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Fluorescence Microscopy 

 



Fluorescence Microscope 

 Light source 

 Excitation filter 
 Allows only the excitation part of the spectrum to pass through 

 Sample 
 Absorbs incoming light 

 Emits light with a lower frequency (fluorescence) 

 Emission filter 
 Allows only the emission part of the spectrum to pass through 

 Sensor 



Fluorescence In-Situ Hybridization 

 Allows to stain individual chromosomes or their parts 

 Probes appear 

as small dots 

in the result 

Image courtesy of Wikimedia Commons 



Observable Parts of a Cell 

 Cytoplasm 

 Cytoskeleton 

 Nucleus 

 Whole chromosomes 
 Conditions related to the number of chromosomes 

(e.g. Down syndrome) 

 Telomeres 

 Kinetochores 

 Individual genes 
 Translocations (e.g. BCL/ABR genes and 

their relation to certain kinds of leukemia) 



Observable Parts of a Cell – Dots 

 Cytoplasm 

 Cytoskeleton 

 Nucleus 

 Whole chromosomes 
 Conditions related to the number of chromosomes 

(e.g. Down syndrome) 

 Telomeres 

 Kinetochores 

 Individual genes 
 Translocations (e.g. BCL/ABR genes and 

their relation to certain kinds of leukemia) 



Fluorescence Dots 

 Real size on the order of 10 nm 

 In the resulting image, often 1 pixel > 60 nm 

 Because of the diffraction limit of visible light, 

the magnification cannot be easily improved 

 

 Due to image degradations, the sensor 

detects a blurred image of the dot 

 Image of a dot has a few pixels across 



Image Degradations 

 



Types of Image Degradation 

 Noise 

 Many kinds, with different causes and statistical distributions: 

 Photon shot noise (Poisson) 

 Impulse noise (often fixed pattern) 

 Readout noise (Gaussian) 

 Dark current noise 

 Laser speckle noise 

 Can be suppressed using various methods 

 Dark frame subtraction 

 Gaussian blurring 

 Non-linear filters (median, non-linear diffusion) 



Types of Image Degradation 

 Degradation by point spread function (PSF) 

 Every optical system has a characteristic PSF 

 Describes scattering of photons travelling through individual 

components of the system 

 Even in an ideal optical system, 

a point light source produces 

signal equivalent to the Airy disk 

 

 

 

 PSF can be experimentally measured 

 Degradation can be suppressed using deconvolution 



Types of Image Degradation 

 Chromatic aberration 

 Different wavelengths have different refractive index 

 Field curvature 

 Sensor is planar, but the focal area is curved 

 Spherical aberration 

 Related to the shape of the lens 

 Degradations related to sensor technology 

 Smear in CCD chips 



Evaluation of Analysis 

 



Measures to Consider 

 Detection 
 

 precision = 

 

 

 recall = 

 

 

 F1 score = 

 

 

 Distinguishing between large dots and double-dots 
 To identify chromosomal conditions such as polysomy 

present not present 

found TP FP 

not found FN TN 

2 · precision · recall 

precision + recall 

TP 

TP + FP 

TP 

TP + FN 



Measures to Consider 

 Localization 

 Absolute position 

 To determine the number of dots inside/outside the nucleus 

 Relative position of individual signals 

 To identify chromosomal translocations 

 Mean squared error 

 

 Overall intensity 

 To determine the amount of fluorescent dye or protein 

 Mean squared error 



Evaluation of Analysis 

 Comparison of the results with the ground truth (GT) 

 We can obtain GT by manually annotating real images 

 We can generate synthetic (simulated) images 

together with their GT 

 Real testing data, manual GT 

 Different people, or the same person over multiple attempts, 

generally annotate images differently 

 Time consuming, expensive 

 Synthetic testing data, generated GT 

 GT is accurate and undebatable (created before the images) 

 The synthetic data must correspond to the real images 



Existing Approaches to Dot Detection 

 



“Classical” Detection Methods 

 Thresholding 

 Fixed 

 Otsu 

 Unimodal 

 Adaptive 

 Mathematical morphology 

 Top-hat transform 



Recent “Classical-Based” Methods 

 EMax 

 Extended maxima transform, size-based filtering 

 

 Gué 

 Top-hat, thresholding, region growing, 

morphological closing and opening 

 

 HDome 

 HDome transformation, mean shift clustering, 

cluster filtering 



Recent “Classical-Based” Methods 

 Kozubek 

 Gradual thresholding, size-based filtering 

 

 Netten 

 Top-hat, dot label (“sweep” through all intensity levels) 

 

 Raimondo 

 Top-hat, modified unimodal thresholding, 

pattern matching (using a model of a dot) 



Machine Learning Approach 

 Examine all potential dot locations and classify 

them as positive/negative 

 Usually using a sliding sub-window 

 Training is required, overtraining is undesirable 

 Training set contains image patches from which the classifier learns 

 Positive examples 

 Negative examples 

 Test set is used to determine the quality of the classifier 

 Ideally, training_set ∩ test_set = ∅  

 We train on the training set, until the results on the test set 

are satisfactory 



Machine Learning Approach 

 Neural networks 

 Multilayer perceptron 

 Each input neuron corresponds to one pixel 

 

 AdaBoost 

 Haar-like features used for weak classifiers 

 Combines several weak classifiers into one strong 

 Computationally intensive in 3D 

 

 Fischer discriminant analysis 

 Computationally intensive in 3D 



Recent Survey by I. Smal et al. 

 Compared performance of several methods 

 (including machine learning)  

 2D data 

 Real images 

 Simplified synthetic images 

 Dots represented by Gaussian profiles 

 Did not evaluate the influence of method parameters 

 Good starting point 

Ihor Smal et al.: Quantitative Comparison of Spot Detection Methods in Fluorescence Microscopy. 

IEEE Transactions on Medical Imaging 29(2): 282–301 (2010)  



Parametrization – No Size Fits All 

 No method can be used on all types of images 

without any adjustments 

 On the data/pixel level, images can be very different, 

even when displaying the same class of objects 

 Noise level 

 Base intensity 

 Dynamic range 

 Contrast 

 Background (non-)uniformity 

 Illumination artifacts 

 Amount of objects of interest 



Parametrization – Usability 

 Usability of a method depends on: 

 Number of its parameters 

 Sensitivity to parameter changes 

 Intuitiveness of its parameters for the end user 

 

 A thorough parametric study is required 

 Curse of dimensionality 

 Some of the methods have 4–6 free parameters 



Further Work 

 



Further Work 

 Prepare a set of benchmark data 

 Cover testing of all important measurements 

 Detection, localization, intensity 

 Possibly make the set publicly available through CBIA web-site 

 Perform a thorough evaluation of existing methods 

 Test the methods on various images 

 Real, manually annotated data 

 Simulated data with known GT 

 Investigate their behavior when used on 3D data 

 Parametric study 

 Publish the results 



Further Work 

 Intermediate 

results 



Further Work 

 Investigate the conceptual difference between 

2D and 3D fluorescence images 

 Dots do not lie in the same focal plane 

 2D images are usually obtained via max. intensity projection 

 Microscopy images exhibit strong anisotropy 

 Per-slice processing or direct extension to 3D do not take 

any of this into account 

 Design a method natively working with 3D images 

 Most of the existing methods are natively 2D (or nD), 

and use no special approach for 3D data 

 Investigate localization using model fitting 

 Include the new method in the comparison 


