
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax 650 969-9131

Sun Microsystems, Inc.

Java Card 2.1.2
Development Kit User’s
Guide

For the Binary Release

Revision 1.0
Apr 11, 2001

Copyright © 2001 Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 U.S.A. All rights reserved.

Sun Microsystems, Inc. has intellectual property rights relating to technology embodied in this product. In particular, and
without limitation, these intellectual property rights may include one or more of the U.S. patents listed at
http://www.sun.com/patents and one or more additional patents or pending patent applications in the U.S. and other
countries.

This product is distributed under licenses restricting its use, copying, distribution, and decompilation. No part of this
product may be reproduced in any form by any means without prior written authorization of Sun and its licensors, if any.

Third-party software, including font technology, is copyrighted and licensed from Sun suppliers.

Sun, Sun Microsystems, the Sun logo, Java, Java Card, and Java Card Compatible are trademarks or registered
trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

Federal Acquisitions: Commercial Software - Government Users Subject to Standard License Terms and Conditions.

Copyright 2001 © Sun Microsystems, Inc., 901 San Antonio Road, Palo Alto, California 94303 Etats-Unis. Tous droits
réservés.

Sun Microsystems, Inc. a les droits de propriété intellectuels relatants à la technologie incorporée dans ce produit. En
particulier, et sans la limitation, ces droits de propriété intellectuels peuvent inclure un ou plus des brevets américains
énumérés à http://www.sun.com/patents et un ou les brevets plus supplémentaires ou les applications de brevet en
attente dans les Etats-Unis et les autres pays.

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en restreignent l'utilisation, la
copie, la distribution, et la décompilation. Aucune partie de ce produit ou document ne peut être reproduite sous aucune
forme, par quelque moyen que ce soit, sans l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y en a.

Le logiciel détenu par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un
copyright et licencié par des fournisseurs de Sun.

Sun, Sun Microsystems, le logo Sun, Java, Java Card et Java Card Compatible sont des marques de fabrique ou des
marques déposées de Sun Microsystems, Inc. aux Etats-Unis et dans d'autres pays.

Contents

Preface x

Who Should Use This Book x

Before You Read This Book xi

How This Book Is Organized xi

Related Books xii

What Typographic Changes Mean xiii

1. Introduction to the Java Card Development Kit 1

Mask Production Flow 3

CAP File Flow 4

2. Installation 5

Prerequisites for Installing the Binary Release 5

Installing the Java Card Development Kit Binaries 6

Solaris Installation Procedure 6

Windows Installation Procedure 8

Sample Programs and Demonstrations 9

3. Java Card Samples and Demonstrations 11

Preliminaries 11

Script File for Building Samples 11
Contents iv

Building the Sample Applets 12

The Demonstrations 13

Running scriptgen to Generate Scripts for apdutool 14

Running the Demonstrations 14

4. Using the JCWDE 17

Preliminaries 17

Running the JCWDE Tool 18

5. Using the Converter 19

Java Compiler Options 19

File and Directory Naming Conventions 20

Input Files 20

Output Files 20

Loading Export Files 21

Specifying an Export Map 22

Running the Converter 23

Command Line Arguments 23

Command Line Options 23

Viewing an Export File 25

6. Using the Off-Card Verifier 27

VerifyCap 27

Running VerifyCap 28

VerifyExp 29

Running VerifyExp 30

VerifyRev 31

Running VerifyRev 31

7. Using capgen 33
v Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Command Line for capgen 33

8. Using capdump 35

Command Line for capdump 35

9. Using maskgen 37

Command Line for maskgen 37

10. Using the C-JCRE 41

Highlights of Changes 41

Running the C-JCRE 43

Installer Mask 43

Running the C-JCRE 43

I/O 44

Store Files 45

The Default ROM Mask 46

Internal Operation of the C-JCRE 47

Java Card VM Developers 47

C-JCRE Execution Model 49

C-JCRE Internal Structure 50

11. Using the Installer 53

Overview 53

How to Use Scriptgen 55

Installer Applet AID 55

How to Use the Installer 56

Installer APDU Protocol 59

Protocol Data Unit Types 60

Installer Error Response APDUs 64

A Sample APDU Script 66
Contents vi

Installer Requirements 69

Installer Limitations 69

12. Using the APDUTool 71

Command Line for apdutool 71

apdutool Syntax 72

A. JCA Syntax Example 75

B. Java Card CAP File Debug Component Format 89

Identifying a Debug Component 89

The debug_component Structure 89

The utf8_info Structure 91

The class_debug_info Structure 91

The field_debug_info Structure 92

The method_debug_info Structure 94

The variable_info Structure 96

The line_info Structure 96
vii Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Figures

FIGURE 1-1 Java Card 2.1.2 Tool Architecture 2

FIGURE 1-2 Java Card 2.1.2 Maskgen Tool Architecture 3

FIGURE 1-3 Java Card 2.1.2 CAP Tool Architecture 4

FIGURE 5-1 Calls between packages go through the export files 22

FIGURE 6-1 Verifying a CAP file 28

FIGURE 6-2 Verifying an export file 29

FIGURE 6-3 Verifying binary compatibility of export files 31

FIGURE 10-1 C-JCRE Execution Model 49

FIGURE 10-2 C-JCRE Functional Block Diagram 50

FIGURE 11-1 Installer APDU Transmission Sequence 59
Figures viii

ix Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Preface

Java Card technology combines a subset of the Java programming language with
a runtime environment optimized for smart cards and similar kinds of small-
memory embedded devices. The goal of Java Card technology is to bring many of
the benefits of Java software programming to the resource-constrained world of
smart cards.

The Java Card API is compatible with international standards, such as ISO7816, and
industry-specific standards, such as Europay/Master Card/Visa (EMV).

The Java Card‘ 2.1.2 Development Kit User’s Guide contains information on how to
install and use the Java Card Development Kit tools comprising this 2.1.2 release.

Who Should Use This Book
The Java Card 2.1.2 Development Kit User’s Guide is targeted at developers who are
creating applets using the Java Card 2.1.1 Application Programming Interface, Sun
Microsystems, Inc., and also at developers who are considering creating a vendor-
specific framework based on the Java Card 2.1.1 technology specifications.

Note – Even though this release of the Development Kit is version 2.1.2, the Java
Card technology specifications are unchanged from version 2.1.1.
Preface x

Before You Read This Book
Before reading this guide, you should be familiar with the Java programming
language, object-oriented design, the Java Card technology specifications, and smart
card technology. A good resource for becoming familiar with Java technology and
Java Card technology is the Sun Microsystems, Inc. Web site, located at:
http://java.sun.com.

How This Book Is Organized
Chapter 1, “Introduction to the Java Card Development Kit,” provides an overview
of the Java Card Development Kit and the tools in the kit.

Chapter 2, “Installation,” describes the procedures for installing the tools included
in this release.

Chapter 3, “Java Card Samples and Demonstrations,” shows the suggested
sequence of steps to run the two demonstration masks included with this release.

Chapter 4, “Using the JCWDE,” provides an overview of the Java Card Workstation
Development Environment and details of how to run it.

Chapter 5, “Using the Converter,” provides an overview of the Converter and
details of how to run it.

Chapter 6, “Using the Off-Card Verifier,” provides an overview of the offcard
verifier tool and details of running it.

Chapter 7, “Using capgen,” describes how to use the capgen utility.

Chapter 8, “Using capdump,” describes how to use the capdump utility.

Chapter 9, “Using maskgen,” describes how to use the maskgen utility.

Chapter 10, “Using the C-JCRE,” describes how to use the C-JCRE interpreter.

Chapter 11, “Using the Installer,” describes how to download and create applets
using the installer.

Chapter 12, “Using the APDUTool,” describes using this tool to send APDUs to the
C-JCRE.
xi Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Appendix A, “JCA Syntax Example,” describes the JCA output of the Converter
using a commented example file.

Appendix B, “Java Card CAP File Debug Component Format,” describes the
format for the Java Card Debug custom CAP file component.

Related Books
References to various documents or products are made in this manual. You should
have the following documents available:

■ Java Card 2.1.1 Application Programming Interface, Sun Microsystems, Inc.

■ Java Card 2.1.1 Virtual Machine Specification, Sun Microsystems, Inc.

■ Java Card 2.1.1 Runtime Environment (JCRE) Specification, Sun Microsystems, Inc.

■ Java Card 2.1.2 Off-Card Verifier White Paper, Sun Microsystems, Inc.

■ The Java Programming Language (Java Series), Second Edition by Ken Arnold and
James Golsing. Addison-Wesley, 1998, ISBN 0-201-31006-6.

■ The Java Virtual Machine Specification (Java Series), Second Edition by Tim
Lindholm and Frank Yellin. Addison-Wesley, 1999, ISBN 0-201-43294-3

■ The Java Class Libraries: An Annotated Reference (Java Series) by Patrick Chan and
Rosanna Lee. Addison-Wesley, ISBN: 0201634589

■ ISO 7816 Specification Parts 1-6

You can download the Java Card 2.1.1 specifications from Sun’s web site:
http://java.sun.com/products/javacard
Preface xii

What Typographic Changes Mean
The following table describes the typographic changes used in this book.

TABLE P-1 Typographic Conventions

Typeface or
Symbol Meaning Example

AaBbCc123
or
classes

The names of commands, files,
items of source code, and
directories; on-screen computer
output

Edit your .login file.
Use ls -a to list all files.
machine_name% You have mail.

<AaBbCc123> Command-line placeholder:
replace with a real name or
value

To delete a file, type rm <filename>.

AaBbCc123 Book titles, new words or terms,
or words to be emphasized

Read Chapter 6 in User’s Guide. These
are called class options.
You must be root to do this.
xiii Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

CHAPTER 1

Introduction to the Java Card
Development Kit

The Java Card Development Kit is a suite of tools for designing Java Card
technology-based implementations and for developing applets based on the Java
Card 2.1.1 Application Programming Interface.

Note – Even though this release of the Development Kit is version 2.1.2, the Java
Card technology specifications are unchanged from version 2.1.1. You can download
the Java Card 2.1.1 specifications from Sun’s web site:
http://java.sun.com/products/javacard

FIGURE 1-1 on page 2 shows two main data flows through the Java Card
Development Kit 2.1.2 components. One flow is for mask production. The other is
for CAP file (converted applet) production and installation. Both flows start with
Java source being compiled and input to the Converter. Both flows end with Java
Card bytecode running in a JCRE (Java Card Runtime Environment).

Mask production refers to embedding the Java Card virtual machine, runtime
environment and applets in the read-only memory of a smart card during
manufacture. CAP file production and installation refers to the process of
downloading and installing applets to a smart card after manufacture.

Any implementation of a JCRE contains a Java Card Virtual Machine (VM), the Java
Card Application Programming Interface (API) classes (and industry-specific
extensions), and support services.

In this release, the only JCRE provided is written in the C language (C-JCRE).
1

FIGURE 1-1 Java Card 2.1.2 Tool Architecture

mask production for different platforms

maskgen

off-card installer

frontend VM

JCREs

CAP

x8051asm

C

converter

front end
& core

mask files

class
includes debug info

8051
asm/
linker

C-JCRE

J-JCREload mask
objects

8051-JCRE

*.asm
vm/kernel

C
compiler/

linker

*.c
vm/kernel

binary

binary

JCA

scriptgen apdu toolapdu script

apdu exc
hange

export

export

cap files containing the framework,
JCRE, and applet implementations

export files on which the package
being converted depends

class files to
be converted

MGBE-
8051

MGBE-
C

MGBE-J

capgen

config file
2 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Mask Production Flow
The Converter can convert classes that comprise a Java package to a JCA file. When
producing a mask, maskgen takes a set of JCA files, one for each Java Card package
in the mask, and produces output for incorporation into a mask. The mask generator
is designed with plugable back-ends. When a new Java Card Runtime Environment
(JCRE) is created, a new mask generator back-end (MGBE) is provided that produces
output specific to a target. The output is source code appropriate to that target. For
example, 8051 assembly language for 8051-based hardware, or C language source
code for input to the C-JCRE.

FIGURE 1-2 Java Card 2.1.2 Maskgen Tool Architecture

mask production for different platforms

maskgen

JCREs

x8051asm

Cfront end
& core

mask files

includes debug info

8051
asm/
linker

C-JCRE

J-JCREload mask
objects

8051-JCRE

*.asm
vm/kernel

C
compiler/

linker

*.c
vm/kernel

binary

binary

MGBE-
8051

MGBE-
C

MGBE-J

config file

frontend VM

converter

class

JCA

export

cap files containing the framework,
JCRE, and applet implementations

export files on which the package
being converted depends

class files to
be converted
Chapter 1 Introduction to the Java Card Development Kit 3

CAP File Flow
The capgen tool takes a JCA file as input to produce a CAP file. The Converter can
also take all the classes in a package and convert them into a CAP file directly. Not
shown in the figure is a utility called capdump, which produces a simple ASCII
version of the CAP file to aid in debugging. CAP files are processed by an off-card
installer (scriptgen). This produces an APDU script file as input to the APDUTool,
which then sends APDUs to a JCRE implementation. For more information on the
APDUTool, refer to Chapter 12, “Using the APDUTool.”

