()

1. verify & execute
Java CardTM Off-Card Verifier—January 31, 2001 3

1

platform, remote verification entails examining both a CAP file and the set of
directly and indirectly referenced CAP files.

Referenced classes and CAP files provide the context in which a respective class
of a CAP file will be executed. Consider an example. A method can be
examined to determine whether it is internally consistent by checking that it
does not contain a branch instruction that attempts to jump outside of the
method, or does not attempt to perform an arithmetic operation on a reference-
type. If the method invokes another method, checks must be performed to
determine whether the parameters passed during the invocation match the
parameters expected by the invoked method, among other things. The
referenced method, which may reside in a different CAP file, provides the
appropriate context.

Limitations of Non-Incremental Remote Verification
One solution for Java Card remote verification is to collect all of the CAP files
that will be installed on a particular Java Card-compliant device and verify
them together. This non-incremental solution has limitations.

This solution does not readily avail itself to incremental installations. If a CAP
file is to be installed on a Java Card-compliant device that has already been
populated with CAP files, the set of resident CAP files must be made available
to an Off-Card Verifier. Since some CAP file installations are expected to occur
post-issuance, this is undesirable.

A further limitation of non-incremental remote verification is potential
disclosure of proprietary functionality. It is often the case that multiple vendors
contribute CAP files that will reside on the same Java Card-compliant device.
Since a CAP file may contain an implementation of a proprietary algorithm, it
may not be desirable to ship the implementation in the form of a CAP file to a
second vendor. Instead it is preferable to place the CAP file onto a smart card
and only publish its Application Programming Interface (API) to a second
vendor.

Finally, non-incremental remote verification is dependent upon particular
implementations of libraries. When a CAP file is installed, an On-Card Installer
confirms whether compatible versions of the CAP files it references are
available on the card. The installer does not confirm whether particular
implementations of the referenced CAP files are available. Off-Card verification
and resolution performed with a particular implementation of a library is
4 Java Card 2.1.2 Off-Card Verifier—January 31, 2001

1

insufficient for affirming that verification and resolution is valid with different
implementations of the same library.

To overcome these limitations, Sun’s Off-Card Verifier implements a more
flexible solution.

Incremental Remote Verification
Sun’s Off-Card Verifier supports incremental verification and resolution of the
set of CAP files that will be installed on a Java Card-compliant device. The unit
of verification is a single CAP file. The context in which a CAP file can be
executed is provided through the Application Programming Interface (API) of
referenced packages as defined in their export files. Resolution is validated
off-card by examining the export files of referenced packages.

An example is shown in Figure 1-2 of an applet package that references a
library package. The CAP file of the applet package is verified and resolved in
conjunction with the export file of a library package. Furthermore, the CAP
file of the library package is verified and resolved in conjunction with its
export file. After both CAP files pass verification and resolution with the
common export file, they are considered to constitute a verified set of binary
units.
Java CardTM Off-Card Verifier—January 31, 2001 5

1

Figure 1-2 export Files Provide Context in CAP file Verification

The use of export files in remote verification renders results equivalent to
those in runtime verification and resolution. At runtime when a method or
other element in a different binary unit is referenced, the referenced binary unit
is loaded, verified, resolved, initialized, and in the case of a method, executed.
In the process of resolution, the features checked are those confirming that the
manner in which the item is referenced matches the declaration of the item. An
example of matching a method invocation with the declared method signature
was described above. When examining an API definition of the referenced
binary unit, sufficient information is available to validate resolution. The
process can stop after this step, assuming that the implementation of the API
has already been determined to be consistent with the API definition.

CAP file
of library

CAP file
of Applet

export file
of library

An applet CAP
file is verified in

conjunction
with the API

definition of a
package it
references A library CAP

file is verified in
conjunction
with the API
definition it

exports
6 Java Card 2.1.2 Off-Card Verifier—January 31, 2001

1

Figure 1-3 Incrementally Establishing a Verified Set of CAP files

Figure 1-3 shows a more detailed example of establishing a verified set of CAP
files. In this example an applet package references the javacard.framework
package, and the javacard.framework package references java.lang.
First, the CAP file of java.lang is verified and resolved in conjunction with
the export file of java.lang. Next, the CAP file of javacard.framework is
verified and resolved in conjunction with the export file of java.lang. This
establishes that javacard.framework and java.lang constitute a verified
set. Verification of the CAP file of the applet package is the same. If the applet
package also references java.lang directly, it is also resolved in conjunction
with the export file of java.lang.

