
RASP Evaluation Schemes
Rebecca Watson

Natural Language and Information Processing Group
University of Cambridge

Computer Laboratory
Rebecca.Watson@cl.cam.ac.uk

May 18, 2006

Abstract
This report outlines details of the relational dependency evaluation schemes

written for RASP grammatical relations.

Contents
1 Introduction 2

2 Evaluation System 3
2.1 Output Formats . 4
2.2 GR Match . 5

3 Slot Comparison 8
3.1 All . 8
3.2 Head-Dependent . 8
3.3 Head-Dependent-NCSUBJ . 8

4 GR-Type Match 8
4.1 Original . 9
4.2 Equality Based . 9
4.3 Subsumption Based . 10
4.4 Hierarchy Based . 10

5 Resources 11
5.1 Test Files and Gold Standard . 11
5.2 Running the Evaluation System . 12

6 Current System Performance 16

1

1 Introduction
The Robust Accurate Statistical Parsing (RASP) system for English developed by
Briscoe & Carroll (2002) is publicly available for academic use. The parser is capa-
ble of returning a number of different output formats including grammatical relations
(GRs). For details of the manually written tag sequence grammar and details of the
GRs readers are referred to (Briscoe 2005).

This report contains details of the relational dependency based evaluation schemes
enabling the reader to either a) replicate the schemes or b) interpret results output by the
evaluation system. The test and gold standard files employed and the evaluation system
outlined herein have been made publicly available for research to enable comparison
of research efforts.

Briscoe (2005) outlines details of the GRs output by RASP. All GRs take the fol-
lowing form:

(GR-type subtype head dependent initial-GR)

The first item in this list: the GR-type, specifies the type of relationship between the
head and dependent (e.g. (subj)ect, (obj)ect, (mod)ifier). The remaining items in
the list: (subtype, head, dependent, initial-GR) will be referred to as ‘slots’
herein. The subtype and initial-GR are specified for only a subset of all possible
GR-types. That is, their presence depends on the GR-type. In the case that these
optional slots are present for a given GR-type the slot may appear with the default
(unspecified) value of “ ”.

For all evaluation schemes, both the GR-type and slot values (the value in the spec-
ified slot) must be ‘equal’. The set of evaluation schemes differ only in their definition
of equality between GR-types and the set of slots to compare for slot ‘equality’. That
is, they differ in the criteria for whether the test relation is correct: the test and standard
items ‘match’. Section 2 outlines the overall architecture of the evaluation schemes
while Section 4 and Section 3 outline alternative definitions of GR-type matching and
the set of slots to compare, respectively.

We need to consider alternative sets of slots to compare as other parsers specify
only head and dependent slots. Therefore, the evaluation system should be capable of
comparing these slots only, to enable us to compare system performance.

There are 17 GR-types that form an inheritance hierarchy enabling relations to be
underspecified. Readers are referred to (Briscoe 2005) for a figure of the hierarchy.
This hierarchy of relations is shown in Figure 1. Note that the passive GR-type is not
included in evaluation as this GR-type represents information available in the ncsubj
GR-type when the initial-GR value is obj. This hierarchy enables a number of
different schemes to be considered as we can define alternative definitions of GR-type
match using this hierarchy. For example, we may consider GR-types in the test set (test,
henceforth) that subsume GR-types in the gold standard set (standard, henceforth) as
correct.

Section 6 reports current system performance using each of the evaluation schemes.
Finally, Section 5 provides details of the files that are publicly available including the
gold standard files and the file formats required to utilise the evaluation script.

2

�����
PPPPP

Q
QQ

�
��

HHHH
!!!!