FIGURE 1-3 Java Card 2.1.2 CAP Tool Architecture

off-card installer

scriptgen apdu toolapdu script

frontend VM

CAP

converter

class

JCA

export

export

cap files containing the framework,
JCRE, and applet implementations

export files on which the package
being converted depends

class files to
be converted

capgen

JCREs

C-JCRE

J-JCRE

8051-JCRE

apdu exchange
4 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

CHAPTER 2

Installation

This release is provided for Solaris (versions 2.6, 2.7 and 2.8) and for the Microsoft
Windows NT 4.0 (with Service Pack 4) platforms as compressed Zip archives.

Note – Do not overlay a previous release with this release. Instead perform the
installation into a new directory.

Prerequisites for Installing the Binary
Release
1. Install the Java Development Kit (JDK) from http://java.sun.com/j2se/ .

Supported JDK versions are 1.2.2 and 1.3 (the latest).

If you are installing JDK on Solaris, make sure that all the required patches are
installed. To get more information, refer to the product documentation available
at
http://www.sun.com/solaris/java

You must set the environment variable JAVA_HOME before you run any scripts or
batch files. (Refer to “Setting Environment Variables for Solaris” on page 7 or
“Setting Environment Variables for Windows” on page 9.)

2. Obtain javax.comm

The Java Communications API 2.0 contains a package javax.comm, which is
needed to run the Java Card Development Kit. Please visit Sun’s web site at
http://java.sun.com/products/javacomm to obtain the package. Follow the
instructions provided in the file Readme.html to install the package.
5

Installing the Java Card Development
Kit Binaries
Unzip the file provided with this release. To unpack the file, use the appropriate
unzip utility. For Windows, this is Winzip (available from http://
www.winzip.com). For Solaris, the appropriate unzip utility is unzip.

Note – There are separate sections below covering installation for the Windows and
Solaris platforms. If you are a Windows user, to avoid confusion when reading a
Solaris procedure, substitute the \ character for / in paths.

Similarly, for an environment variable such as $JC21_HOME in Solaris (csh), the
Windows equivalent reference would be %JC21_HOME%.

Solaris Installation Procedure
The release is contained in a file named java_card_kit-2_1_2-solsparc.zip .

1. Save the file in a convenient installation location of your choice: for example, in
the directory /javacard.

2. % cd /javacard

3. % unzip java_card_kit-2_1_2-solsparc.zip

4. % ls -F

java_card_kit-2_1_2-solsparc.zip java_card_kit-2_1_2/

5. % cd java_card_kit-2_1_2

6. % pwd

/javacard/java_card_kit-2_1_2

This directory is now the root of the development kit installation. You should set
the environment variable JC21_HOME equal to this directory. (Refer to “Setting
Environment Variables for Solaris” on page 7.)

7. % ls

api21_export_files/ bin/
doc/ lib/
samples/ COPYRIGHT
6 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

README RELEASENOTES

The descriptions of these items are as follows:

Setting Environment Variables for Solaris

Set the environment variable JC21_HOME to the installation directory. For example
(using csh), if you unzipped the release in the directory /javacard:

setenv JC21_HOME /javacard/java_card_kit-2_1_2

Or, if you unzipped the installation into a different directory, define the
environment variable JC21_HOME accordingly.

Next, set the environment variable JAVA_HOME to the directory where you installed
your Java development tools. For example,

setenv JAVA_HOME /usr/java1.3

The following optional path setting will enable you to run the Java Card tools from
any directory.

setenv PATH .:$JC21_HOME/bin:$PATH

We suggest you automate these environment settings:

api21_export_files Directory contains the export files for the Java Card 2.1.1 API
packages.

bin Directory contains all shell scripts for running the tools (such
as the apdutool, capdump, converter and so forth), and the
cref binary executable.

doc Documentation includes the present document, the Java Card
2.1.2 Development Kit User’s Guide, and the Java Card 2.1.2
Off-Card Verifier White Paper.

lib Directory contains all Java jar files required for tools. It also
contains the api21.jar file that is necessary to write Java
Card applets and libraries.

samples Directory contains sample applets and demonstration
programs.

COPYRIGHT Contains the copyright notice for the product.

README,
RELEASENOTES

Contains important information about this release.
Chapter 2 Installation 7

Create a csh script file (named for example javacard_env.cshrc) which includes
the above setenv statements.

Once the script file is created, run it from the command prompt:

% source javacard_env.cshrc

This is useful in running the Java Card Development Kit tools and in running the
samples and demonstrations (refer to Chapter 3, “Java Card Samples and
Demonstrations”).

Windows Installation Procedure
The release is contained in a file named java_card_kit-2_1_2-win.zip .

1. Save the zip file in a convenient installation location of your choice. For example,
the root of the C: drive.

2. C:\> winzip32 java_card_kit-2_1_2-win.zip

In the Winzip dialog, choose Select All and Extract from the Actions menu. Enter
C:\ into the Extract To field to unzip the contents of the zip file into that
directory. (For more information, refer to the Winzip documentation.)

3. C:\> cd java_card_kit-2_1_2

This directory is now the root of the development kit installation. You should set
the environment variable JC21_HOME equal to this directory. (Refer to “Setting
Environment Variables for Windows,” below.)

4. C:\java_card_kit-2_1_2> dir /w

[api21_export_files] [bin]
[doc] [lib]
[samples] COPYRIGHT.txt
README.txt RELEASENOTES.txt

The descriptions of these items are as follows:

api21_export_files Directory contains the export files for the Java Card 2.1.1 API
packages.

bin Directory contains all batch files for running the tools (such as
the apdutool, capdump, the converter and so forth), and
the cref binary executable.

doc Documentation includes the present document, the Java Card
2.1.2 Development Kit User’s Guide, and the Java Card 2.1.2
Off-Card Verifier White Paper.
8 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Setting Environment Variables for Windows

Set the environment variable JC21_HOME to the installation directory. For example, if
you unzipped the release in the root directory of the C volume:

set JC21_HOME=c:\java_card_kit-2_1_2

Or, if you unzipped the installation into a different directory, define the
environment variable JC21_HOME accordingly.

Next, set the environment variable JAVA_HOME to the directory where you installed
your Java development tools. For example,

set JAVA_HOME=d:\java\jdk13

The following optional path setting will enable you to run the Java Card tools from
any directory.

set PATH=%JC21_HOME%\bin;%PATH%

We suggest you automate these environment settings. Create a batch file (named for
example javacard_env.bat) which includes the above set statements:

@echo off
set JC21_HOME=C:\java_card_kit-2_1_2
set JAVA_HOME=d:\java\jdk13
set PATH=.;%JC21_HOME%\bin;%PATH%

Sample Programs and Demonstrations
All samples are contained in the samples directory.

Solaris:

1. % cd $JC21_HOME/samples

lib Directory contains all Java jar files required for tools. It also
contains the api21.jar file that is necessary to write Java
Card applets and libraries.

samples Directory contains sample applets and demonstration
programs.

COPYRIGHT.txt Contains the copyright notice for the product.

README.txt,
RELEASENOTES.txt

Contains important information about this release.
Chapter 2 Installation 9

2. % ls

build_samples classes/
src/

Windows:

1. C:> cd %JC21_HOME%\samples

2. C:\java_card_kit-2_1_2\samples> dir /w

build_samples.bat [classes]
[src]

The descriptions of these items are given in the table below.

Note – If you are a Windows user, substitute the \ character for / in the paths.

classes Directory contains pre-built sample java applet classes.

build_samples or
build_samples.bat

A script or batch file to automate building samples only.

src Directory contains the sources for the sample applets that
belong to the packages com.sun.javacard.samples.*.

src/demo Directory contains the demonstration masks, APDU scripts and
expected APDU outputs for the demonstrations.
10 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

CHAPTER 3

Java Card Samples and
Demonstrations

Five sample applets are provided with this release, which illustrate the use of the
Java Card API. They are: HelloWorld, JavaPurse, JavaLoyalty, NullApp and
Wallet. Also included is SampleLibrary. The sources and associated class files are
also provided.

Included with this release are three demonstration programs. These illustrate very
important scenarios of applet masking and post-manufacture installation.

Preliminaries
Prior to using the demonstrations, you must first build the sample programs.

Script File for Building Samples
A script file is provided to build the samples. To understand what is going on
behind the scenes, it is very instructive to look at the script.

The script file is $JC21_HOME/samples/build_samples (for a Solaris installation)
or %JC21_HOME%\samples\build_samples.bat (for a Windows installation).

Running the Script

The command line syntax for the script is:
11

build_samples [options]

The following table describes possible values for options:

Setting Environment Variables

The build_samples script uses the environment variables JC21_HOME and
JAVA_HOME. To correctly set these environment variables, refer to “Setting
Environment Variables for Solaris” on page 7 or “Setting Environment Variables for
Windows” on page 9.

Building the Sample Applets
Run the script without parameters to build the samples:

build_samples

Note – This chapter details the steps taken by the script, but you can run the
commands yourself if you choose.

Preparing

1. A classes directory is created as a peer to src under the samples directory.

2. Class files from api21.jar are extracted into this classes directory. This is
necessary, since the Converter cannot read JAR files.

3. The Java Card 2.1.1 API export files are also copied to the same structure under
classes.

Value of options Description

[no options] Builds all targets.

-help Prints out a help message and exits.

-clean Removes all files produced by the build script.
12 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Compiling the Sample Applets

The next step is to compile the Java sources for the sample applets. For example,
from the samples directory, issue the following command:

javac -g src/com/sun/javacard/samples/HelloWorld/*.java

Converting the Class Files

The next step is to convert the Java class files.

For each class file, a corresponding configuration file is copied to the classes
directory. This file, which has an .opt extension, is fed to the converter tool. (The
.opt file is necessary because some operating systems don’t support many
command-line option arguments.)

For example, a configuration file contains items such as:

-out EXP JCA CAP
-exportpath .
-applet 0xa0:0x0:0x0:0x0:0x62:0x3:0x1:0xc:0x1:0x1
com.sun.javacard.samples.HelloWorld.HelloWorld
com.sun.javacard.samples.HelloWorld
0xa0:0x0:0x0:0x0:0x62:0x3:0x1:0xc:0x1 1.0

In this example, the Converter will output three kinds of files: export (*.exp), CAP
(*.cap) and JCA (*.jca) files.

Refer to the “Convert samples” section of the script file to see the detailed converter
tool steps.

For more information about the converter tool, refer to Chapter 5, “Using the
Converter.”

The Demonstrations
There are two demonstration masks and three demonstration programs in the demo
directory.

The first demonstration (demo1) contains the installer, the JavaPurse, JavaLoyalty,
Wallet and SampleLibrary packages as part of the ROM mask image.

The second demonstration (demo2) contains only the installer in the mask image and
downloads four CAP files into the simulator (SampleLibrary, JavaPurse,
JavaLoyalty, and Wallet).
Chapter 3 Java Card Samples and Demonstrations 13

The third demonstration (demo3) is designed to run after successful completion of
demo2, and illustrates the second time power-up of an already initialized mask.

Files in the demo Directory

The files provided are:

Running scriptgen to Generate Scripts for
apdutool
Generate script files for apdutool using the scriptgen tool. This step must be done
for each package to be downloaded. For example:

scriptgen -o JavaLoyalty.scr ../../classes/com/sun/javacard/samples/
JavaLoyalty/javacard/JavaLoyalty.cap

As it creates a script file for each package, the build script concatenates the output to
demo2.scr. At the end, the build script adds the APDU script file AppletTest.scr.
This APDU script is included in the mask to exercise the other applets, so that you
can see each of them invoked when the simulation is run.

Running the Demonstrations
demo1 runs in the JCWDE.

demo2 runs in the C-JCRE simulator. This is because the JCWDE is not able to
support downloading of CAP files.

demo3 runs in the C-JCRE simulator, due to the need to restore the virtual machine
state after the initial run.

jcwde.app lists all the applets (and their IDs) to be loaded into the
simulated mask

*.in files mask configuration files

*.cfg file platform-specific configuration file

*.scr files demonstration apdutool script files

*.expected.out files files for comparison with apdutool output when the demos are
run
14 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Running demo1

1. The command is:

jcwde jcwde.app

2. In a separate command window, run apdutool, using the following command:

apdutool -nobanner -noatr demo1.scr > demo1.scr.jcwde.out

If the run is successful, the apdutool log, demo1.scr.jcwde.out, is identical to the
file demo1.scr.expected.out.

Running demo2

1. Run cref using the following command:

cref -o demoee

2. In a separate command window, run apdutool, using the following command:

apdutool -nobanner -noatr demo2.scr > demo2.scr.cref.out

If the run is successful, the apdutool log, demo2.scr.cref.out should be identical
to the file demo2.scr.expected.out.