java.lang
CAP

java.lang
exp

applet
CAP

2. Verify binary with
API definition

4. Resolve binay
with API definition

javacard.framework
exp

javacard.framework
CAP

6. Verify binary with
API definition

8. Resolve binay
with API definition

5. Implies
referencing

binary is
verified with

referenced
binary

9. Implies
referencing

binary is
verified with

referenced
binary

1. Verify
binary

3. Verify
binary

7. Verify
binary
Java CardTM Off-Card Verifier—January 31, 2001 7

1

Unlike runtime verification described above, Sun’s remote verification process
begins with low-level libraries. This can be characterized as bottom-up
verification. In the example of Figure 1-3, java.lang is verified first, and in
subsequent verifications, java.lang is not verified again. This is analogous to
the process performed by an optimized Java virtual machine where once
java.lang has been loaded, verified, resolved, and initialized, it is not
examined the succeeding times it is referenced. The same is the case for a Java
Card-compliant device.

A Java Card-enabled device is a secure environment. At present the
specifications do not explicitly support removing or upgrading a referenced
library. Additional security measures, such as the firewall, prevent a library
from being corrupted. Once a verified CAP file has been installed on a Java
Card-compliant device its state cannot be changed. This includes both its
internal state and its context.

Using this process of Off-Card verification and resolution, one can always
assert that the content of a Java Card device is verified. Each library that has
been placed on a card is verified, and subsequent installations are resolved
with the API definitions of the content of the target card. The Java Card On-
Card Installer acts as a marshal in this process. As indicated in the Java Card
2.1.1 Runtime Environment (JCRE) Specification, the On-Card Installer only
accepts a CAP file when the CAP files it references are available and have
versions compatible with the versions of those CAP files used during
preparation.
8 Java Card 2.1.2 Off-Card Verifier—January 31, 2001

1

An important advantage of incremental remote verification using export files
is that the results are implementation independent. Since a referencing
package’s CAP is resolved with the API of a library, it is considered to be
resolved with any implementation of that library. This assertion holds
provided that each implementation of the library has been verified with the
same export file.

CAP File Verification
Figure 1-4 shows the inputs to the Off-Card Verifier when verifying a CAP file.
These include the CAP file, the corresponding export file of the CAP file, and
the export files of the packages the CAP file references. If the CAP file does not
export any items, as is the case of an applet package with no public sharable
interfaces, then a corresponding export file is omitted. The java.lang
package is the only case where export files of referenced packages are
omitted.

Figure 1-4 CAP file Verification

The process of CAP file verification includes three sets of checks: 1) verifying
that a CAP file is internally consistent, 2) verifying that a CAP file is consistent
with its corresponding export file, and 3) verifying that a CAP file is

off-card verifier

export file
of referenced

package

CAP file

export file
of CAP file
Java CardTM Off-Card Verifier—January 31, 2001 9

1

consistent with referenced export files. These checks are not necessarily
performed sequentially. Each is described in general terms below.

Verifying that a CAP file is internally consistent and consistent with in the
context of the referenced export file can be considered as a set of checks
enumerated below.

1. Load: Entails reading a CAP file into the verifier, determining whether all
required components are present and that each conforms to the general
format of components.

2. Parse: Entails parsing each component to confirm that the basic syntax is
correct, and that the values of individual fields are within appropriate
ranges.

3. Link: Entails resolving inter- and intra-component references and
confirming that referenced items are consistent with the references.

4. Verify CAP file Semantics: Entails confirming that class declarations and
hierarchies are consistent with class representations.

5. Verify Byte Codes: Entails verifying each method. The byte code verification
algorithm is described in “Byte Code Verification Algorithm” on page 13.

References in steps 3 through 5 are validated using the type information
provided in the Descriptor Component of the CAP file. Reference to external
items are further resolved by comparing their usage and type information in
the CAP file to their declarations in the export file of the referenced CAP file.

Verifying that a CAP file is consistent with its corresponding export file entails
matching all of the items that are be exported from a CAP file with those
declared in its export file. The two sets must be exactly equal.

