Detection of Sub-resolution Dots in Microscopy Images

Karel Štěpka, 2011 Centre for Biomedical Image Analysis, FI MU supervisor: doc. RNDr. Michal Kozubek, Ph.D.

Outline

- Fluorescence microscopy
- Image degradations
- Evaluation of analysis
- Existing approaches to dot detection
- Further Work

Fluorescence Microscopy

Fluorescence Microscope

Light source

- Excitation filter
 - Allows only the excitation part of the spectrum to pass through

Sample

- Absorbs incoming light
- Emits light with a lower frequency (fluorescence)

Emission filter

□ Allows only the emission part of the spectrum to pass through

Sensor

Fluorescence In-Situ Hybridization

- Allows to stain individual chromosomes or their parts
- Probes appear as small dots in the result

Observable Parts of a Cell

- Cytoplasm
- Cytoskeleton
- Nucleus
- Whole chromosomes
 - Conditions related to the number of chromosomes (e.g. Down syndrome)
- Telomeres
- Kinetochores
- Individual genes
 - Translocations (e.g. BCL/ABR genes and their relation to certain kinds of leukemia)

Observable Parts of a Cell – Dots

Cytoplasm

- Cytoskeleton
- Nucleus
- Whole chromosomes
 - Conditions related to the number of chromosomes (e.g. Down syndrome)
- Telomeres
- Kinetochores
- Individual genes
 - Translocations (e.g. BCL/ABR genes and their relation to certain kinds of leukemia)

Fluorescence Dots

- Real size on the order of 10 nm
- In the resulting image, often 1 pixel > 60 nm
- Because of the diffraction limit of visible light, the magnification cannot be easily improved
- Due to image degradations, the sensor detects a blurred image of the dot
- Image of a dot has a few pixels across

Image Degradations

Types of Image Degradation

Noise

- Many kinds, with different causes and statistical distributions:
 - Photon shot noise (Poisson)
 - Impulse noise (often fixed pattern)
 - Readout noise (Gaussian)
 - Dark current noise
 - Laser speckle noise
- Can be suppressed using various methods
 - Dark frame subtraction
 - Gaussian blurring
 - Non-linear filters (median, non-linear diffusion)

Types of Image Degradation

- Degradation by point spread function (PSF)
 - Every optical system has a characteristic PSF
 - Describes scattering of photons travelling through individual components of the system
 - Even in an ideal optical system, a point light source produces signal equivalent to the Airy disk

- □ PSF can be experimentally measured
- Degradation can be suppressed using deconvolution

Types of Image Degradation

- Chromatic aberration
 - Different wavelengths have different refractive index
- Field curvature
 - Sensor is planar, but the focal area is curved
- Spherical aberration
 - Related to the shape of the lens
- Degradations related to sensor technology
 - Smear in CCD chips

Evaluation of Analysis

Measures to Consider

Detection

Distinguishing between large dots and double-dots

 To identify chromosomal conditions such as polysomy

Measures to Consider

Localization

- Absolute position
 - To determine the number of dots inside/outside the nucleus
- Relative position of individual signals
 - To identify chromosomal translocations
- Mean squared error
- Overall intensity
 - □ To determine the amount of fluorescent dye or protein
 - Mean squared error

Evaluation of Analysis

Comparison of the results with the ground truth (GT)

- We can obtain GT by manually annotating real images
- We can generate synthetic (simulated) images together with their GT
- Real testing data, manual GT
 - Different people, or the same person over multiple attempts, generally annotate images differently
 - □ Time consuming, expensive
- Synthetic testing data, generated GT
 - □ GT is accurate and undebatable (created before the images)
 - □ The synthetic data must correspond to the real images

Existing Approaches to Dot Detection

"Classical" Detection Methods

Thresholding

- Fixed
- Otsu
- Unimodal
- Adaptive
- Mathematical morphology
 - Top-hat transform

Recent "Classical-Based" Methods

EMax

□ Extended maxima transform, size-based filtering

Gué

Top-hat, thresholding, region growing, morphological closing and opening

HDome

HDome transformation, mean shift clustering, cluster filtering

Recent "Classical-Based" Methods

Kozubek

Gradual thresholding, size-based filtering

Netten

□ Top-hat, dot label ("sweep" through all intensity levels)

Raimondo

 Top-hat, modified unimodal thresholding, pattern matching (using a model of a dot)

Machine Learning Approach

- Examine all potential dot locations and classify them as positive/negative
 - □ Usually using a sliding sub-window
- Training is required, overtraining is undesirable
 - □ Training set contains image patches from which the classifier learns
 - Positive examples
 - Negative examples
 - □ Test set is used to determine the quality of the classifier
 - □ Ideally, *training_set* \cap *test_set* = Ø
 - We train on the training set, until the results on the test set are satisfactory

Machine Learning Approach

Neural networks

- Multilayer perceptron
- Each input neuron corresponds to one pixel

AdaBoost

- Haar-like features used for weak classifiers
- Combines several weak classifiers into one strong
- Computationally intensive in 3D
- Fischer discriminant analysis
 - Computationally intensive in 3D

Recent Survey by I. Smal et al.

- Compared performance of several methods (including machine learning)
- 2D data
 - □ Real images
 - Simplified synthetic images
 - Dots represented by Gaussian profiles
- Did not evaluate the influence of method parameters
- Good starting point

Ihor Smal et al.: Quantitative Comparison of Spot Detection Methods in Fluorescence Microscopy. *IEEE Transactions on Medical Imaging* 29(2): 282–301 (2010)

Parametrization – No Size Fits All

- No method can be used on all types of images without any adjustments
- On the data/pixel level, images can be very different, even when displaying the same class of objects
 - Noise level
 - Base intensity
 - Dynamic range
 - Contrast
 - Background (non-)uniformity
 - Illumination artifacts
 - Amount of objects of interest

Parametrization – Usability

Usability of a method depends on:

- Number of its parameters
- □ Sensitivity to parameter changes
- Intuitiveness of its parameters for the end user
- A thorough parametric study is required
- Curse of dimensionality
 - □ Some of the methods have 4–6 free parameters

Prepare a set of benchmark data

- Cover testing of all important measurements
 - Detection, localization, intensity
- Possibly make the set publicly available through CBIA web-site
- Perform a thorough evaluation of existing methods
 - Test the methods on various images
 - Real, manually annotated data
 - Simulated data with known GT
 - Investigate their behavior when used on 3D data
 - □ Parametric study
 - Publish the results

Intermediate results

- Investigate the conceptual difference between 2D and 3D fluorescence images
 - $\hfill\square$ Dots do not lie in the same focal plane
 - □ 2D images are usually obtained via max. intensity projection
 - □ Microscopy images exhibit strong anisotropy
 - Per-slice processing or direct extension to 3D do not take any of this into account
- Design a method natively working with 3D images
 - Most of the existing methods are natively 2D (or nD), and use no special approach for 3D data
 - Investigate localization using model fitting
 - □ Include the new method in the comparison