After cref completes executing, an EEPROM image is stored in the file demoee. (For
more information, refer to Chapter 10, “Using the C-JCRE.”)

Note – The APDU script for demo2 contains commands for package installation. The
file demo2.scr.expected.out included in this release is correct for JDK 1.3. If you
are running JDK 1.2.2, expect a different bytecode sequence.

Running demo3

demo3 should be run after demo2.

1. Run cref using the following command:

cref -i demoee

cref will restore the EEPROM image from the file demoee. (For more information,
refer to Chapter 10, “Using the C-JCRE.”)

2. In a separate command window, run apdutool, using the following command:

apdutool -nobanner -noatr demo3.scr > demo3.scr.cref.out
Chapter 3 Java Card Samples and Demonstrations 15

If the run is successful, the apdutool log, demo3.scr.cref.out should be identical
to the file demo3.scr.expected.out.
16 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

CHAPTER 4

Using the JCWDE

The Java Card Workstation Development Environment (JCWDE) tool allows the
simulated running of a Java Card applet as if it were masked in ROM. It emulates
the card environment.

The JCWDE tool executable consists of the jcwde.jar, api21.jar, and apduio.jar
files. The main class for JCWDE is com.sun.javacard.jcwde.Main.

A sample batch and shell script are provided to start JCWDE.

Preliminaries
Make sure that the JC21_HOME environment variable is set, as detailed in “Setting
Environment Variables for Solaris” on page 7 or “Setting Environment Variables for
Windows” on page 9. Also, the CLASSPATH environment variable needs to be set to
reflect the location of the classfiles for the applets to be simulated.

Configuring the Applets in the JCWDE Mask

The applets to be configured in the mask during JCWDE simulation need to be listed
in a configuration file that is passed to the JCWDE as a command line argument. In
this release, the sample applets are listed in a configuration file called jcwde.app.
Each entry in this file contains the name of the applet class, and its associated AID.

The configuration file contains one line per installed applet. Each line is a white
space(s) separated {CLASS NAME, AID} pair, where CLASS NAME is the fully
qualified Java name of the class defining the applet, and AID is an Application
17

Identifier for the applet class used to uniquely identify the applet. AID may be a
string or hexadecimal representation in form 0xXX[:0xXX]1. Note that AID should be
5 to 16 bytes in length.

For example:

com.sun.javacard.samples.wallet.Wallet 0xa0:0x0:0x0:0x0:0x62:0x3:0x1:0xc:0x6:0x1

Note – The installer applet must be listed first in the JCWDE configuration file.

If you write your own applets for public distribution, you should obtain an AID for
each of your packages and applets according to the directions in §4.2 of the Java
Card 2.1.1 Virtual Machine Specification, Sun Microsystems, Inc., and in ISO 7816
Specification Parts 1-6.

Running the JCWDE Tool
The general format of the command to run the JCWDE is as follows:

jcwde [-p port] [-version] [-nobanner] <config-file>

where:

the flag -p allows you to specify a TCP/IP port other than the default port;

the flag -version prints the JCWDE version number;

the flag -nobanner suppresses all banner messages;

the flag -help prints out a help message; and

<config-file> is the configuration file described above.

When started, JCWDE starts listening to APDUs in T=0 format on the TCP/IP port
specified by the –p port parameter. The default port is 9025.

1. Repeat the construct :0xXX as many times as necessary.
18 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

CHAPTER 5

Using the Converter

The Converter loads and processes class files that make up a Java package. The
Converter outputs are a CAP file and an export file.

Another Converter output is a JCA (Java Card Assembly) file, which you then input
to capgen to produce a CAP file. A JCA file is a human-readable ASCII file to aid
testing and debugging. If you are converting code that is intended for the ROM of a
smart card, and especially if it contains native methods, you will input the JCA to
maskgen to produce a mask file. (For more information on using maskgen, refer to
Chapter 9, “Using maskgen.”)

Java Compiler Options
The class files should be compiled with -g option of the JDK Java compiler
command line. Don’t use -O option.

This is because the Converter determines the local variable types by checking the
LocalVariableTable attribute within the class file. This attribute is generated in
the class file only if the -g option is used at the Java compiler command line.

The -O option is not recommended at the Java compiler command line, for two
reasons. This option is intended to optimize execution speed rather than minimize
memory usage. The latter is much more important in Java Card technology. Also, if
the -O option is used, the LocalVariableTable attribute won’t be generated even if
the -g option is used.
19

File and Directory Naming Conventions
This section details the names of input and output files for the Converter, and gives
the correct location for these files. With some exceptions, the Converter follows the
Java naming conventions for default directories for input and output files. These
naming conventions are also in accordance with the definitions in § 4.1 of the Java
Card 2.1.1 Virtual Machine Specification, Sun Microsystems, Inc.

Input Files
The files input to the Converter are Java class files named with the .class suffix.
Generally, there are several class files making up a package. All the class files for a
package must be located in the same directory under the root directory, following
the Java naming conventions. The root directory can be set from the command line
using the -classdir option. If this option is not specified, the root directory
defaults to be the directory from which the user invoked the Converter.

Suppose, for example, you wish to convert the package java.lang. If you use the
-classdir flag to specify the root directory as C:\mywork, the command line will be:

converter -classdir C:\mywork java.lang <package_aid>
<package_version>

where <package_aid> is the application ID of the package, and
<package_version> is the user-defined version of the package.

The Converter will look for all class files in the java.lang package in the directory
C:\mywork\java\lang

Output Files
The name of the CAP file, export file, and the JCA file must be the last portion of the
package specification followed by the extensions .cap, .exp, and .jca,
respectively.

By default, the files output from the Converter are written to a directory called
javacard, a subdirectory of the input package's directory.

In the above example, the output files are written by default to the directory
C:\mywork\java\lang\javacard

The -d flag allows you to specify a different root directory for output.
20 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

In the above example, if you use the -d flag to specify the root directory for output
to be C:\myoutput, the Converter will write the output files to the directory
C:\myoutput\java\lang\javacard.

When generating a CAP file, the Converter creates a JCA file in the output directory
as an intermediate result. If the JCA file is not a desired output, then omit the
- out JCA. The Converter then deletes the JCA file at the end of the conversion.

debug.msk Output File

If you select the -mask and -debug options, the file debug.msk is created in the
same directory as the other output files. (Refer to “Command Line Options” on
page 23.)

Loading Export Files
A Java Card export file contains the public API linking information (public classes,
public and protected methods and fields) of classes in an entire package. The
Unicode string names of classes, methods and fields are assigned unique numeric
tokens.

Export files are not used directly on a device that implements a Java Card virtual
machine. However, the information in an export file is critical to the operation of the
virtual machine on a device. An export file is produced by the Converter when a
package is converted. This package's export file can be used later to convert another
package that imports classes from the first package. Information in the export file is
included in the CAP file of the second package, then is used on the device to link the
contents of the second package to items imported from the first package.

During the conversion, when the code in the currently converted package references
a different package, the Converter loads the export file of the different package.

FIGURE 5-1 on page 22 illustrates how an applet package is linked with the
java.lang, the javacard.framework and javacard.security packages via their
export files.

You can use the -exportpath command option to specify the locations of export
files. The path consists of a list of root directories in which the Converter looks for
export files. Export files must be named as the last portion of the package name
followed by the extension .exp. Export files are located in a subdirectory called
javacard, following the Java Card directory naming convention.
Chapter 5 Using the Converter 21

For example, to load the export file of the package java.lang, if you have specified
-exportpath as c:\myexportfiles, the Converter searches the directory
c:\myexportfiles\java\lang\javacard for the export file lang.exp.

FIGURE 5-1 Calls between packages go through the export files

Specifying an Export Map
You can request the Converter to convert a package using the tokens in the pre-
defined export file of the package that is being converted. Use the -exportmap
command option to this.

There are two distinct cases when using the -exportmap flag: when the minor
version of the package is the same as the version given in the export file (this case is
called package reimplementation) and when the minor version increases (package
upgrading). During the package reimplementation the API of the package
(exportable classes, interfaces, fields and methods) must remain exactly the same.
During the package upgrade, changes that do not break binary compatibility with
preexisting packages are allowed (See “Binary Compatibility” in Section 4.4 of the
Java Card 2.1.1 Virtual Machine Specification).

export file

Applet Calls to methods and
references to fields

java.lang javacard.framework javacard.security

export files contain
mappings to tokens

export file export file
22 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

For example, if you have developed a package and would like to reimplement a
method (package reimplementation) or upgrade the package by adding new API
elements (new exportable classes or new public or protected methods or fields to
already existing exportable classes), you must use the -exportmap option to
preserve binary compatibility with already existing packages that use your package.

The Converter loads the pre-defined export file of the currently-converted package
the same way it loads other export files.

Running the Converter
Command line usage of the Converter is:

converter [options] <package_name> <package_aid>
<major_version>.<minor_version>

The file to invoke the Converter is a shell script (converter) on the UNIX® platform,
and a batch file (converter.bat) on the Microsoft Windows NT platform.

Command Line Arguments
The arguments to this command line are:

<package_name>

the fully-qualified name of the package to convert.

<package_aid>

5 to 16 decimal, hex or octal numbers separated by colons. Each of the numbers
must be byte-length.

<major_version>.<minor_version>

user-defined version of the package.

Command Line Options
The options in this command line are:

-classdir <the root directory of the class hierarchy>
Chapter 5 Using the Converter 23

Set the root directory where the Converter will look for classes.

If this option is not specified, the Converter uses the current user directory as the
root.

-i

Instruct the Converter to support the 32-bit integer type.

-exportpath <List of directories>

These are the root directories in which the Converter will look for export files.
The separator character for multiple paths is platform dependent. It is semicolon
(;) for the Microsoft Windows NT platform and colon (:) for the UNIX® platform.

If this option is not specified, the Converter sets the exportpath to the Java
classpath.

-exportmap

Use the token mapping from the pre-defined export file of the package being
converted. The Converter will look for the export file in the exportpath.

-applet <AID> <class_name>

Set the default applet AID and the name of the class that defines the applet.

If the package contains multiple applet classes, this option must be specified for
each class.

-d <the root directory for output>

Set the root directory for output.

-out [CAP] [EXP] [JCA]

Tell the Converter to output the CAP file, and/or the export file, and/or the JCA
file.

By default (if this option is not specified), the Converter outputs a CAP file and
an export file.

-V, -version

Print the Converter version string.

-v, -verbose

Enable verbose output.

-mask
24 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Indicates this package is for a mask, so restrictions on native methods are relaxed.
This option must be specified if a mask is to be generated out of this package
using maskgen.

Note – The -out [CAP] and -mask options cannot be used together.

-help

Print help message.

-nowarn

Instruct the Converter not to report warning messages.

-nobanner

Suppress all banner messages.

-debug

Generates the debug component described in Appendix B, “Java Card CAP File
Debug Component Format.” If the -mask option is also specified, the file
debug.msk will be generated in the output directory.

Command Configuration File

You could also include all the command line arguments and options in a
configuration file. The syntax to specify a configuration file is:

converter –config <configuration file name>

The <configuration file name> argument contains the file path and file name of
the configuration file.

Viewing an Export File
The exp2text tool is provided to allow you to view any binary export file in
human-readable (ASCII) format.

exp2text [options] <package_name>

Where options include:

-classdir <input root directory>
Chapter 5 Using the Converter 25

specify the root directory where the program looks for the export file.

-d <output root directory>

specify the root directory for output.

-help

Print help message.
26 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

CHAPTER 6

Using the Off-Card Verifier

Off-Card verification provides a means for evaluating CAP and export files in a
desktop environment. When applied to the set of CAP files that will reside on a Java
Card-compliant smart card and the set of export files used to construct those CAP
files, the off-card verifier provides the means to assert that the content of the smart
card has been verified.

The Off-Card verifier is a combination of three tools: VerifyCap, VerifyExp and
VerifyRev, which provide functionality for verifying CAP files, export files and the
binary compatibility between two versions of a package respectively. The following
sections explain the usage of each tool.

VerifyCap
VerifyCap is used to verify a CAP file within the context of the export file(s) it
imports, and the export file, if any, that it exports. This verification confirms whether
a CAP file is internally consistent, as defined in Chapter 6 of the Java Card 2.1.1
Virtual Machine Specification, and consistent with a context in which it may reside in
a Java Card enabled device. The context is represented by various export file(s). Each
individual export file is also verified as a single unit. The scenario is shown in the
figure below. p2.exp is optional, since p2.cap may not export any of its elements.
27

FIGURE 6-1 Verifying a CAP file

Running VerifyCap
Command line usage is:

verifycap [options] <export files> <CAP file>

The file to invoke VerifyCap is a shell script (verifycap) on the UNIX® platform
and a batch file (verifycap.bat) on the Microsoft Windows NT platform.