Export File Verification
Each export file that is provided to the Off-Card Verifier during CAP file
verification is also verified. Furthermore, the Off-Card Verifier can be invoked
to verify a single export file. The later functionality is provided since export
files play an integral role in both the construction of CAP files by the Java Card
Converter and in Off-Card verification.

Verification of an export file is shallow, meaning that a single export file is
examined at one time. The set of checks performed confirm that it is internally
consistent and in conformance with the Java Card 2.1.1 Virtual Machine
10 Java Card 2.1.2 Off-Card Verifier—January 31, 2001

1

Specification. Verification of the context of an export file is supported
indirectly through CAP file verification.

The classes and interfaces represented in export files contain sufficient
information about their hierarchies to construct a CAP file of a package that
references the package of the export file. When a class in an export file
extends a class defined in another package, some items in the superclass are
represented. These items include the set of superclasses, the set of virtual
methods, and the set of implemented interfaces. Each of these sets must be
consistent with those listed in the export file of the superclass. If an
inconsistency exists between export files it will be detected during CAP file
verification since a CAP file must be consistent with both the export file it
imports and the export file it exports.

Compatibility Verification
CAP files may rely on the accessible interfaces, classes, methods and fields of
other CAP files.

In a widely distributed system, a certain CAP file might be used by a number of
other CAP files. Thus, it is preferred that different versions of this CAP file
should not change its external view. In other words, all the publicly accessible
classes, interfaces, methods and fields should still be accessible in the same
fashion without any changes.

The Off-card verifier can be invoked to check compatibility between two
versions of a package by comparing the respective versions of the export files.
This verification examines whether the Java Card version rules have been
followed. This includes the rules imposed for binary compatibility as defined
in Java Card 2.1.1 Virtual Machine Specification section 4.4, have been followed.
The scenario is shown in Figure 1-5.
Java CardTM Off-Card Verifier—January 31, 2001 11

1

Figure 1-5 Compatibility Verification

Version comparison can only be made between packages that have the same
major version number. This is because a change in the major version number
means there has been a major change in the functionality. Such a change is
considered a binary incompatibility. If the minor versions of the packages
differ by more than one point, it may mean that the versions in between are not
compatible. For example, version 1.1 and 1.9 may be binary-compatible, but 1.7
might not be compatible with 1.9. Therefore, if minor versions differ by more
than one point, an implementation should raise a warning that the versions in
between might not

be compatible. Such incompatibility is possible even if both minor versions are
verified as binary-compatible. If the both the major and the minor versions of
the packages are the same, the API should be checked for identical content.

Security Considerations
Since verification is performed incrementally, it is required that all providers
verify the set of CAP and export files they produce. Consumers of CAP and
export files can add redundancy to the process by performing verification as
well.

Off-Card verification is intended to be performed in a secure manner. Once a
CAP file has passed verification, steps must be taken to help ensure that it is
not corrupted before it is installed on a Java Card. These precautions are

p1.exp
version 1.0

Java Card
Verifier

p1.exp
version 1.1

results
12 Java Card 2.1.2 Off-Card Verifier—January 31, 2001

1

implementation dependent and may range from storing the verified CAP file in
a trusted environment, encrypting the CAP file, signing the CAP file or some
other security measure.

Since export files play an integral role in both the conversion and Off-Card
verification processes, security measures must be applied to them as well.
Precautions must be taken to ensure that an export file is not corrupted
between the time it is created, verified with its corresponding CAP file, used by
a Java Card Converter to create a referencing CAP file, and verified with that
referencing CAP file. If an export file is corrupted after conversion of a
referencing CAP file, verification will fail.
Java CardTM Off-Card Verifier—January 31, 2001 13

1

14 Java Card 2.1.2 Off-Card Verifier—January 31, 2001

2

Byte Code Verification Algorithm
Introduction
This chapter describes the byte code verification algorithm in the Java Card
Off-Card Verifier.

CAP File Format
The Java Card CAP file format is analogous to the Java class file format, with
some notable differences. A CAP file contains a representation of all the classes
defined in a Java package, while a class file contains one Java class.

The information in a CAP file is distributed across a number of individual
components, where each component contains information about one aspect of
the classes in a Java package. For example, a Class component contains
information defining the set of classes in a Java package, and a Method
component contains information defining the set of methods (byte codes) in a
Java package. The information in these components is optimized for the small,
smartcard platform.

