Interaction Methods in Distributed Collaborative Environments

Vít Rusňák

Faculty of Informatics, Masaryk University

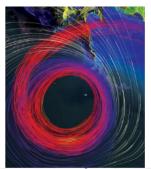
7. 11. 2011

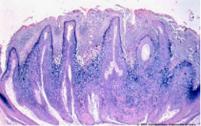
Outline

- Motivation
- State of the Art
- My Contribution

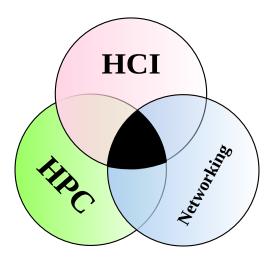
Collaborative Environments

$\textbf{Videoconferening} \Rightarrow \textbf{Data-rich Collaboration}$


- Group-to-Group collaboration of globally dispersed teams
- Truly shared content = *deixis*
- Wall-sized displays based collaborative systems
- Keyboard and mouse interaction is not beneficial



Large-scale data visualization


- Medicine
- Biology
- Disaster Response (war rooms)
- Geography
- Cartography
- Astronomy

My research

Research Areas

Tiled-Display Visualization Middleware Systems

DMX – Distributed Multihead X Project

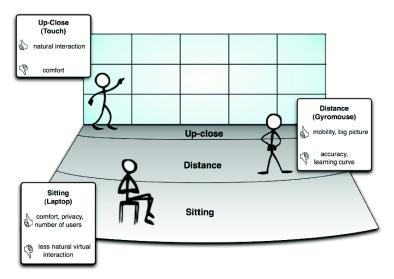
XDMX – Distributed Multiead X Project. Available at http://dmx.sourceforge.net

Chromium

 Humphreys, G., et al. (2002). Chromium: a stream-processing framework for interactive rendering on clusters. ACM Transactions on Graphics, 21(3), 10.

Equalizer

 Eilemann, S., et al. (2009). Equalizer: a scalable parallel rendering framework.IEEE Transactions on Visualization and Computer Graphics, 15(3), 436-52.


• CGLX – Cross-Platform Cluster Graphic Library

 Doerr, K.-U. and Kuester, F. (2010). CGLX: A Scalable, High-performance Visualization Framework for Networked Display Environments. IEEE transactions on visualization and computer graphics, 17(3), 320-332.

SAGE – Scalable Adaptive Graphic Environment

Renambot, L., et al. SAGE: the Scalable Adaptive Graphics Environment. In WACE '04, ACM (2004), 8 pp.

Interaction Zones

Jagodic, R. (2011). Collaborative Interaction And Display Space Organization In Large High-Resolution

Main Issues

Multiple interaction zones

- Jagodic, R., et al. (2010). Enabling multi-user interaction in large high-resolution distributed environments. Future Generation Computer Systems. Elsevier B.V.
- Ponto, K., et al. (2010). CGLXTouch: A multi-user multi-touch approach for ultra-high-resolution collaborative workspaces. Future Generation Computer Systems, 27(6), 649-656. Elsevier B.V.
- Stødle, D. (2009). Device-Free Interaction and Cross-Platform Pixel Based Output to Display Walls. Dissertation Thesis. University of Tromsø.

• Synchronization of events (multi-sensor configuration, strokes across sensors, multi-party cooperation)

- Michel, M. and Stanford, V. (2006). Synchronizing multimodal data streams acquired using commodity hardware. VSSN '06, 3. ACM Press.
- Nam, S. et al. (2010). Multi-application inter-tile synchronization on ultra-high-resolution display walls. MMSys '10, 10. ACM Press.

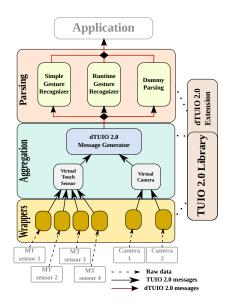
Distinguishing users (cursors, devices)

- Dietz, P. and Leigh, D. (2001). DiamondTouch. UIST '01 (p. 219). ACM Press.
- Schwirten, T., et al. (2010). radarTOUCH. ITS '10 (p. 314). ACM Press.

Runtime gesture recognition

- Wobbrock, J. O., et al. (2007). Gestures without libraries, toolkits or training: a \$1 recognizer for user interface prototypes. UIST '07, 159. ACM Press.
- Li, Y. (2010). Protractor. CHI '10 (p. 2169). ACM Press.
- Kratz, S. and Rohs, M. (2011). Protractor3D. IUI '11 (p. 371). ACM Press.

Preliminary conditions


- Tiled-display walls and tiled-tabletops
- Based on SAGE middleware
- Use of commodity HW
- Come-and-use unobtrusivness and zero orchestration
- Group-to-Group collaborative environment
- Recognition of gestures in distributed environment
- Distinguishing users interacting with the system

Preliminary work (2010/2011)

- Preliminary outcomes of group-to-group collaborative environment, informal experimental evaluation of coupling strokes in tiled-displays
 - Towards Collaborative System Based on Tiled Multi-Touch Screens Rusňák, Vít Ručka, Lukáš. In TEI '11 Work-in-Progress Workshop Proceedings. Funchal, Portugal, 2011. od s. 73-78, 6 s.
- Shared map over network supportive application for experimental evaluation of videoconferencing tool GColl

MUSE Framework

- Highly-configurable component-based framework
- Sensor coupling (sensor abstraction)
- Distinguishing users
- Association of actions to users
- Multiple gesture-recognition algorithms
- Various sensors support (from touch sensors to cameras, even the DancePad)

Future Work

Spring 2012 MUSE Framework completion, Thesis proposal defence (UIST 2012 conference)

Summer 2012 Framework Evaluation (journal paper) (CHI 2012 conference)

Autumn 2012 – Spring 2013 Integration of collaborative applications (FGCS journal)

Summer 2013 – Autumn 2013 Multi-site Group-to-Group collaborative framework (Human Computer Interaction journal)

Winter 2013/2014 Dissertation Thesis writing

June 2014 Dissertation Thesis submission

Any question?

Motivation

Thank you!