Command Line Arguments

The arguments to this command line are:

<export files>

A list of export files of the packages that this CAP file uses.

<CAP file>

Name of the CAP file to be verified.

Java Card
Verifier

p1.exp

resultsp2.cap

p2.exp
28 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Command Line Options

The options in this command line are:

-help

Print help message.

-nobanner

Suppress banner message.

-package <pkg>

Set the name of the package to be verified.

-verbose

Turn on verbose mode.

-version

Print version number and exit.

VerifyExp
VerifyExp is used to verify an export file as a single unit. This verification is
“shallow,” examining only the content of a single export file, not including export
files of packages referenced by the package of the export file. The verification checks
determine whether an export file is internally consistent and viable as defined in
Chapter 5 of the Java Card 2.1.1 Virtual Machine Specification. This scenario is shown
in the figure below.

FIGURE 6-2 Verifying an export file

Java Card
Verifier

p1.exp results
Chapter 6 Using the Off-Card Verifier 29

Running VerifyExp
Command line usage is:

verifyexp [options] <export_file>

The file to invoke VerifyExp is a shell script (verifyexp) on the UNIX® platform
and a batch file (verifyexp.bat) on the Microsoft Windows NT platform.

Command Line Arguments

The arguments to this command line are:

<export_file>

Fully qualified path and name of the export file

Command Line Options

The options in this command line are:

-help

Print help message.

-nobanner

Suppress banner message.

-verbose

Turn on verbose mode.

-version

Print version number and exit.
30 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

VerifyRev
VerifyRev checks for binary compatibility between revisions of a package by
comparing the respective export files. This verification examines whether the Java
Card version rules, including those imposed for binary compatibility as defined in
Section 4.4 of the Java Card 2.1.1 Virtual Machine Specification, have been followed.

FIGURE 6-3 Verifying binary compatibility of export files

Running VerifyRev
Command line usage is:

 verifyrev [options] <1st export_file> <2nd export_file>

The file to invoke VerifyRev is a shell script (verifyrev) on the UNIX® platform
and a batch file (verifyrev.bat) on the Microsoft Windows NT platform.

Command Line Arguments

The arguments to this command line are:

<1st export_file>
<2nd export_file>

Where <1st export_file> and <2nd export_file> are the fully qualified paths
of the two different export files to be compared.

The second export file name must be the same as the first one with a different path.
For example,

Java Card
Verifier

p1.exp
version 1.0

results

p1.exp
version 1.1
Chapter 6 Using the Off-Card Verifier 31

verifyrev d:\testing\old\crypto.exp d:\testing\new\crypto.exp

Command Line Options

The options in this command line are:

-help

Print help message.

-nobanner

Suppress banner message.

-verbose

Turn on verbose mode.

-version

Print version number and exit.
32 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

CHAPTER 7

Using capgen

capgen is a backend to the Converter. It produces a CAP file from a JCA file.

Command Line for capgen
The file to invoke capgen is a shell script (capgen) on the UNIX® platform, and a
batch file (capgen.bat) on the Microsoft Windows NT platform.

Command line syntax for capgen is:

capgen [-options] <infile>

where <infile> is the JCA file.

The option values and their actions are:

The flag -o allows you to specify an output file. If the output file is not specified
with the -o flag, output defaults to the file a.jar in the current directory.

The flag -version outputs the version information.

The flag -help displays online documentation for this command.

The flag -nobanner suppresses all banner messages.
33

34 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

CHAPTER 8

Using capdump

capdump produces an ASCII representation of a CAP file.

Command Line for capdump
The file to invoke capdump is a shell script (capdump) on the UNIX® platform, and a
batch file (capdump.bat) on the Microsoft Windows NT platform.

Command line usage of capdump is:

capdump <infile>

where <infile> is the CAP file.

Output from this command is always written to standard output.

There are no command line options to capdump.
35

36 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

CHAPTER 9

Using maskgen

maskgen produces a mask file from a set of JCA files produced by the Converter. The
format of the output mask file is targeted to a specific platform. The plugins that
produce each different maskgen output format are called generators. The supported
generators are cref, which supports the C-JCRE, and size, which reports size
statistics for the mask. Other generators, which are not supported in this release,
include jref, which supports the J-JCRE and a51, which supports the Keil A51
assembly language interpreter.

Command Line for maskgen
The file to invoke maskgen is a shell script (maskgen) on the UNIX® platform, and a
batch file (maskgen.bat) on the Microsoft Windows NT platform. Usage is:

maskgen [options] <generator> <infile> [<infile> ...]

Arguments

<generator>

Specifies the generator, the plugin that formats the output for a specific target
platform. The generators are:

a51 - output for the Keil A51 assembly language interpreter (not supported for
this release).

cref - output for the C-JCRE interpreter.

jref - output for the J-JCRE interpreter (not supported for this release).

size - outputs mask size statistics.
37

<infile> [<infile> ...]

Any number of .jca files can be input to maskgen as a whitespace-separated list.
On the Microsoft Windows platform, there is a limit of nine positional arguments
to a command. If you need more than nine arguments on a command line, create
a text file containing a list of .jca file names, and prepend an “@” character to
the name of this text file as an argument to maskgen.

Options

-c <config file>

The -c flag specifies a configuration file,1 which allows you to tailor the format of
the output file produced by the specified generator (for example, assembly
language or C code). A configuration file for the cref generator is provided in the
demo directory.

-debuginfo

This option allows you to generate debug information for the generated mask.

-o <outfile>

This option allows you to specify the file name output from maskgen. If the
output file is not specified, output defaults to a.out.

-version

Prints the version number of maskgen, then exits.

-help

Displays online documentation for maskgen.

-nobanner

Suppresses all banner messages.

1. The configuration file contains target-specific information. For example, the
following line maps a native Java Card method to a native label:

javacard/framework/JCSystem/beginTransaction()V=beginTransaction_NM
38 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Example

An example of containing command line arguments in a text file is:

maskgen -o mask.c cref @args.txt

where the contents of the file args.txt is:

first.jca second.jca third.jca
Chapter 9 Using maskgen 39

40 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

CHAPTER 10

Using the C-JCRE

The C language Java Card Runtime Environment (C-JCRE) is the Java Card reference
implementation. It is a simulator that can be built with a ROM mask, much like a
real Java Card implementation. It has the ability to simulate persistent memory
(EEPROM), and to save and restore the contents of EEPROM to and from disk files.
Applets can be installed in the C-JCRE. The C-JCRE performs I/O via a socket
interface, using the TLP-224 protocol, simulating a Java Card in a card reader (CAD).

Highlights of Changes
1. Not dependent on third party APIs.

The implementation has eliminated the use of OCAPI . Note that there is no
equivalent to OCAPI. There is no new code that directly replaces OCAPI.

Benefits include:

■ size reduction
■ performance improvement due to fewer layers
■ easier to debug

2. Implementation is very portable.

The C-JCRE is written in C, which is a very portable language. For Win32 users, it
can be built using MinGW.

The code has been restructured to allow building for multiple targets, including
Win32, Solaris, and 8051. A shell script (for Solaris) and a batch file (for Win32) are
provided. There is greater use of macros, which facilitates porting to platforms with
different memory addressing schemes (such as support for XRAM), different native
stack sizes, or different endianness. The intent of these changes is to make it easier to
port the implementation.
41

3. Optimized stream interface to EEPROM for writes.

This version implements a stream interface for writing to EEPROM.

This interface allows the low-level (hardware-dependent) layer to use RAM to buffer
writes until a full EEPROM page is completed, before writing it to EEPROM. This
avoids additional page writes in some cases.

4. Transactions

An “optimistic” transaction scheme is used. The original data is logged to a
transaction buffer. New data is written in-place. In case of an abort or failure, the
transaction buffer is used to reliably restore the original data. The optimized (non-
atomic) EEPROM stream interface is used, with resulting performance improvement.

5. I/O

The existing socket-based TLP-224 I/O scheme is supported for Win32 and UNIX
versions.

6. API

It implements the 2.1.1 Java Card specifications.

7. Improved runtime tracing

The runtime stack trace has been made more readable. There are additional trace
options.

8. Simpler store file model.

This version does not create or use a default store file.
42 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Running the C-JCRE

Installer Mask
The C-JCRE is supplied as a prebuilt executable, cref.exe for Windows, and cref
for Solaris. The Java Card Development Kit Installer, the Java Card Virtual Machine
interpreter and Java Card framework are built into the mask. It can be used as-is to
load and run applets. Other than the Installer, it does not contain any applets.

The C-JCRE requires no other files to start proper interpretation and execution of the
mask image’s Java Card bytecode.

Running the C-JCRE
Command line usage of C-JCRE is the same on Win32 and Solaris. The syntax is:

cref [options]

The output of the simulation is logged to standard output, which can be redirected
to any desired file. The output stream can range from nothing, to very verbose,
depending on the command line options selected.

Command-line Options

The options are case-sensitive.

-b

Dump a Byte Code Histogram at the end of the execution.

-e

Display the program counter and the stack when an exception occurs.

-h, -help

Print out a help screen.

-i <input filename>

Use the named file to initialize EEPROM.
Chapter 10 Using the C-JCRE 43

-n

Do a trace display of the native methods that are invoked.

-nobanner

Do not print program banner.

-nomeminfo

Do not print memory statistics at the start of execution.

-o <output filename>

Save the EEPROM contents to the named file.

-s

Silent mode. Do not create any output unless followed by other flag options.

-t

Do a line-by-line trace display of the mask’s execution.

-version

Print only the program’s version number. Do not execute.

-z

Print the resource consumption statistics at termination.

I/O
The C-JCRE performs I/O via a socket interface, using the TLP-224 protocol,
simulating a Java Card in a card reader (CAD). Use apdutool to read script files and
send APDUs via a socket to the C-JCRE. See “apdutool Syntax” on page 72 for
details. Note that you can have the C-JCRE running on one workstation and run
apdutool on another workstation.
44 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Store Files
The user can save the state of EEPROM contents, so the state can be loaded in a later
invocation of the C-JCRE. This is made possible by specifying a store file to save the
EEPROM contents. The -i and -o option flags are used to manipulate store files at
the cref command line.

The -i flag allows the user to specify the initial store file from which to initialize the
EEPROM portion of the virtual machine before JCVM bytecode execution
commences.

The -o flag, followed by a filename, allows the user to save the updated EEPROM
portion of the virtual machine to the named file, overwriting any existing file of the
same name.

The commit of EEPROM memory changes during the execution of the C-JCRE is not
affected by the -o flag. There is no conflict between the use of either or both of these
flags with the other option flags. Neither standard nor error output is written to the
output file named with the -o option.

Note – The previous (2.1.1) version of the C-JCRE would create or input a store file
with the default name of store. That file was created if it did not exist. No output
file was created. This default behavior was sometimes misleading. The current
version does not use or create a default store file.

Use of the -i and -o option flags permits a variety of useful execution scenarios. For
example:

Input Store File
C:\>cref -i e2save

The C-JCRE attempts to initialize simulated EEPROM from the store file named
e2save. No output file will be created.

Output Store File
C:\>cref -o e2save

The C-JCRE writes EEPROM data to the file e2save. The file will be created if it
does not currently exist. Any existing store file named e2save is overwritten.
Chapter 10 Using the C-JCRE 45

Same Input and Output Store File
C:\>cref -i e2save -o e2save

The C-JCRE attempts to initialize simulated EEPROM from the store file named
e2save, and during processing, saves the contents of EEPROM to e2save,
overwriting the contents. This behavior is much like a real Java Card in that the
contents of EEPROM is persistent.

Different Input and Output Store Files
C:\>cref -i e2save_in -o e2save_out

The C-JCRE attempts to initialize simulated EEPROM from the store file named
e2save_in, and during C-JCRE processing, writes EEPROM updates to a store file
named e2save_out. The output file will be created if it does not exist. Using
different names for input and output store files eliminates much potential confusion.
This command line can be executed multiple times with the same results.

Note – Be careful naming your store files. The C-JCRE will overwrite an existing file
specified as an output store file. This can, of course, cause a problem if there is
already an identically named file with a different purpose in the same directory.

The Default ROM Mask
The C-JCRE executable supplied in this release (cref for Solaris and cref.exe for
Windows) contains the demo2.c mask (renamed as mask.c). demo2.c is an example
mask that contains only the Installer applet. See Chapter 3, “Java Card Samples and
Demonstrations” for details about demo2.
46 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Internal Operation of the C-JCRE
C-JCRE is targeted towards Java Card Virtual Machine developers.

Java Card VM Developers
VM developers are usually concerned with the development of the infrastructure of
the Java Card technology, and running mask code within this infrastructure. They
need to implement the following:

■ bytecode routines

■ bytecode support routines

■ runtime data structures

■ i/o routines

■ native method support routines

■ applet and package tables

■ token tables

■ firewall support

Each of these components is implemented in the C-JCRE.