Each individual component is stored in a separate file, and all of the
component files are stored in one JAR file. All components have the same
fundamental structure:
13

2

tag – identifies the type of the component

size – indicates the number of bytes in the info[]

info[] – contains the data

The format of the content of an info[] array is specific to a particular
component.

Context of the Algorithm
In the Off-Card Verifier the process of verification consists of two steps:

• for each component, read the data
• for each component, verify the data

When the data of each component is read, it is stored in an info[] array.

When the data in a component is verified, it may be parsed and stored in a set
of data structures that simplify the process of examination. In the case of the
Method component, the byte codes of each method are parsed and stored in an
array of instructions.

Entry Point
The byte code verification is triggered through the verify method of the
MethodComponent class. For byte codes of each method, verify invokes
method_verify, which performs some basic verification checks ensuring that
boundaries, header, and associated exception handlers of the method are valid.
method_verify then invokes the typecheck method in the Checkcode
class. typecheck performs the following:

• parses the byte codes and stores them in an array of instructions.
• verifies static features of each instruction by calling the method

static_check. The static_check method determines whether the
operands of each instruction have appropriate values. For example, an
operand of a branch instruction must contain a jump value to the beginning
of an instruction contained within the method. The set of checks is fairly
straightforward.

• verifies the context of each instruction by calling an abstract interpreter. The
abstract interpreter simulates execution of each instruction, using types of
the data being operated on instead of values. This functionality is
implemented in the AbstrInterp class and is described further below.
14 Java Card 2.1.2 Off-Card Verifier—January 31, 2001

2

Definitions of States
Both an interpreter of a Java virtual machine and the abstract interpreter of the
Off-Card Verifier maintain state information used when executing or verifying
instructions. The elements of the states are described in the sections below.

Java Virtual Machine State

When a Java virtual machine interpreter executes a method, it maintains a
program counter which indicates the location of the instruction being executed.
After an instruction is executed, the program counter is set to the location of
the next instruction that will be executed.

The Java virtual machine also maintains a operand stack and a set of local
variables. Both of these contain values. When an instruction is executed it may
consume (pop) items on the operand stack, and/or place (push) items onto the
operand stack and/or modify the values of local variables.

Finally, the Java virtual machine interpreter also maintains a stack pointer which
points to the top entry on the operand stack. The stack pointer is increased and
decreased as values are pushed onto and popped off of the operand stack.

In summary, the state of the Java virtual machine interpreter just before an
instruction is executed is defined by the following set:

• program counter,
• stack pointer,
• operand stack, and
• local variables.

Abstract Interpreter State

As is the case for all byte code verifiers, the abstract interpreter of the Off-Card
Verifier simulates execution using a program counter, stack pointer, operand
stack, and a set of local variables. However, entries in the operand stack and
local variables contain the type of the value being operated on instead of the
value. For each instruction, the state of the operand stack and local variables
are compared to the type(s) required during execution, and then are updated
according to the operation of the instruction. For example, during simulation
of the int-type add instruction (iadd) the top two entries on the operand
stack must be type int. The iadd instruction is then simulated by popping
Byte Code Verification Algorithm—January 31, 2001 15

2

both of the int-type entries off of the operand stack and pushing an int-type
onto the operand stack.

The abstract interpreter also maintains state information related to subroutines
for each instruction. Subroutines are used to implement finally blocks in
try-catch-finally constructs. At the byte code level, they are implemented
using the jsr and ret instructions. The state information for subroutines is
maintained in a class called Contour. The information is used to match
invocation of (jsr instruction) and return from (ret instruction) a subroutine
and to perform various other checks.

In summary, the state of the abstract interpreter just before an instruction is
executed is defined by the following set:

• program counter,
• stack pointer,
• operand stack,
• local variables, and
• contour.

As each instruction is simulated, it has an associated before-state and after-state.
A before-state contains the state used to locate (via the program counter) an
instruction and to simulate that instruction. An after-state contains the set of
values resulting from simulation of an instruction. While most instructions
have exactly one after-state there are a few exceptions. The return
instructions have a null after-state since execution does not continue in a
method after a return statement. Conditional branch instruction have two
after-states, one for each execution path resulting from each branch.

