Ray tracing	STAR		Results	Summary
	Acceleration Da	ta Structures	for Ray Tra	icing
		Marek Vinkler		
	Department	of Computer Graphics	and Design	
		October 18, 2011		
		HCI		
			< 口 > < @ > < 言)	> ∢ ≣ ► ছী = ৩৭৩

Acceleration Data Structures for Ray Tracing

Ray tracing	STAR	Results	Summary
Outline			

- Ray tracing
- STAR
- Aims
- Results

Acceleration Data Structures for Ray Tracing

Ray tracing	STAR		Results	Summary
Motivation				
	-		+ + Hoto	Alle
	and st	* + · · ·		
		Contraction of the second seco	D.	

and Timo Aila. Pantaray: Fast ray-traced occlusion caching of massive scenes. ACM Trans. Graph., 29(4):37:1-37:10, 2010.

Figure: [PFHA10] Jacopo Pantaleoni, Luca Fascione, Martin Hall,

Ray tracing	STAR	Results	Summary

Complexity

- 15min per frame
 - Over 6 years to render a movie
 - 4,000 Hewlett-Packard servers (35,000 processor cores)
- Ever increasing demand for
 - Complex scenes
 - Higher resolution (stereo)
 - Sophisticated effects

Computing the image

- Naive tracing number of rays × number of triangles #ray × #triangles ⇒ Quintillions OPs (unbearable)
- With acceleration data structure number of rays × *log*(number of triangles) #ray × *log*(#triangles) ⇒ Billions OPs

Ray tracing	STAR	Results	Summary

Acceleration Data structures

Ray tracing	STAR		Aims	Results	Summary
•	 .				

Acceleration Data structures

BIH Light buffer-tree Gridper then Tetraheurons Hierorchetee grid Octree

Surface Area Heuristic

- Goldsmith and Salmon [GS87]
- Standard method
- Probability of intersecting a box
- Guides the division of triangles
- Greedy heuristic

Ray tracing	STAR	Results	Summary
Docoarab			
nesearch			

- Faster traversal
- Faster build
- STAR [Wal07]

Ray tracing	STAR	Results	Summary

Traversal

- Improving SAH cost
- Soupikov et al. [SSK08]
- Popov et al. [PGDS09]
- Stich et al. [SFD09]

Ray tracing	STAR	Results	Summary
Build			

- Asymptotical complexity
 - Wald and Havran [WH06]
 - Hunt and Mark [HMS06]
- Parallelization CPU
 - Wald [Wal07]
 - Choi et al. [CKL+10]
- Parallelization GPU
 - Lauterbach et al. [LGS+09]
 - Pantaleoni and Luebke [PL10]

Ray tracing	STAR	Aims	Results	Summary
Aims				

- Better acceleration data structures
- Higher traversal performance
- Realtime on commodity hardware

Ray tracing	STAR	Aims	Results	Summary

Plan

- Journal paper in 2011
- Conference paper in 2012
- Framework for students

Ray tracing	STAR	Aims	Results	Summary
Occlusion	SAH			
		SAH		

Ray tracing	STAR	Aims	Results	Summary
Occlusion	SAH			
		SAH		

OSAH

Ray tracing	STAR	Results	Summary
Doculto			

Ray tracing	STAR	Results	Summary
Acquiring	visibility		

< • • • **•**

문 M 문 M 문

Soda Hall

Laboratory

Ray tracing	STAR	Results	Summary

Summary

- High quality images
- Costly to compute
- Optimizations
- Visibility

Ray traci	ng STAR		Results	Summary
		Any question?		

Acceleration Data Structures for Ray Tracing

Ray tracing	STAR		Results	Summary
		Thank you!		

Acceleration Data Structures for Ray Tracing

References

- Byn Choi, Rakesh Komuravelli, Victor Lu, Hyojin Sung, Robert L. Bocchino, Sarita V. Adve, and John C. Hart. Parallel SAH k-D Tree Construction. In Michael Doggett, Samuli Laine, and Warren Hunt, editors, *High-Performance Graphics 2010*, pages 77–86, Saarbrücken, Germany, 2010. Eurographics Association.
- Jeffrey Goldsmith and John Salmon. Automatic Creation of Object Hierarchies for Ray Tracing. IEEE Computer Graphics and Applications, 7(5):14–20, May 1987.

W. Hunt, W.R. Mark, and G. Stoll.

Fast kd-tree construction with an adaptive error-bounded heuristic.

In Proceedings of the 2006 IEEE/Eurographics Symposium on Interactive Ray Tracing, pages 81–88, sep. 2006.

 C. Lauterbach, M. Garland, S. Sengupta, D. Luebke, and D. Manocha.
Fast BVH Construction on GPUs.
Computer Graphics Forum, 28(2):375–384, 2009.

Jacopo Pantaleoni, Luca Fascione, Martin Hall, and Timo Aila.

Pantaray: Fast ray-traced occlusion caching of massive scenes.

ACM Trans. Graph., 29(4):37:1–37:10, 2010.

Stefan Popov, Iliyan Georgiev, Rossen Dimov, and Philipp Slusallek.

Object Partitioning Considered Harmful: Space Subdivision for BVHs.

In *HPG '09: Proceedings of the Conference on High Performance Graphics 2009*, pages 15–22, New York, NY, USA, 2009. ACM.

 Jacopo Pantaleoni and David Luebke.
HLBVH: Hierarchical LBVH Construction for Real-Time Ray Tracing of Dynamic Geometry.
In Michael Doggett, Samuli Laine, and Warren Hunt, editors, *High-Performance Graphics 2010*, pages 87–9 Saarbrücken, Germany, 2010. Eurographics Association

- Martin Stich, Heiko Friedrich, and Andreas Dietrich. Spatial Splits in Bounding Volume Hierarchies. In HPG '09: Proceedings of the Conference on High Performance Graphics 2009, pages 7–13, New York, NY, USA, 2009. ACM.
- A. Soupikov, M. Shevtsov, and A. Kapustin. Improving kd-tree quality at a reasonable construction cost. In Proceedings of the 2008 IEEE/Eurographics Symposium on Interactive Ray Tracing, pages 67–72, aug. 2008.

Ingo Wald.

On fast Construction of SAH-based Bounding Volume Hierarchies.

In *Proceedings of the 2007 IEEE Symposium on Interactive Ray Tracing*, pages 33–40, Washington, DC, USA, 2007. IEEE Computer Society.

I. Wald and V. Havran.

On building fast kd-Trees for Ray Tracing, and on doing that in O(N log N).

In Proceedings of the 2006 IEEE/Eurographics Symposium on Interactive Ray Tracing, pages 61–69, sep. 2006.