Java Card VM Byte Code Routines

The Java Card VM byte codes described in the Java Card 2.1.1 Virtual Machine
Specification, Sun Microsystems, Inc. are all represented by a single 8 bit value. The
byte code fetched by the interpreter is used to index into an array of function
pointers. For the reference implementation, there are 185 valid opcodes, numbering
from 0 through 184 consecutively. The impdep1 and impdep2 opcodes, numbered
254 and 255 respectively, are not implemented. Byte code values above 184 cause an
internal error to occur within the C-JCRE.

Byte code support routines

Where appropriate, several byte code support routines are used to facilitate common
processing requirements shared by some of the byte code routines. The trade off is a
minor speed degradation in exchange for major space savings. The routines are
platform independent, and are not intended for use as an API by developers
modifying the Reference Implementation source code. Excluded from this grouping
Chapter 10 Using the C-JCRE 47

are any and all platform-specific and all Hardware Abstraction Layer support
routines. While some of these routines serve as support routines to the byte code
routine implementations, they do constitute part of the internal API, and require
platform-dependent implementations.

Run Time Data Structures

The internal run time data structures are influenced by both the CAP file design and
the JCVM byte code definitions that are specified in the Java Card 2.1.1 Virtual
Machine Specification, Sun Microsystems, Inc.. The need to conserve both EEPROM
and RAM space requires a comprehensive and concise set of structures.

EEPROM Write Optimization Using Streams

The C-JCRE implements a stream interface for EEPROM writes. This is a useful
technique for dealing with the problem of EEPROM being organized into pages. The
following is an example of how E2 streams are used:

/* Initialize the Array’s Object Header fields */
 /* Global = 0; JCRE_EntryPointObj = 0; TransientMode = 0;

TransientObj = 0; */
 /* Don’t mind atomicity: this block is not yet accessible */
 E2P_stream_open(arrayref);
 E2P_stream_write_u8(Header_ArrayType_Reference);
 E2P_stream_write_u8(cc);
 E2P_stream_write_u16(Object_PA_CLASS_OFFSET);
 E2P_stream_write_u16(count);

 /* Initialize the Array’s Object Header fields */
 E2P_stream_write_u16(eltclass);
 /* init contents to zeros */
 E2P_stream_fill_array(count * SIZE_REF, 0);
 E2P_stream_flush();

Note the advantages of the stream interface:

■ It avoids constructing a struct in RAM and copying it.
■ It avoids calculating address offsets to construct a struct.
■ It permits optimization of the EE writes.
48 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

C-JCRE Execution Model
The execution model of the C-JCRE interpreter is shown in FIGURE 10-1. The
interpreter supports the following functionality:

■ emulation of a processor stack

■ support of EEPROM heap for post-issuance applets

■ support of a RAM heap

■ processing of smart card APDUs

Shown as input at the right edge of the diagram is the bytecode stream to be
executed.

FIGURE 10-1 C-JCRE Execution Model

C-Reference Java Card VM bytecode stream

EEPROM and RAM Heap16-Bit Stack APDU Source

S
to

re

L
o

ad

P
o

p

P
u

sh

In
p

u
t

O
u

tp
u

t

All Java Card VM implementations

Java Card VM 2.1 Bytecodes

Implementation-specific

Implementation is Hardware Dependent
Chapter 10 Using the C-JCRE 49

C-JCRE Internal Structure
The internal structure of the C-JCRE interpreter is shown in FIGURE 10-2.

FIGURE 10-2 C-JCRE Functional Block Diagram

Main Interpreter Loop

JCVM ByteCode Routines

JCVM ByteCode Support Routines

Mask
(ROM)

Objects
(EEPROM)

Stack Space,
Transient RAM,

and Private
JCVM Variable

Space
(RAM)

JCVM Non-Memory Registers

All JCVM implementations

Implementation-specific

Native Code
(hardware-specific)

Hardware Dependent

Native Method Interface

Native Code

APDU I/O
Registers and
Cryptographic

Support
Hardware

(Not Included)

Native Method Routines
50 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

The Interpreter’s Native Platform Components

Hardware Dependent Components

The hardware dependent components include the physical memories (or their
simulated representations), the native method API routines that support access to
the memories and to the I/O registers (simulated or not). The C-JCRE includes
hardware-dependent routines that perform the basic memory and I/O access
routines.

Stack and Heap Memories

The default Stack and Heap memory areas within the Reference Implementation are
defined as static byte arrays.

Transient Objects

Transient objects are defined in the Java Card 2.1.1 Runtime Environment (JCRE)
Specification. Space for the fields of a transient object, once allocated, is reserved for
the lifetime of the transient object with which they are associated.

OCAPI API Layer

The OCAPI layer, which was used in the previous release of the C-JCRE, is no
longer used.
Chapter 10 Using the C-JCRE 51

52 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

CHAPTER 11

Using the Installer

Overview
The Java Card installer’s role is to dynamically download a Java Card package
declared in a CAP file to a Java Card-enabled smart card, and to perform necessary
on-card linking. During development, the CAP file can be installed in the C-JCRE
rather than on a Java Card-enabled smart card.

The components of the installer and how they relate to the rest of the Java Card
technology are shown in the following picture. The dotted line encloses the installer
components that are described in this chapter.

(JCRE)

On-card
Installer

Off-card
Installer

Converter

.cap

.scr

.class

Apdutool
53

The data flow of the installation process is as follows:

1. An off-card installer takes a CAP file, produced by the Java Card converter, as the
input, and produces a text file that contains a sequence of APDU commands.

2. This set of APDUs is then read by the APDUTool and downloaded to the on-card
installer in the JCRE.

3. The on-card installer processes the CAP file contents contained in the APDU
commands as it receives them.

4. The response APDU from the on-card installer contains a status and optional
response data.

The off-card installer is called scriptgen. The on-card installer is simply called
installer in this document.

For more information about the installer, please see the Java Card 2.1.1 Runtime
Environment (JCRE) Specification, Sun Microsystems, Inc.
54 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

How to Use Scriptgen
Scriptgen is a tool to convert a CAP file into a script file that contains a sequence of
APDUs in ASCII format suitable for another tool such as APDUTool to send to the
CAD. The CAP file component order in the APDU script is identical to the order
recommended by the Java Card 2.1.1 Virtual Machine Specification, Sun
Microsystems, Inc.

Scriptgen Usage:

scriptgen [options] <capFilePath>

where options include:

-help

Print help message and exit.

-o <filename>

Output filename (default is stdout).

-version

Print version number and exit.

-nobanner

Do not print version number.

-nobeginend

Do not output “CAP Begin” and “CAP End” APDU commands.

Note – The APDUtool commands: “powerup;” and “powerdown;” are not included
in the output from scriptgen.

Installer Applet AID
The on-card installer applet AID field value is: 0xa0,0,0,0,0x62,3,1,8,1
Chapter 11 Using the Installer 55

How to Use the Installer
The installer is invoked using the APDUtool. (See Chapter 12, “Using the
APDUTool.”)

There are three CAP file installation scenarios supported by the installer:

■ Download Only

■ Create Only

■ Download and Create

These three scenarios are described in the next three sections.

Scenario 1: Download Only

In this scenario, the CAP file is downloaded and applet creation (instantiation) is
postponed until a later time. (Refer to the Create Only scenario below.) Steps to
perform for this kind of installation process are:

1. Use scriptgen to convert a CAP file to an APDU script file.

2. Prepend these commands to the APDU script file:

powerup;
// Select the installer applet
0x00 0xA4 0x04 0x00 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x08 0x01
0x7F;

3. Append this command to the APDU script file:

powerdown;

4. Invoke APDUTool with this APDU script file path as the argument.
56 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Scenario 2: Create Only

In this scenario, the applet from a previously downloaded CAP file or an applet
compiled in the mask is created. Steps to perform this creation of the JavaPurse
applet are:

1. Determine the applet AID.

2. Create an APDU script similar to this:

powerup;
// Select the installer applet
0x00 0xA4 0x04 0x00 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x08 0x01
0x7F;
// create JavaPurse
0x80 0xB8 0x00 0x00 0x0b 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x04
0x01 0x00
0x7F;
powerdown;

3. Invoke APDUTool with this APDU script file path as the argument.
Chapter 11 Using the Installer 57

Scenario 3: Download and Create

In this scenario, an applet is downloaded in a CAP file, and an applet defined in that
CAP file is created. Perform these steps to install, download and create the
JavaPurse applet:

1. Determine the applet AID.

2. Convert the JavaPurse CAP file to an APDU script using scriptgen‘s -nobeginend
command option, so that the “CAP Begin” and “CAP End” APDU commands will not
be part of the script.

3. Prepend the following to the APDU script:

powerup;
// Select the installer applet
0xA4 0x04 0x00 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x08 0x01 0x7F;
// CAP Begin
0x80 0xB0 0x00 0x00 0x00 0x7F;

4. Append these APDUs at the end of the script:
// CAP End
0x80 0xBA 0x00 0x00 0x00 0x7F;
// create JavaPurse
0x80 0xB8 0x00 0x00 0x0b 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x04
0x01 0x00
0x7F;

powerdown;

5. Invoke APDUTool with this APDU script path as the argument.

Note – To install more than one applet contained in the same CAP file, repeat the
Create Only steps above for each additional applet.
58 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Installer APDU Protocol
The Installer APDU protocol follows a specific time sequence of events in the
transmission of Applet Protocol Data Units as shown in the following figure.

FIGURE 11-1 Installer APDU Transmission Sequence

The following frame (data unit) formats are used in the Installer APDU protocol.

ti
m

e

Terminal Receiver (Card)
Select

Response

CAP Begin

Component ## Begin

Response

Response

Response

Response

Response

Component ## Data

Component ## End]
]

Repeat this
sequence of APDUs
once for each com-
ponent in the CAP
file. Each compo-
nent has its own
number designated

Response

Create Applet

 CAP End
Chapter 11 Using the Installer 59

Protocol Data Unit Types
There are many different APDU types, which are distinguished by their fields, and
field values. The following is a general list of APDUs.

■ Select

■ Response (ACK or NAK)

■ CAP Begin

■ CAP End

■ Component ## Begin

■ Component ## End

■ Component ## Data

■ Create Applet

■ Abort

Descriptions of each of these APDU data types, including their bit frame formats,
field names and field values follows.

Select

The table below specifies the field sequence in the Select APDU, which is used to
invoke the on-card installer.

Response

The table below specifies the field sequence in the Response APDU. A Response
APDU is sent as a response by the on-card installer after each APDU that it receives.
The Response APDU can be either an Acknowledgment (called an ACK) which
indicates that the most recent APDU was received successfully, or it can be a
Negative Acknowledgement (called a NAK) which indicates that the most recent
APDU was not received successfully and must be either resent or the entire Installer

Table 1: Select APDU

00, 0xa4, 04, 00 Lc field Installer AID Le field
60 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

transmission must be restarted. The first ACK indicates that the on-card installer is
ready to receive. The values for an ACK frame SW1SW2 are 6XXX, and the values
for a NAK frame SW1SW2 are 9000.

CAP Begin

The table below specifies the field sequence in the CAP Begin APDU. The
CAP Begin APDU is sent to the on-card installer, and indicates that the CAP file
components are going to be sent next, in sequentially numbered APDUs.

CAP End

The table below specifies the field sequence in the CAP End APDU. The
CAP End APDU is sent to the on-card installer, and indicates that all of the CAP file
components have been sent.

Component ## Begin

The table below specifies the field sequence in the Component ## Begin APDU. The
double pound sign indicates the component token of the component being sent. The
CAP file is divided into many components, based on class, method, etc. The
Component ## Begin APDU is sent to the on-card installer, and indicates that
component ## of the CAP file is going to be sent next.

Table 2: Response APDU

[optional response data] SW1SW2

Table 3: CAP Begin APDU

 0x80, 0xb0, 0x00, 0x00 [Lc field] [optional data] Le field

Table 4: CAP End APDU

 0x80, 0xba, 0x00, 0x00 [Lc field] [optional data] Le field

Table 5: COMPONENT ## Begin APDU

 0x80, 0xb2, 0x##, 0x00 [Lc field] [optional data] Le field
Chapter 11 Using the Installer 61

Component ## End

The table below specifies the field sequence in the Component ## End APDU. The
Component ## End APDU is sent to the on-card installer, and indicates that
component ## of the CAP file has been sent.

Component ## Data

The table below specifies the field sequence in the Component ## Data APDU. The
Component ## Data APDU is sent to the on-card installer, and contains the data for
component ## of the CAP file.

Create Applet

The table below specifies the field sequence in the Create Applet APDU. The
Create Applet APDU is sent to the on-card installer, and tells the on-card installer to
create an applet from each of the already sequentially transmitted components of the
CAP file.