The Algorithm
The abstract interpreter is defined in a class called AbstrInterp. This class
defines three central methods: simulate, transition and enter_state.
Each are described further below.

The abstract interpreter uses two data structures to record states:
seen_states, and pending_states. seen_states contains the set of states
that have been simulated or are about to be simulated. pending_states
contains the set of states that have not been simulated. The algorithm continues
until there are no more pending states.
16 Java Card 2.1.2 Off-Card Verifier—January 31, 2001

2

The simulate method

The simulate method is the entry point for simulating one method. The
functionality is as follows:

• Initialize seen_states with the empty set.
• Initialize pending_states with the empty set.
• Construct the initial state of the method based on the signature and local

variables defined. Initialize the contour to be empty. Set the program
counter to the first instruction.

• Store the initial state in both seen_states and pending_states. (This is
a call to enter_state described below.)

• While pending_states is not empty:

– Remove a state from pending_states and name it before-state.

– Call transition with before-state.

The transition method

The transition method simulates a single instruction. It receives as a
parameter before-state, and does the following:

• Locate the instruction to be simulated using the program counter of before-
state.

• Simulate the instruction:

– Confirm whether before-state contains the appropriate values in the
operand stack, local variables, and contour.

– Create the operand stack, local variables and contour of the after-state.

• For each instruction that can be executed after this instruction:

– Set the value of program counter of the after-state to that instruction.

– Call enter_state with after-state.

When an instruction is simulated, the Off-Card Verifier must know the
required types on the operand stack and/or local variables of the before-state
and after-state. This is accomplished in one of two ways. When possible the
information is obtained from a table, while for more complex instructions the
information is hard-coded.

The table used in this process is named stack-effect. stack-effect is an
array containing an entry for each instruction. Each entry contains the type(s)
Byte Code Verification Algorithm—January 31, 2001 17

2

of the entries required to be on the operand stack of the before-state and the
type of the entry to be place on the operand stack of the after-state. The syntax
is as follows:

ordered list of before types, null, ordered list of after types, null

Either list may be empty depending upon the instruction. Here are two
examples of entries in the stack-effect table:

sadd: short, short, null, short, null
sconst_0: null, short, null

For instructions that do not modify the operand stack or that operate on a class
type, the entry in the stack-effect table is null. The stack-effect table
is not used when simulating these instructions but instead the required
information is hard-coded.

The enter_state method

The enter_state method receives a state and records it in seen_states
and/or pending_states as appropriate:

• If a state with the same program counter value is not found in
seen_states:

– Add the state in seen_states

– Add the state in pending_states

• If a state with the same program counter value is found in seen_states:

– Compute the (Least Upper Bound) LUB of local variables of the two
states

– If the LUB of the local variables is different than the local variables in
seen_states:

Set the local variables in seen_states to LUB of the local variables

Record that seen_states was changed

– Compute the (Least Upper Bound) LUB of operand stack of the two states

– If the LUB of the operand stack is different than the operand stack in
seen_states:

Set the operand stack in seen_states to LUB of the operand stacks
18 Java Card 2.1.2 Off-Card Verifier—January 31, 2001

2

Record that seen_states was changed

• If seen_states was changed:

– Add the LUB state to pending_states

Determining the LUB of entries in the operand stack and local variable is a
well-known process. If the types of the two corresponding entries are the same,
nothing is done. If the types are not the same, an attempt is made to determine
a general type that applies to both entries. For example, if two classes directly
extend Object their LUB is Object. If class A extends Object and class B extends
A, their LUB is class A.
Byte Code Verification Algorithm—January 31, 2001 19

2

20 Java Card 2.1.2 Off-Card Verifier—January 31, 2001

	Java CardTM Off-Card Verifier
	Introduction
	Purpose of Off-Card Verification
	Runtime Verification
	Remote Verification
	Limitations of Non-Incremental Remote Verification
	Incremental Remote Verification
	CAP File Verification
	Export File Verification
	Compatibility Verification
	Security Considerations

	Byte Code Verification Algorithm
	Introduction
	CAP File Format
	Context of the Algorithm
	Entry Point
	Definitions of States
	Java Virtual Machine State
	Abstract Interpreter State

	The Algorithm
	The simulate method
	The transition method
	The enter_state method

