3D Structural Alignment and Tunnel Computation

David Sehnal

Contents

- Two Worlds
 - 3D Structural Alignment (on the small scale)
 - Tunnel Computation
- The Worlds Collide?

3D Alignment

- Large scale (proteins)
 - Global (classification, evolutionary links)
 - Local (compare smaller substructures)
- Small scale

- Global FTFTALILLAVAV F--TAL-LLA-AV
- Local FTFTALILL-AVAV --FTAL-LLAAV--

3D Alignment

- What we need?
 - Know which atoms/amino acids/... belong together

Find a transformation that fits the corresponding pairs

RMSD(A, B) =
$$\sqrt{\frac{1}{n} \sum_{i=1}^{n} ||A_i - B_i||^2}$$

The Transformation Part

- Horn K.P.: Closed-form solution of absolute orientation using unit quaternions, Journal of the Optical Society of America, 1986.
- Karney C.F.F.: *Quaternions in molecular modeling*. Journal of Molecular Graphics and Modelling, 2007.

$$\operatorname{RMSD}(T(A), B) = \sqrt{\frac{1}{n} \sum_{i=1}^{n} \|R(A_i) + t - B_i\|^2}$$

Translation component
Rotation component
$$\sum_{i=1}^{n} \|R(A_i) - B_i\|^2 = \sum_{i=1}^{n} \|R(A_i)\|^2 + \sum_{i=1}^{n} \|B_i\|^2 - 2\sum_{i=1}^{n} R(A_i) \cdot B_i$$
$$q^T \left(\sum_{i=1}^{n} \hat{\mathbf{A}}_i^T \mathbf{B}_i\right) q$$
$$R(x) = qxq^*$$

Pairing the Elements

- Large Scale
 - Usually work on the secondary structure (amino acids)
 - Combinatorial extensions, subgraph isomorphism, dynamic programming, ...

Small Scale

- Usually work on 3D structure
- Exhaustive search, pairing based on distance, subgraph isomorphism, ...

(My) Simple Algorithm

- 1. For each bijection f: Atoms(A) -> Atoms(B)
 - Align sequences f(A) and B using the quaternion method
- 2. Return the alignment that yields the lowest RMSD
- Improvement for small protein substructures:
 Grouping of atoms

Applications

Reverse Proteins

Classification

Lectines

66 structures 56 atom on each

Apoptosis

Analysis of the model structure

(Sort of Mine) Better Approach

- Hoppe A., Frommel C.: *NeedleHaystack: a program for the rapid recognition of* ٠ local structures in large sets of atomic coordinates, Journal of applied crystallography, 2003.
- Find sets of 3 suitable pivots in each structure
- For each pair of pivot sets
 - Align the structures using these pivots (quaternions)
 - Match atoms based on distance (with a threshold)
 - 2. Align again (quaternions)
 - 3. (Goto 1 until a stable configuration is reached)

 - $-Score = f(A, B, RMSD_{M})$ ^{M is the set of matched atoms, N is the total number of atoms, and RMSD_M is the RMSD of matched atoms.}
- Return the alignment with the best score

Example (FeN₄S₂)

Example (FeN₄S₂)

Example (FeN₄S₂)

Scoring

 $\frac{e^{(1+|M|/N)^2}}{1+\mathrm{RMSD}_M(A,B)}$

M is the set of matched atoms, N is the total number of atoms, and $RMSD_M$ is the RMSD of matched atoms.

Different Pivot Criteria (Charges)

 $\operatorname{score}^*(M, N, A, B) = R_M^2 \cdot \operatorname{score}'(M, N, A, B) = R_M^2 \cdot \frac{e^{(1+|M|/N)^2}}{1 + \operatorname{RMSD}_M(A, B)}$

 R_{M}^{2} says how well the matched charges correlate.

3D Alignment Summary

3D structural alignment using pivot elements and improved scoring function to identify the correct result.

Tunnels

- MOLE, Caver, Hollow, MolAxis
- Static analysis vs. dynamics
- Grid/Triangulation
 Based

Protein (Delaunay) Triangulation

 Edelsbrunner H., Liang J.: Anatomy of protein pockets and cavities: measurement of binding site geometry and implications for ligand design, Protein Science, 1998.

Finding the Tunnels – The Idea

Tunnel Finding Algorithm

- 1. Triangulate the molecule (Voronoi diagram)
- 2. Specify starting point (from a database/user)
- 3. Do depth-first (A*) search
 - Each time a boundary tetrahedron is visited, report a tunnel
 - Edge weight ~ amount off space around the edge
- 4. Post-process the tunnels (remove duplicate tunnels, ...)

(My) Modified Approach

- 1. Triangulate the molecule (Voronoi diagram)
- 2. Identify cavities ("empty space")
 - Remove tetrahedrons that are too big or too small
 - Find connected components in the new graph
- 3. Identify start points within cavities
 - Deep point(s) in each cavity
 - Database/user
- 4. Identify end points within cavities
 - Connected components of the "boundary"
- 5. For each pair of start and end points in the same cavity use Dijkstra's algorithm to find the tunnel
 - 1. Edge weight ~ amount of space around the edge
- 6. Post-process the tunnels (remove duplicate tunnels, ...)

The Cavities

Start and End Points

Depth Computation

The Tunnels

Tunnel Computation Summary

Triangulate the protein, split it into smaller graphs and use Dijkstra's algorithm to find interesting paths (= tunnels) in them.

Aligning the Tunnels/Cavities

Reduced Cavity Graph

Summary

• 3D Alignment Algorithm

+ + http://winchi.ncbr.muni.cz/WebChemistry/SiteBinder/index.html	🏫 - 🖉 🛃 - Google	₽ 🟦 🖾-
Display Mude: Balk and Sticks & Sticks Background	Input Results 5 SiteBinder Se	
	12 motifs (with 44 atoms) were superimposed in 0s.	
	RMSD = 0.088 Å Standard Deviation (σ) = 0.0	
	Select: All Invert None Remove Change color	
	Difference from RMSD < a	
	2jdk_3437 0.061 2xASN,2xASP,CA,FUC	
	1uzv_3556 0.061 2xASN,2xASP,CA,FUC	
	2jdh_3543 0.062 2xASN,2xASP,CA,FUC	
	2vuc_3470 0.065 2xASN,2xASP,CA,FUC	
	2jdn_3504 0.065 2xASN,2xASP,CA,FUC	
A	1gzt_3548 0.069 2xASN,2xASP,CA,FUC	
	1uzv_3587 0.072 2xASN,2xASP,CA,FUC	
	2jdm_3367 0.076 2xASN,2xASP,CA,FUC	
à 🔰 🚺 🍌	1w8f_3575 0.085 2xASN,2xASP,CA,FUC	
	1gzt_3574 0.090 2xASN,2xASP,CA,FUC	
	Difference from RMSD < 2a	
	1w8f_3629 0.111 2xASN,2xASP,CA,FUC	
	Difference from RMSD < 3a	
	2vud_3395 0.141 2xASN,2xASP,CA,FUC	

• Tunnel Finding Algorithm

Future Work

 Combine 3D structural alignment and tunnel computation

• (Write PhD thesis about it)

Thank you for your attention.