Table 6: COMPONENT ## End APDU

 0x80, 0xbc, 0x##, 0x00 [Lc field] [optional data] Le field

Table 7: COMPONENT ## Data APDU

 0x80, 0xb4, 0x##, 0x00 Lc field Data field Le field

Table 8: Create Applet APDU

0x80, 0xb8, 0x00, 0x00 Lc
field

AID
length
field

AID parameter
length field

[parameters] Le field
62 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Abort

The table below specifies the data sequence in the Abort APDU. The Abort APDU
indicates that the transmission of the CAP file is terminated, and that the
transmission is not complete and must be redone from the beginning in order to be
successful.

Table 9: Abort APDU

0x80, 0xbe, 0x00, 0x00 Lc field [optional data] Le field
Chapter 11 Using the Installer 63

Installer Error Response APDUs
 /**
 * Response status : Invalid CAP file magic number = 0x6402
 */
 static final short ERROR_CAP_MAGIC = 0x6402;

 /**
 * Response status : Invalid CAP file minor number = 0x6403
 */
 static final short ERROR_CAP_MINOR = 0x6403;

 /**
 * Response status : Invalid CAP file major number = 0x6404
 */
 static final short ERROR_CAP_MAJOR = 0x6404;

 /**
 * Response status : Integer not supported = 0x640b
 */
 static final short ERROR_INTEGER_UNSUPPORTED = 0x640b;

 /**
 * Response status : Duplicate package AID found = 0x640c
 */
 static final short ERROR_DUP_PKG_AID = 0x640c;

 /**
 * Response status : Duplicate Applet AID found = 0x640d
 */
 static final short ERROR_DUP_APPLET_AID = 0x640d;

 /**
 * Response status : Installation aborted = 0x640f
 */
 static final short ERROR_ABORTED = 0x640f;

 /**
 * Response status : Installer in error state = 0x6421
 */
 static final short ERROR_STATE = 0x6421;

 /**
 * Response status : CAP file component out of order = 0x6422
 */
 static final short ERROR_COMP_ORDER = 0x6422;
64 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

 /**
 * Response status : Exception occurred = 0x6424
 */
 static final short ERROR_EXCEPTION = 0x6424;

 /**
 * Response status : Install APDU command out of order = 0x6425
 */
 static final short ERROR_COMMAND_ORDER = 0x6425;

 /**
 * Response status : Invalid component tag number = 0x6428
 */
 static final short ERROR_COMP_TAG = 0x6428;

 /**
 * Response status : Invalid install instruction = 0x6436
 */
 static final short ERROR_INSTRUCTION = 0x6436;

 /**
 * Response status : Import package not found = 0x6438
 */
 static final short ERROR_IMPORT_NOT_FOUND = 0x6438;

 /**
 * Response status : Illegal package identifier = 0x6439
 */
 static final short ERROR_PKG_ID = 0x6439;

 /**
 * Response status : Maximum allowable package methods exceeded
= 0x6442
 */
 static final short ERROR_PKG_METHOD_MAX_EXCEEDED = 0x6442;

 /**
 * Response status : Applet not found = 0x6443
 */
 static final short ERROR_APPLET_NOT_FOUND = 0x6443;

 /**
 * Response status : Applet creation failed = 0x6444
 */
 static final short ERROR_APPLET_CREATION = 0x6444;

 /**
 * Response status : Maximum allowable instances exceeded = 0x6445
Chapter 11 Using the Installer 65

 */
 static final short ERROR_INSTANCE_MAX_EXCEEDED = 0x6445;

 /**
 * Response status : Memory allocation failed = 0x6446
 */
 static final short ERROR_ALLOCATE_FAILURE = 0x6446;

 /**
 * Response status : Import class not found = 0x6447
 */
 static final short ERROR_IMPORT_CLASS_NOT_FOUND = 0x6447;

A Sample APDU Script
The following is a sample APDU script to download, create, and select the
HelloWorld applet.

powerup;

// Select the installer applet
0x00 0xA4 0x04 0x00 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x08 0x01
0x7F;

// CAP Begin
0x80 0xB0 0x00 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/Header.cap
// component begin
0x80 0xB2 0x01 0x00 0x00 0x7F;
// component data
0x80 0xB4 0x01 0x00 0x16 0x01 0x00 0x13 0xDE 0xCA 0xFF 0xED 0x01 0x02
0x04 0x00 0x01 0x09 0xA0 0x00 0x00 0x00 0x62 0x03 0x01 0x0C 0x01 0x7F;
// component end
0x80 0xBC 0x01 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/Directory.cap
0x80 0xB2 0x02 0x00 0x00 0x7F;
0x80 0xB4 0x02 0x00 0x20 0x02 0x00 0x1F 0x00 0x13 0x00 0x1F 0x00 0x0E
0x00 0x0B 0x00 0x36 0x00 0x0C 0x00 0x65 0x00 0x0A 0x00 0x13 0x00 0x00
0x00 0x6C 0x00 0x00 0x00 0x00 0x00 0x00 0x01 0x7F;
0x80 0xB4 0x02 0x00 0x02 0x01 0x00 0x7F;
0x80 0xBC 0x02 0x00 0x00 0x7F;
66 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

// com/sun/javacard/samples/HelloWorld/javacard/Import.cap
0x80 0xB2 0x04 0x00 0x00 0x7F;
0x80 0xB4 0x04 0x00 0x0E 0x04 0x00 0x0B 0x01 0x00 0x01 0x07 0xA0 0x00
0x00 0x00 0x62 0x01 0x01 0x7F;
0x80 0xBC 0x04 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/Applet.cap
0x80 0xB2 0x03 0x00 0x00 0x7F;
0x80 0xB4 0x03 0x00 0x11 0x03 0x00 0x0E 0x01 0x0A 0xA0 0x00 0x00 0x00
0x62 0x03 0x01 0x0C 0x01 0x01 0x00 0x14 0x7F;
0x80 0xBC 0x03 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/Class.cap
0x80 0xB2 0x06 0x00 0x00 0x7F;
0x80 0xB4 0x06 0x00 0x0F 0x06 0x00 0x0C 0x00 0x80 0x03 0x01 0x00 0x01
0x07 0x01 0x00 0x00 0x00 0x1D 0x7F;
0x80 0xBC 0x06 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/Method.cap
0x80 0xB2 0x07 0x00 0x00 0x7F;
0x80 0xB4 0x07 0x00 0x20 0x07 0x00 0x65 0x00 0x02 0x10 0x18 0x8C 0x00
0x01 0x18 0x11 0x01 0x00 0x90 0x0B 0x87 0x00 0x18 0x8B 0x00 0x02 0x7A
0x01 0x30 0x8F 0x00 0x03 0x8C 0x00 0x04 0x7A 0x7F;
0x80 0xB4 0x07 0x00 0x20 0x05 0x23 0x19 0x8B 0x00 0x05 0x2D 0x19 0x8B
0x00 0x06 0x32 0x03 0x29 0x04 0x70 0x19 0x1A 0x08 0xAD 0x00 0x16 0x04
0x1F 0x8D 0x00 0x0B 0x3B 0x16 0x04 0x1F 0x41 0x7F;
0x80 0xB4 0x07 0x00 0x20 0x29 0x04 0x19 0x08 0x8B 0x00 0x0C 0x32 0x1F
0x64 0xE8 0x19 0x8B 0x00 0x07 0x3B 0x19 0x16 0x04 0x08 0x41 0x8B 0x00
0x08 0x19 0x03 0x08 0x8B 0x00 0x09 0x19 0xAD 0x7F;
0x80 0xB4 0x07 0x00 0x08 0x00 0x03 0x16 0x04 0x8B 0x00 0x0A 0x7A 0x7F;
0x80 0xBC 0x07 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/StaticField.cap
0x80 0xB2 0x08 0x00 0x00 0x7F;
0x80 0xB4 0x08 0x00 0x0D 0x08 0x00 0x0A 0x00 0x00 0x00 0x00 0x00 0x00
0x00 0x00 0x00 0x00 0x7F;
0x80 0xBC 0x08 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/ConstantPool.cap
0x80 0xB2 0x05 0x00 0x00 0x7F;
0x80 0xB4 0x05 0x00 0x20 0x05 0x00 0x36 0x00 0x0D 0x02 0x00 0x00 0x00
0x06 0x80 0x03 0x00 0x03 0x80 0x03 0x01 0x01 0x00 0x00 0x00 0x06 0x00
0x00 0x01 0x03 0x80 0x0A 0x01 0x03 0x80 0x0A 0x7F;
0x80 0xB4 0x05 0x00 0x19 0x06 0x03 0x80 0x0A 0x07 0x03 0x80 0x0A 0x09
0x03 0x80 0x0A 0x04 0x03 0x80 0x0A 0x05 0x06 0x80 0x10 0x02 0x03 0x80
0x0A 0x03 0x7F;
0x80 0xBC 0x05 0x00 0x00 0x7F;

// com/sun/javacard/samples/HelloWorld/javacard/RefLocation.cap
Chapter 11 Using the Installer 67

0x80 0xB2 0x09 0x00 0x00 0x7F;
0x80 0xB4 0x09 0x00 0x16 0x09 0x00 0x13 0x00 0x03 0x0E 0x23 0x2C 0x00
0x0C 0x05 0x0C 0x06 0x03 0x07 0x05 0x10 0x0C 0x08 0x09 0x06 0x09 0x7F;
0x80 0xBC 0x09 0x00 0x00 0x7F;

// CAP End
0x80 0xBA 0x00 0x00 0x00 0x7F;

// create HelloWorld
0x80 0xB8 0x00 0x00 0x0b 0x09 0xa0 0x00 0x00 0x00 0x62 0x03 0x01 0x03;
0x01 0x00 0x7F;

// Select HelloWorld
0x00 0xA4 0x04 0x00 9 0xA0 0x00 0x00 0x00 0x62 0x03 0x01 0x03 0x01
0x7F;

powerdown;
68 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

Installer Requirements
The on-card installer applet must be the first applet in the JCRE.

Installer Limitations
■ The maximum length of the parameter in applet creation APDU command is 14.
■ The maximum number of packages to be downloaded is 16 minus the number of

ROM packages.
■ The maximum number of applets to be downloaded is 16 minus the number of

ROM applets.
■ The maximum length of data in the installer APDU commands is 32.
■ No on-card CAP file verification is supported.
■ All subsequent APDU commands enclosed in a “CAP Begin,” “CAP End” APDU

pair will continue to fail after an error occurs.
Chapter 11 Using the Installer 69

70 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

CHAPTER 12

Using the APDUTool

The APDUTool reads a script file containing APDUs and sends them to the C-JCRE
(or other JCRE) or the JCWDE. Each APDU is processed by the JCRE or JCWDE and
returned to the APDUTool, which displays both the command and response APDUs
on the console. Optionally, the APDUTool can write this information to a log file.

Command Line for apdutool
The file to invoke apdutool is a shell script (apdutool) on the UNIX® platform, and
a batch file (apdutool.bat) on the Microsoft Windows NT platform.

The command line usage for apdutool is:

apdutool [-h hostname] [-nobanner] [-noatr] [-o <outputFile>]
 [-p port] [-serialPort] [-version] <inputFile> [<inputFile> ...]

The option values and their actions are:

The flag -h allows you to specify the host name on which the TCP/IP socket port is
found. (See the flag -p.)

The flag -noatr suppresses outputting an ATR (answer to reset).

The flag -nobanner suppresses all banner messages.

The flag -o allows you to specify an output file. If an output file is not specified with
the -o flag, output defaults to standard output.

The flag -p allows you to specify a TCP/IP socket port other than the default port
(which is 9025).

The flag -serialPort allows you to specify input from a serial COM port rather
than a TCP/IP socket port.
71

The flag -version outputs the version information.

The <inputFile> argument allows you to specify the input script (or scripts).

The flag -help displays online documentation for this command.

apdutool Syntax
The following is a command line invocation sample:

apdutool example.scr

This command runs the APDUTool with the file example.scr as input. Output goes
to the console.

apdutool –o example.scr.out example.scr

This command runs the APDUTool with the file example.scr as input. Output is
written to the file example.scr.out.

The APDU script file is a protocol-independent APDU format containing comments,
script file commands, and C-APDUs. Script file commands and C-APDUs are
terminated with a ’;’. Comments may be of any of the three Java style comment
formats (//, /* or /**)

APDUs are represented by decimal, hex or octal digits, UTF-8 quoted literals or
UTF-8 quoted strings. C-APDUs may extend across multiple lines.

C-APDU syntax for APDUTool is as follows:

<CLA> <INS> <P1> P2> <LC> [<byte 0> <byte 1> ... <byte LC-1>] <LE> ;

where

<CLA> :: ISO 7816-4 class byte.
<INS> :: ISO 7816-4 instruction byte.
<P1> :: ISO 7816-4 P1 parameter byte.
<P2> :: ISO 7816-4 P2 parameter byte.
<LC> :: ISO 7816-4 input byte count.
<byte 0> ... <byte LC-1> :: input data bytes.
<LE> :: ISO 7816- 4 expected output length byte. 0 implies 256.