HHH
���

Q
Q
QQ

��
!!!!!!!! �

�
�

��

(((((((

�
��

hhhhhhhhh

PPPPPSS��
�����

�

��
aaaaa

XXXXXXX

hhhhhhhhhh

dependent

ta arg mod det aux conj

mod arg

ncmod xmod cmod pmod
subj dobj

subj
comp

ncsubj xsubj csubj
obj pcomp clausal

dobj obj2 iobj xcomp ccomp

Figure 1: The GR hierarchy

2 Evaluation System
This section outlines the evaluation system’s architecture and highlights the functions
which differ between each evaluation scheme (scheme, henceforth). These functions
refer to the whether the GR-types match and which slots to compare (the definition of
a slot match is constant between schemes). Once the reader is familiar with the general
architecture, we will discuss the alternative sets of slots that may be compared and
the GR-Type match options in Sections 3 and 4, respectively. Finally, Section 5 will
outline the script file(s) that can be called to invoke the evaluation system over a set of
test files and the script parameters that will select the scheme utilised by the system.

Each sentence is evaluated in-turn whereby the test and standard GR sets are com-
pared. The test and standard files are required to contain the same number of sentences.
An error message will be output by the system if this is not the case. The format re-
quired for test files is outlined in Section 5.

A GR in the test set ‘matches’ a GR in the standard set if the test GR is considered
to be correct in the given scheme. Duplicate GRs are permitted in the standard set but
not in the test set. If duplicate GRs occur in the test set (and not in the standard) then
these are considered incorrect as only one match is permitted against each GR in the
standard.

The evaluation system correlates for each sentence:

• common: the set of GRs that matched between the test and standard, where each
element in this list are of the form: {standard GR, test GR}.

• missing: the set of GRs in the standard for which no test GRs were found to
match.

• extra: the set of GRs in the test set for which no matches were found in the
standard set.

After processing each sentence, the evaluation system outputs the list of common, miss-
ing, and extra GRs to the output file.

3

The evaluation system correlates across all sentences in the test set1:

• nsents: the number of sentences in the test set.

• std-total-GR-type: the number of standard GRs of type GR-type.

• tst-total-GR-type: the number of test GRs of type GR-type.

• agree-GR-type: the number of GRs of type GR-type for which a match was
found.

2.1 Output Formats
This section briefly outlines the alternative output formats available. The output file
specified (see Section 5) contains for each sentence: the sentence number, the sentence,
the list of common GRs (“In both”), the missing GRs (“Standard only”), and the extra
GRs (“Test only”) outlined in the previous section. The sentence summary output for-
mat outlined in Section 2.1.3 is then output to the file. The micro- and macro-averaged
scores for each relation (and for the test set overall as outlined in Section 2.1.2) are
then output to the file (outlined in Section 2.1.1).

2.1.1 Relation Summary

The relation summary format reports the precision, recall, and F1 for each GR-type.
For all but one option these are computed by percolating up the counts for std-total-
tst-total- and agree- up the heirarchy, reflecting the average performance across each
GR-type and it’s associated sub-types in the hierarchy. However, for the hierarchy
method outlined in Section 4.4, these counts are not percolated upwards in a routine
fashion. Section 4.4 outlines full details of how the counts are percolated upwards.

Once the counts have been percolated upwards in the hierarchy we can determine
precision, recall, and F1 for each GR-type using:

precision =
agree − GR − type

tst − total − GR − type
(1)

recall =
agree − GR − type

std − total − GR − type
(2)

F1 =
2 × precision× recall

precision + recall
(3)

Note that the relation summary includes the summary output outlined in Section 2.1.2.
1Note that the std-total- tst-total- and agree- scores are recorded for each GR-type

4

2.1.2 Summary

The summary format reports the micro-averaged and macro-averaged precision, recall,
and F1 scores over all relations. The micro-averaged scores represent the performance
of these performance measures considered over all GR-types. Thus, these scores are
identical to the scores reported for the dependency relation in the relation summary
format outlined in the previous section.

The macro-averaged scores represent the average of each score over the 17 GR-
types. However, these scores are not calculated using the percolated counts. Precision,
recall and F1 are determined for each GR-type using the raw counts of std-total- tst-
total- and agree- over each GR-type. The average of each of these measures over
each GR-type is then calculated to report the ‘macro’ average of the scores. These
scores place equal importance over each GR-type rather than over those that occur
more frequently.

2.1.3 Sentence Summary
This format outputs precision, recall and F1 for each sentence in the test set. These
scores are determined for each sentence using the equations outlined in Section 2.1.1.

2.2 GR Match
This section outlines the definition of a ‘match’ between two GRs (test and standard).
This definition holds over all GR-type definitions except for the hierarchy method out-
lined in Section 4.4, which describes slight modifications to this definition.

In order for the test GR (tst) to match a given standard GR (std) the following must
hold:

• the GR-types of std and tst match and

• the slots (the values in the slots) match.

As previously mentioned, the definition of a GR-type match differs between schemes
and the set of slots to compare differs. Section 2.2.1 will define the slots that occur
in each GR-type and Section 2.2.2 gives the definition of a match between two given
slots.

2.2.1 Slots
Figure 2 illustrates the list of 16 possible GR-types (we do not include the passive
GR-type in evaluation) and the set of associated slots. For each GR-type all and only
these slots must occur. Though the slot values may contain “ ” if the optional slot is
unspecified. The system will output an error message if a GR-type does not occur with
the specified number of slots shown in the figure.

5

(dependent subtype head dependent)
(mod subtype head dependent)
(ncmod subtype head dependent)
(xmod subtype head dependent)
(cmod subtype head dependent)
(pmod head dependent)
(det head dependent)
(arg_mod subtype head dependent)
(arg subtype head dependent)
(subj head dependent initial-gr)
(ncsubj head dependent initial-gr)
(xsubj head dependent initial-gr)
(csubj head dependent initial-gr)
(subj_dobj head dependent)
(comp head dependent)
(obj head dependent)
(dobj head dependent)
(obj2 head dependent)
(iobj head dependent)
(clausal head dependent)
(xcomp subtype head dependent)
(ccomp subtype head dependent)
(pcomp head dependent)
(aux head dependent)
(conj head dependent)
(ta subtype head dependent)
%(passive head)

Figure 2: The GR-types with associated required slots.

6

2.2.2 Slot Match

A number of options are available for the evaluation system. One option outlines which
set of slots to compare. However, the definition of a slot match remains constant across
these options. Two slots (of the same type) are considered to match if one of the
following constraints hold given the slot values tst-arg and std-arg for test and standard
slots, respectively:

1. the values tst-arg and std-arg are identical (including unspecified value of).

2. tst-arg and std-arg are both specified (not) and:

(a) either tst-arg or std-arg specifies the value ellip, signifying that that the
argument references an ellipsis or

(b) std-arg is a word in the multiword tst-arg. A multiword represents an NE
in the text where words are separated by .

3. either tst-arg or std-arg are unspecified () and:

(a) the slot is of type type and
(b) the GR-type is one of mod, ncmod, xmod, cmod, pmod, arg, xcomp,

ccomp, ta.

Note that the slot match criteria 2b accounts for the use of named-entity recognition
during parsing. That is, the test files include versions of the text and gold standard using
NE markup. In this case the last word in the NE item appears in the gold standard.
When parsing RASP will output these multiword constituents as a single word where
words are separated by “ ”. For example, the second sentence in the test file is2:

ˆ The following issues were recently filed with the
<w>Securities and Exchange Commission</w>:

In this case, the test file (the .parses file outlined in Section 5) should include GRs
containing the multi-word item ‘Securities and Exchange Commission’ to enable the
slot value to match with the standard GRs for the sentence:

(ncsubj filed issues obj)
(ncmod _ filed recently)
(aux filed were)
(passive filed)
(iobj filed with)
(dobj with Commission)
(det Commission the)
(det issues The)
(ncmod _ issues following)

2The beginning of sentence marker is ∧.

7

3 Slot Comparison
The definition of a slot match was given in Section 2.2.2. In this section we will outline
the alternative slot comparison options available. That is, options that define which set
of slots to compare. All slots in the set compared must match for the slots to match.

These options, outlined in the following sections, can be summarised as follows:

• All: all slots are compared.

• Head-Dependent: only head and dependent slots are compared.

• Head-Dependent-NCSUBJ: in addition to comparing the head and dependent
slots, we compare the initial-GR slot for the ncsubj GR-type if the value of
the slot is obj in either the test or standard.