The following script file commands are supported:
72 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

powerUp;

Send a power up command to the reader. A powerUp command must be executed
prior to sending any C-APDUs to the reader.

powerDown;

Send a power down command to the reader.

echo "string";

Echo the quoted string to the output file. The leading and trailing quote characters
are removed.

delay <Integer>;

Pause execution of the script for the number of milliseconds specified by <Integer>.
Chapter 12 Using the APDUTool 73

74 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

APPENDIX A

JCA Syntax Example

This appendix contains an annotated JCA file output from the Converter. The
comments in this file are intended to aid the developer in understanding the syntax
of the JCA language, and as a guide for debugging Converter output.

Note – To get an html file with the BNF grammar for the JCA syntax, use the Java
jjdoc tool with the file $JC21SRC_HOME/src/share/java/tools/converter/
com/sun/javacard/jcasm/Parser.jj> .

/*
 * JCA (Java Card Assembly) annotated example. The code contained within this example
 * is not an executable program. The intention of this program is to illustrate the
 * syntax and use of the JCA directives and commands.
 *
 * A JCA file is textual representation of the contents of a CAP file. The contents
 * of a JCA file are hierarchically structured. The format of this structure is:
 *
 * package
 * package directives
 * imports block
 * applet declarations
 * constant pool
 * class
 * field declarations
 * virtual method tables
 * methods
 * method directives
 * method statements
 *
 * JCA files support both the Java single line comments and Java block comments.
 * Anything contained within a comment is ignored.
 *
 * Numbers may be specified using the standard Java notation. Numbers prefixed
 * with a 0x are interpreted as
 * base-16, numbers prefixed with a 0 are base-8, otherwise numbers are interpreted
 75

 * as base-10.
 *
*/

/*
 * A package is declared with the .package directive. Only one package is allowed
 * inside a JCA
 * file. All directives (.package, .class, et.al) are case insensitive. Package,
 * class, field and
 * method names are case sensitive. For example, the .package directive may be written
 * as .PACKAGE,
 * however the package names example and ExAmPle are different.
 */
.package example {

/*
 * There are only two package directives. The .aid and .version directives declare
 * the aid and version that appear in the Header Component of the CAP file.
 * These directives are required.

.aid 0:1:2:3:4:5:6:7:8:9:0xa:0xb:0xc:0xd:0xe:0xf;// the AIDs length must be
 // between 5 and 16 bytes inclusive

.version 0.1; // major version <DOT> minor version

/*
 * The imports block declares all of packages that this package imports. The data
 * that is declared
 * in this section appears in the Import Component of the CAP file. The ordering
 * of the entries
 * within this block define the package tokens which must be used within this
 * package. The imports
 * block is optional, but all packages except for java/lang import at least
 * java/lang. There should
 * be only one imports block within a package.
 */

.imports {
0xa0:0x00:0x00:0x00:0x62:0x00:0x01 1.0;
// java/lang aid <SPACE> java/lang major version <DOT> java/lang minor version
0:1:2:3:4:5 0.1; // package test2
1:1:2:3:4:5 0.1; // package test3
2:1:2:3:4:5 0.1; // package test4

}

/*
 * The applet block declares all of the applets within this package. The data
 * declared within this block appears
 * in the Applet Component of the CAP file. This section may be omitted if this
 * package declares no applets. There
 * should be only one applet block within a package.
76 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

 */

.applet {
6:4:3:2:1:0 test1;// the class name of a class within this package which
7:4:3:2:1:0 test2;// contains the method install([BSB)V
8:4:3:2:1:0 test3;

}

/*
 * The constant pool block declares all of the constant pool’s entries in the
 * Constant Pool Component. The positional
 * ordering of the entries within the constant pool block define the constant pool
 * indices used within this package.
 * There should be only one constant pool block within a package.
 *
 * There are six types of constant pool entries. Each of these entries directly
 * corresponds to the constant pool
 * entries as defined in the Constant Pool Component.
 *
 * The commented numbers which follow each line are the constant pool indexes
 * which will be used within this package.
 */

.constantPool {

/*
 * The first six entries declare constant pool entries that are contained in
 * other packages.
 * Note that superMethodRef are always declared internal entry.
 */
classRef 0.0; // 0 package token 0, class token 0
instanceFieldRef 1.0.2; // 1 package token 1, class token 0,

// instance field token 2
virtualMethodRef 2.0.2; // 2 package token 2, class token 0,

// instance field token 2
classRef 0.3; // 3 package token 0, class token 3
staticFieldRef 1.0.4; // 4 package token 1, class token 0,

// field token 4
staticMethodRef 2.0.5; // 5 package token 2, class token 0,

// method token 5

/*
 * The next five entries declare constant pool entries relative to this class.
 *
classRef test0; // 6
instanceFieldRef test1/field1; // 7
virtualMethodRef test1/method1()V; // 8
superMethodRef test9/equals(Ljava/lang/Object;)Z; // 9
staticFieldRef test1/field0; // 10
staticMethodRef test1/method3()V; // 11
Appendix A JCA Syntax Example 77

}

/*
 * The class directive declares a class within the Class Component of a CAP file.
 * All classes except java/lang/Object should extend an internal or external
 * class. There can be
 * zero or more class entries defined within a package.
 *
 * for classes which extend a external class, the grammar is:
 * .class modifiers* class_name class_token extends packageToken.ClassToken
 *
 * for classes which extend a class within this package, the grammar is:
 * .class modifiers* class_name class_token extends className
 *
 * The modifiers which are allowed are defined by the Java Card language subset.
 * The class token is required for public and protected classes, and should not be
 * present for other classes.
 */

.class final public test1 0 extends 0.0 {

/*
 * The fields directive declares the fields within this class. There should
 * be only one fields
 * block per class.
 */

.fields {
public static int field0 0;
public int field1 0;

}

/*
 * The public method table declares the virtual methods within this classes
 * public virtual method
 * table. The number following the directive is the method table base (See the
 * Class Component specification).
 *
 * Method names declared in this table are relative to this class. This
 * directive is required even if there
 * are not virtual methods in this class. This is necessary to establish the
 * method table base.
 */

.publicmethodtable 1 {
equals(Ljava/lang/Object;)Z;
method1()V;
method2()V;

}

78 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

/*
 * The package method table declares the virtual methods within this classes
 * package virtual method
 * table. The format of this table is identical to the public method table.
 */

.packagemethodtable 0 {}

.method public method1()V 1 { return; }

.method public method2()V 2 { return; }

.method protected static native method3()V 0 { }

.method public static install([BSB)V 1 { return; }
}

.class final public test9 9 extends test1 {

.publicmethodtable 0 {
equals(Ljava/lang/Object;)Z;
method1()V;
method2()V;

}
.packagemethodtable 0 {}

.method public equals(Ljava/lang/Object;)Z 0 {
invokespecial 9;
return;

}
}

.class final public test0 1 extends 0.0 {

.Fields {
// access_flag, type, name [token [static Initializer]] ;
public static byte field0 4 = 10;
public static byte[] field1 0;
public static boolean field2 1;
public short field4 2;
public int field3 0;

}
.PublicMethodTable 1 {

equals(Ljava/lang/Object;)Z;
abc()V; // method must be in this class
def()V;
labelTest()V;
instructions()V;

}
.PackageMethodTable 0 {

ghi()V; // method must be in this class
jkl()V;
Appendix A JCA Syntax Example 79

}
// if the class implements more than one interface, multiple
// interfaceInfoTables will be present.
.InterfaceInfoTable 0.0 {

0; // index in public method table of method
1; // index in public method table of method

}
.InterfaceInfoTable 0.0 {

1; // index in public method table of method
}

/*
 * Declaration of 2 public visible virtual methods and two package visible
 * virtual methods..
 */
.method public abc()V 1 {

return;
}
.method public def()V 2 {

return;
}
.method ghi()V 0x80 { // per the CAP file specification, method tokens
 // for package visible methods

return; // must have the most significant bit set to 1.
}
.method jkl()V 0x81 {

return;
}

/*
 * This method illustrates local labels and exception table entries. Labels
 * are local to each
 * method. No restrictions are placed on label names except that they must
 * begin with an alphabetic
 * character. Label names are case insensitive.
 *
 * Two method directives are supported, .stack and .locals. These
 * directives are used to
 * create the method header for each method. If a method directive is omitted,
 * the value 0 will be used.
 *
 */

.method public static install([BSB)V 0 {
.stack 0;
.locals 0;

l0: nop;
l1: nop;
l2: nop;
80 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

l3: nop;
l4: nop;
l5: nop;

return;

/*
 * Each method may optionally declare an exception table. The start offset,
 * end offset and handler offset
 * may be specified numerically, or with a label. The format of this table
 * is different from the exception
 * tables contained within a CAP file. In a CAP file, there is no end
 * offset, instead the length from the
 * starting offset is specified. In the JCA file an end offset is specified
 * to allow editing of the
 * instruction stream without having to recalculate the exception table
 * lengths manually.
 */

.exceptionTable {
// start_offset end_offset handler_offset catch_type_index;
l0 l4 l5 3;
l1 l3 l5 3;

}
}

/*
 * Labels can be used to specify the target of a branch as well.
 * Here, forward and backward branches are
 * illustrated.
 */

.method public labelTest()V 3 {

L1: goto L2;
nop;
nop;

L2: goto L1;
nop;
nop;
goto_w L1;
nop;
nop;
goto_w L3;
nop;
nop;
nop;

L3: return;
}

/*
Appendix A JCA Syntax Example 81

 * This method illustrates the use of each Java Card 2.1.1 instruction.
 * Mnenomics are case insensitive.
 *
 * See the Java Card Virtual Machine Specification for the specification of
 * each instruction.
 */

.method public instructions()V 4 {

aaload;
aastore;
aconst_null;
aload 0;
aload_0;
aload_1;
aload_2;
aload_3;
anewarray 0;
areturn;
arraylength;
astore 0;
astore_0;
astore_1;
astore_2;
astore_3;
athrow;
baload;
bastore;
bipush 0;
bspush 0;
checkcast 10 0;
checkcast 11 0;
checkcast 12 0;
checkcast 13 0;
checkcast 14 0;
dup2;
dup;
dup_x 0x11;
getfield_a 1;
getfield_a_this 1;
getfield_a_w 1;
getfield_b 1;
getfield_b_this 1;
getfield_b_w 1;
getfield_i 1;
getfield_i_this 1;
getfield_i_w 1;
getfield_s 1;
getfield_s_this 1;
getfield_s_w 1;
82 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

getstatic_a 4;
getstatic_b 4;
getstatic_i 4;
getstatic_s 4;
goto 0;
goto_w 0;
i2b;
i2s;
iadd;
iaload;
iand;
iastore;
icmp;
iconst_0;
iconst_1;
iconst_2;
iconst_3;
iconst_4;
iconst_5;
iconst_m1;
idiv;
if_acmpeq 0;
if_acmpeq_w 0;
if_acmpne 0;
if_acmpne_w 0;
if_scmpeq 0;
if_scmpeq_w 0;
if_scmpge 0;
if_scmpge_w 0;
if_scmpgt 0;
if_scmpgt_w 0;
if_scmple 0;
if_scmple_w 0;
if_scmplt 0;
if_scmplt_w 0;
if_scmpne 0;
if_scmpne_w 0;
ifeq 0;
ifeq_w 0;
ifge 0;
ifge_w 0;
ifgt 0;
ifgt_w 0;
ifle 0;
ifle_w 0;
iflt 0;
iflt_w 0;
ifne 0;
ifne_w 0;
ifnonnull 0;
Appendix A JCA Syntax Example 83

ifnonnull_w 0;
ifnull 0;
ifnull_w 0;
iinc 0 0;
iinc_w 0 0;
iipush 0;
iload 0;
iload_0;
iload_1;
iload_2;
iload_3;
ilookupswitch 0 1 0 0;
impdep1;
impdep2;
imul;
ineg;
instanceof 10 0;
instanceof 11 0;
instanceof 12 0;
instanceof 13 0;
instanceof 14 0;
invokeinterface 0 0 0;
invokespecial 3;// superMethodRef
invokespecial 5;// staticMethodRef
invokestatic 5;
invokevirtual 2;
ior;
irem;
ireturn;
ishl;
ishr;
istore 0;
istore_0;
istore_1;
istore_2;
istore_3;
isub;
itableswitch 0 0 1 0 0;
iushr;
ixor;
jsr 0;
new 0;
newarray 10;
newarray 11;
newarray 12;
newarray 13;
newarray boolean[];// array types may be decared numerically or
newarray byte[];// symbolically.
newarray short[];
newarray int[];
84 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

nop;
pop2;
pop;
putfield_a 1;
putfield_a_this 1;
putfield_a_w 1;
putfield_b 1;
putfield_b_this 1;
putfield_b_w 1;
putfield_i 1;
putfield_i_this 1;
putfield_i_w 1;
putfield_s 1;
putfield_s_this 1;
putfield_s_w 1;
putstatic_a 4;
putstatic_b 4;
putstatic_i 4;
putstatic_s 4;
ret 0;
return;
s2b;
s2i;
sadd;
saload;
sand;
sastore;
sconst_0;
sconst_1;
sconst_2;
sconst_3;
sconst_4;
sconst_5;
sconst_m1;
sdiv;
sinc 0 0;
sinc_w 0 0;
sipush 0;
sload 0;
sload_0;
sload_1;
sload_2;
sload_3;
slookupswitch 0 1 0 0;
smul;
sneg;
sor;
srem;
sreturn;
sshl;
Appendix A JCA Syntax Example 85

sshr;
sspush 0;
sstore 0;
sstore_0;
sstore_1;
sstore_2;
sstore_3;
ssub;
stableswitch 0 0 1 0 0;
sushr;
swap_x 0x11;
sxor;