3.1 All
For the ALL slot comparison option, all slots are compared between the standard and
test relation. For each slot in the standard relation, we determine whether or not this
slot is present in the test relation. If the slots are both present in the test relation then
we compare the slots. If a slot is not present in either the test or standard relation then
the slot is considered correct by default. All slots that are present in both the standard
and test relation are required to match.

For example, if the standard relation and the test relation specify ncmod and iobj,
respectively, then we will compare the slots head and dependent only and we will
ignore the type slot. If the values in the head and dependent slots match then the
slots are considered to match.

Note that the original evaluation scheme uses a modified version of this definition:
the number of slots in both the standard and test relations must be equal. However,
the scheme does not specify that these slots must contain the same set of slot types.
We relaxed this original definition for the new schemes (as outlined above) to enable
comparison between the slots of any two GR-types.

3.2 Head-Dependent
For the HEAD-DEPENDENT option, only the head and dependent slots are compared.

3.3 Head-Dependent-NCSUBJ
For the HEAD-DEPENDENT-NCSUBJ option, the head and dependent slots are
compared. Further, if the GR-type is ncsubj then we compare the initial-GR slot
if the slot value is obj in either the test or standard.

4 GR-Type Match
This section outlines the various options for determining a GR-type match. That is,
whether or not the GR-type of the standard relation (std-GR) and test relation (tst-

8

GR) match. These options, outlined in the following sections, can be summarised as
follows:

• Original: the tst-GR can be

– equal to the std-GR,
– more general than the std-GR by one level in the hierarchy or
– more specific than the std-GR by any number of levels in the hierarchy.

• Equality: the tst-GR must be equal to the std-GR.

• Subsumption: the tst-GR can be:

– equal to or
– more general than the std-GR by any number of levels in the hierarchy.

• Hierarchy: this scheme returns the most specific GR-type in the hierarchy that
subsumes both the tst-GR and std-GR. A match is always returned and, thus, a
match is considered to occur at this level in the hierachy.

4.1 Original
The original GR-type match can be summarised as follows, the tst-GR can be:

• equal to the std-GR,

• more general than the std-GR by one level in the hierarchy or

• more specific than the std-GR by any number of levels in the hierarchy.

The original scheme enables the tst-GR to be more general by one level in the hi-
erarchy, and only if the std-GR is a leaf node in the hierachy. Note that the current
standard does not contain any GR-types that are not leaf nodes in the hierachy. There-
fore, the test GR-type will never be more specific than the standard.

4.2 Equality Based
The original GR-type match scheme outlined in the previous section enables the GR-
type to be more general than the standard. Therefore, the reported performance does
not provide information on how well the parser is determining a particular GR-type.
For example, we may wish to know how well the system performs in terms of the
ncmod GR-type. Currently, if the standard contains a ncmod, the test may return a mod
or an ncmod. Thus the user does not know the individual counts of these two scenarios.
Two systems will seem to perform equally as well even if one returns the more precise
match ncmod more frequently than the other. Therefore, the equality based GR-type
match measures the exact performance of each GR-type. That is, it performs GR-type
matching by requiring the GR-type to be equal.

9

4.3 Subsumption Based
As previously mentioned, the GR-types present in the standard are only those that occur
as leaf nodes in the hierarchy. That is, the standard contains only the most specific GR-
type possible. Thus, the test relation will never be more specific than the standard and
it would be more beneficial to determine performance by enabling test relations to be
more general by any degree in the hierachy. Therefore, the subsumption based GR-type
match considers the tst-GR and std-GR to match if tst-GR is equal to or more general
than the std-GR.

4.4 Hierarchy Based
While the previous schemes enable the tst-GR to be either equal to and optionally
more general than the std-GR, they do not report the unlabelled dependency accuracy.
The unlabelled dependency performance reflects how well we determine any type of
dependency relation. That is, how well we perform just on matching the required
slots. Many parsers report this measure and it would be beneficial for comparison if
the evaluation system reported this performance.

The unlabelled dependency performance reflects how well we do at the level of
dependent in the hierarchy. That is, if we enable any two GR-types to match and
define a GR match to occur if the required slots all match. Similarly, we may wish to
determine how well we do at the level of mod. At mod level of the hierarchy we can
define that two GR-types match if they are both one of: mod, ncmod, cmod, pmod.
Determining a score for mod in this way enables us to compare the performance of
RASP at determining modifiers to another parser that does not make the fine-grained
distinction between modifier types. That is, we do not penalise RASP for trying to
make finer-grained distinctions.

Thus, at any level in the hierarchy we wish to see how well we do if we enable
GR-type match to occur between any two GR-types at that level or lower in the hi-
erarchy. We determine the ‘GR-type match’ as the the most specific GR-type in the
hierarchy that subsumes both the tst-GR and std-GR GR-types. A GR-type match is
always returned for a given test GR (tst-GR) and list of standard GRs (std-GR-list). As
previously mentioned, a GR match is determined between a test and standard GR if
the GR-types match and the set of required slots match. However, we do not wish to
match to the first item in the std-GR-list for which the slots match. Instead, we wish
to match the tst-GR to a standard GR for which the slots match and also the GR match
(the GR-type that subsumes both the test and standard GR) is the most specific.

Given that the relation tst-GR finds a matching std-GR (the slots match) with the
GR-type match grtype-common, we percolate up counts for std-total- tst-total- and
agree- GR-types as follows:

• std-total-GR-type: increment this count for the given GR-type in the hierarchy if
the GR-type is equal to or subsumes the std-GR GR-type.

• tst-total-GR-type: increment this count for the given GR-type in the hierarchy if
the GR-type is equal to or subsumes the tst-GR GR-type.

10

• agree-GR-type: increment this count for the given GR-type in the hierarchy if
the GR-type is equal to or subsumes the grtype-common.

Note that for each GR in ‘missing’ or ‘extra’ lists outlined in Section 2 we also
percolate up the counts for std-total- and tst-total-, respectively, for each GR-type as
above.

5 Resources
This section outlines all of the key files which comprise or are required by the evalua-
tion system. Section 5.1 gives details of the gold standard files and required format of
the test files. These resources can be found in $RASP/extra/neweval ($RASP-EVAL,
henceforth). Example files have been included in the $RASP-EVAL directory: exam-
ple.out, example.grtext, example.parses and example.output as well as the NE versions
of each.

5.1 Test Files and Gold Standard
5.1.1 Gold Standard - Parc700 Depbank

King, Crouch, Riezler, Dalrymple & Kaplan (2003) outline the development of the
PARC 700 Dependency Bank (henceforth, DepBank), a gold-standard set of relational
dependencies for 700 sentences (originally from the Wall Street Journal) drawn at ran-
dom from Section 23 of the Penn Treebank. Briscoe & Carroll (2005) extend DepBank
with a set of gold-standard GRs and (manually corrected) PoS tags. The extended Dep-
Bank file can be found at $RASP-EVAL/gold700files.rasp, note that this file includes
all 700 sentences.

We will use the gold-standard GRs to measure parser accuracy, over the same 560
sentence test suite from the DepBank utilised by Kaplan, Riezler, King, Maxwell,
Vasserman & Crouch (2004). The 560 test suite subset and the NE version of this subset
can be found in $RASP-EVAL/parc700/gold560.raspand in $RASP-EVAL/parc700/gold560ne.rasp,
respectively.

5.1.2 Text and Pre-processed Files
The text file (to parse) and the NE version of this text file can be found in $RASP-
EVAL/parc700/test.not-ne and in $RASP-EVAL/parc700/test.ne, respectively. These
files have sentence boundaries automatically detected and the -s option should be used
when invoking $RASP/scripts/rasp.sh over these files.

Alternatively, the user can employ $RASP/scripts/rasp parse.sh using the pre-processed
versions of test.not-ne and test.ne: $RASP-EVAL/parc700/test.not-ne.stag.data and
$RASP-EVAL/parc700/test.ne.stag.data, respectively. Note that these files contain the
pre-processed text using the PoS tagger in forced-choice mode.