}
}

.class public test2 2 extends 0.0 {

.publicMethodTable 0 {}
equals(Ljava/lang/Object;)Z;

.packageMethodTable 0 {}

.method public static install([BSB)V 0 {
.stack 0;
.locals 0;

}
return;

}
}

.class public test3 3 extends test2 {

/*
* Declaration of static array initialization is done the same way as in Java
* Only one dimensional arrays are allowed in Java Card
* Array of zero elements, 1 element, n elements
*/
.fields {

public static final int[] array0 0 = {}; // [I
public static final byte[] array1 1 = {17}; // [B
public static short[] arrayn 2 = {1,2,3,...,n}; // [S

}

.publicMethodTable 0 {}
equals(Ljava/lang/Object;)Z;

.packageMethodTable 0 {}

.method public static install([BSB)V 0 {
.stack 0;
.locals 0;
return;

}

86 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

}

.interface public test4 4 extends 0.0 {
}

}

Appendix A JCA Syntax Example 87

88 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

APPENDIX B

Java Card CAP File Debug
Component Format

This appendix specifies the format for the Java Card Debug custom CAP file
component. The Debug component contains all the metadata necessary for
debugging a package on a suitably instrumented Java Card Virtual Machine. It is not
required for executing Java Card software in a non-debug environment.

Identifying a Debug Component
The Debug component format conforms to the constraints specified in Section 6.1.2
of Java Card 2.1.1 Virtual Machine Specification. The details for identifying a Debug
component are as follows:

The debug_component Structure
This is the top-level structure of the debug component. It starts with some basic
information about the component itself and the package. There is a list of all the
strings used in the component. These strings are referenced by index from items in
the class, field, and method info structures. That information is followed by a list of
class_debug_info records that contains all the debug data for the package’s
classes, fields, and methods.

Component Name Debug.cap

Component AID 0xA0:00:00:00:62:03:05:01:01

Component Tag 0xDB
 89

debug_component {
u1 tag
u2 size
u1 component_AID_length
u1 component_AID[component_AID_length]
u1 minor_version
u1 major_version
u2 string_count
utf8_info strings[string_count]
u2 package_name_index
u2 class_count
class_debug_info classes[class_count]

}

The items in the debug_component structure are:

Value Description

tag The one-byte tag required to identify custom components.
The value must be 0xDB.

size The number of bytes in the component, excluding the tag
and size items.

component_AID_length The number of bytes in the component_AID item.

component_AID The AID of this custom component. It must match the AID
in the directory entry for this component.

major_version,
minor_version

The major and minor version number of this custom
component. The format described by this document is 1.0.

string_count The number of strings in the strings table.

strings A table of all the strings used in this component. The various
<name>_index items that occur through this component
are all unsigned two-byte indices into this table. The table is
zero-based.

package_name_index Contains the index into the strings table. The strings
table at that entry must be the fully-qualified name of the
package in this CAP file.

class_count The number of classes in the classes table.

classes Contains class_debug_info structures for all the classes
in this package.
90 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

The utf8_info Structure
The component contains a table of the strings used to name the contents of the
package. Each string is represented as a utf8_info datatype. The various items in
the component such as name_index and type_index are indices into this table and
refer to the string at that index. Indices are zero-based, unsigned, two-byte values.

utf8_info {
u2 length
u1 bytes[length]

}

The items in the utf8_info structure are:

The class_debug_info Structure
The class_debug_info structure contains all of the debugging information for a
class or interface. It also contains tables of debugging information for all its classes’
fields and methods.

class_debug_info {
u2 name_index
u2 access_flags
u2 location
u2 superclass_name_index
u2 source_file_index
u1 interface_count
u2 field_count
u2 method_count
u2 interface_names_indexes[interface_count]
field_debug_info fields[field_count]
method_debug_info methods[method_count]

}

Value Description

length The number of bytes in the string.

bytes The bytes of the string.
Appendix B Java Card CAP File Debug Component Format 91

The items in the class_debug_info structure are:

The field_debug_info Structure
The field_debug_info structure describes a field in a class. It can describe either
an instance field, a static field, or a constant (primitive final static) field. The
contents union will have the form of a token_var if the field is an instance field, a
location_var if it is a static field, or a const_value if it is a constant.

Value Description

name_index Contains the index into the the fully-qualified name of this
class.

access_flags A two-byte mask of modifiers that apply to this class. The
modifiers are:

Name Value
ACC_PUBLIC 0x0001
ACC_FINAL 0x0010
ACC_INTERFACE 0x0200
ACC_ABSTRACT 0x0400
ACC_SHAREABLE 0x0800

location The zero-based byte offset of the class_info record for
this class in the Class component.

superclass_name_index Contains the index to the fully-qualified name of the
superclass of this class.

source_file_index Contains the index to the name of the source file in which
this class is defined.

interface_count The number of indexes in the
interface_names_indexes table.

field_count The number of field_debug_info structures in the
fields table.

method_count The number of method_debug_info structures in the
methods table.

interface_names_index
es

Contains the indexes to the names of all the interfaces
directly implemented by this class.

fields Contains field_debug_info structures for all the fields
in this class.

methods Contains method_debug_info structures for all the
methods in this class.
92 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

field_debug_info {
u2 name_index
u2 descriptor_index
u2 access_flags
union {

{
u1 pad1
u1 pad2
u1 pad3
u1 token

} token_var
{

u2 pad
u2 location

} location_var
u4 const_value

} contents
}

The items in the field_debug_info structure are:

Value Description

name_index Contains the index to the short name of the field (ex:
“applets”).

descriptor_index Contains an index to the type of the field. Class types are fully-
qualified (ex: “[Ljavacard/framework/Applet;”).

access_flags A two-byte mask of modifiers that apply to this field.

Name Value
ACC_PUBLIC 0x0001
ACC_PRIVATE 0x0002
ACC_PROTECTED 0x0004
ACC_STATIC 0x0008
ACC_FINAL 0x0010

contents A field_debug_info structure can describe an instance field,
a static field, or a static final field (a constant). Constants can be
either primitive data or arrays of primitive data. Depending on
the kind of field described, the contents item is interpreted in
different ways. The kind and type of the field can be determined
by examining the field’s descriptor and access flags.
Appendix B Java Card CAP File Debug Component Format 93

The method_debug_info Structure
The method_debug_info structure describes a method of a class. It can describe
methods that are either virtual or non-virtual (static or initialization methods).

method_debug_info {
u2 name_index
u2 descriptor_index
u2 access_flags
u2 location
u1 header_size
u2 body_size
u2 variable_count
u2 line_count
variable_info variable_table[variable_count]
line_info line_table[line_count]

}

token_var If the field is an instance field, this value is the instance field
token of the field. The pad1, pad2, and pad3 items are padding
only; their values should be ignored.

location_var If the field is a non-final static field or a final static field with an
array type (a constant array), this value is the zero-based byte
offset of the location for this field in the static field image. The
pad item is padding only; its value should be ignored.

const_value If the field is a final static field of type byte, boolean, short,
or int, this value is interpreted as a signed 32-bit constant.

Value Description
94 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

The items in the method_debug_info structure are:

Value Description

name_index Contains the index to the short name of the method (ex:
“lookupAID”).

descriptor_index Contains an index to the argument and return types of the
method (essentially the signature without the method name).
Class types are fully-qualified (ex: “([BSB)Ljavacard/
framework/AID;”)

access_flags A two-byte mask of modifiers that apply to this method.

Name Value
ACC_PUBLIC 0x0001
ACC_PRIVATE 0x0002
ACC_PROTECTED 0x0004
ACC_STATIC 0x0008
ACC_FINAL 0x0010
ACC_NATIVE 0x0100
ACC_ABSTRACT 0x0400

Note: The ACC_NATIVE flag is only valid for methods located in
a card mask. It cannot be used for methods contained in a CAP
file.

location The zero-based byte offset of the location for this method in the
method component of the CAP file. Abstract methods have a
location of zero.

header_size The size in bytes of the header of the method. Abstract methods
have a header_size of zero.

body_size The size in bytes of the body of the method, not including the
method header. Abstract methods have a body_size of zero.

variable_count The number of variable_info entries in the
variable_table item.

line_count The number of line_info entries in the line_table item.

variable_table Contains the variable_info structures for all variables in this
method.

line_table Contains the line_info structures that map bytecode
instructions of this method to lines in the class’s source file.
Appendix B Java Card CAP File Debug Component Format 95

The variable_info Structure
The variable_info structure describes a single local variable of a method. It
indicates the index into the local variables of the current frame at which the local
variable can be found, as well as the name and type of the variable. It also indicates
the range of bytecodes within which the variable has a value.

variable_info {
u1 index
u2 name_index
u2 descriptor_index
u2 start_pc
u2 length

}

The items in the variable_info structure are:

The line_info Structure
Each line_info item represents a mapping of a range of bytecode instructions to a
particular line in the source file that contains the method. The range of instructions
is from start_pc to end_pc, inclusive. The source_line is the one-based line
number in the source file.

Value Description

index The index of the variable in the local stack frame, as used in load
and store bytecodes. If the variable at index is of type int, it
occupies both index and index + 1.

name_index Contains the index to the short name of the local variable (ex:
“applets”).

descriptor_index Contains the index to the type of the local variable. Class types
are fully-qualified (ex: “[Ljavacard/framework/
Applet;”).

start_pc First bytecode in which the variable is in-scope and valid.

length Number of bytecodes in which the variable is in-scope and
valid. The value of start_pc + length will be either the
index of the next bytecode after the valid range, or the first
index beyond the end of the bytecode array.
96 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

line_info {
u2 start_pc
u2 end_pc
u2 source_line

}

The items in the line_info structure are:

Value Description

start_pc The first bytecode in the range, zero-based count within the
method.

end_pc The last bytecode in the range, zero-based count within the
method.

source_line Line number in the source file. One-based count within the files.
Appendix B Java Card CAP File Debug Component Format 97

98 Java Card 2.1.2 Development Kit User’s Guide • Apr 11, 2001

	Contents
	Figures
	Preface
	Introduction to the Java Card Development Kit
	Mask Production Flow
	CAP File Flow

	Installation
	Prerequisites for Installing the Binary Release
	Installing the Java Card Development Kit Binaries
	Solaris Installation Procedure
	Windows Installation Procedure

	Sample Programs and Demonstrations

	Java Card Samples and Demonstrations
	Preliminaries
	Script File for Building Samples
	Building the Sample Applets
	The Demonstrations
	Running scriptgen to Generate Scripts for apdutool
	Running the Demonstrations

	Using the JCWDE
	Preliminaries
	Running the JCWDE Tool

	Using the Converter
	Java Compiler Options
	File and Directory Naming Conventions
	Input Files
	Output Files

	Loading Export Files
	Specifying an Export Map
	Running the Converter
	Command Line Arguments
	Command Line Options

	Viewing an Export File

	Using the Off-Card Verifier
	VerifyCap
	Running VerifyCap

	VerifyExp
	Running VerifyExp

	VerifyRev
	Running VerifyRev

	Using capgen
	Command Line for capgen

	Using capdump
	Command Line for capdump

	Using maskgen
	Command Line for maskgen

	Using the C-JCRE
	Highlights of Changes
	Running the C-JCRE
	Installer Mask
	Running the C-JCRE

	I/O
	Store Files
	The Default ROM Mask
	Internal Operation of the C-JCRE
	Java Card VM Developers
	C-JCRE Execution Model
	C-JCRE Internal Structure

	Using the Installer
	Overview
	How to Use Scriptgen
	Installer Applet AID
	How to Use the Installer
	Installer APDU Protocol
	Protocol Data Unit Types

	Installer Error Response APDUs
	A Sample APDU Script
	Installer Requirements
	Installer Limitations

	Using the APDUTool
	Command Line for apdutool
	apdutool Syntax

	JCA Syntax Example
	Java Card CAP File Debug Component Format
	Identifying a Debug Component
	The debug_component Structure
	The utf8_info Structure
	The class_debug_info Structure
	The field_debug_info Structure
	The method_debug_info Structure
	The variable_info Structure
	The line_info Structure