11

5.2 Running the Evaluation System
Two scripts are provided: eval.sh and eval system.sh. This section outlines the de-
tails of utilising these script files that invoke in the evaluation system. The eval.sh
script is designed to pre-process the RASP output file ready for the eval system.sh
script. The resulting file formats prepared by eval.sh are outlined in Section 5.2.1. The
eval system.sh script accepts these pre-processed input files and a number of input pa-
rameters that define the evaluation options including the set of slots to compare and the
definition of GR-type match as outlined previously.

The input parameters for each script are described in Section 5.2.2. Example invo-
cation (the same evaluation scheme is applied in each) over parser out file example.out:

./eval.sh -d -t example -e’-u -o -s n -g s -m’

./eval_system.sh -t example -c sents-tst.gr -u -o -s n -g s -m

5.2.1 Input Formats

$RASP-EVAL/eval.sh takes the RASP output format in file x.out (see e.g. $RASP-
EVAL/example.out) and produces x.trans.grtext and x.trans.parses (or x.grtext and x.parses
depending on which evaluation options are utilised) in the format required by $RASP-
EVAL/eval system.sh. These files contain the sentences and GR sets from x.out, re-
spectively.

This section outlines the required formats for .grtext and .parses files to enable
users to utilise the evaluation system with other parsers, if required. The next section
outlines the input parameters available to each script.

Users who employ the RASP parser can utilise the eval.sh script to automati-
cally create these input files from RASP output file x.out. Eval.sh then invokes the
eval system.sh script with these input files.

Note that the files input into eval system.sh must contain GRs in which the original
word occurs and not the morphological variant of the word e.g $RASP-EVAL/parc700/test.not-
ne.stag compared to $RASP-EVAL/parc700/test.not-ne.stag.data. The eval.sh script
automatically converts the GR words from e.g. asset+s to assets using the eval transform.sh
script. If the user wishes to parse the $RASP-EVAL/parc700/test.(not-)ne.stag file in-
stead which does not include morphological variants (so that RASP will output GRs
with the original word forms) then the user should use the -x option for eval.sh out-
lined below. However, performance using subcategorisation or phrasal verbs (using
the rasp parse.sh options -s and -x respectively) will not correspond to the true perfor-
mance as the stem of the verb is required by RASP in these cases. Therefore, the user is
directed to parse the $RASP-EVAL/parc700/test.(not-)ne.stag.data files which include
the morphological variants of words.

• x.grtext
An example of the format required is shown in $RASP-EVAL/example.grtext.
The file is required to have the sentence number (starting at 1) followed on the
next line by the sentence itself. The sentence should be tokenised into the set
that specifies the possible items that may appear in the GR slots as values. The

12

evaluation system will output an error if a value occurs in a GR slot that is not
present in this sentence. A blank line should follow each sentence.

• x.parses
An example of the format required is shown in $RASP-EVAL/example.parses.
The example file begins with two lines that can be ignored and these lines do not
necessarily have to occur in the .parses file. All input prior to the first sentence
(the token 1 shown on line 4 of example.parses) will be ignored. Each sentence
should be numbered (starting from 1) followed by a blank line and then the GR
set for the sentence (where one GR occurs per line). A blank line should follow
each GR set.

Both the x.parses and x.grtext contain information for each sentence, where the in-
formation is labelled by the sentence number. Note that each file input to eval system.sh
should specify the same number of sentences otherwise an error will be returned by the
system. Further, the evaluation system ensures that the same sentence number is com-
pared from x.grtext, x.parses and the standard file. Therefore, these files must contain
the sentence information labelled with the correct sentence number (sentence number-
ing starts at 1 for all files).

5.2.2 Script Parameters
Both eval.sh and eval system.sh can be used to invoke the evaluation system (in eval system.sh).
The eval.sh script should be used if the user first wishes to create the input files x.grtext
and x.parses from the RASP output file x.out. The switches all have a default value of
false. Example invocations (calling equivalent schemes in the evaluation system):

./eval.sh -d -t example -e’-u -o -s n -g s -m’

./eval_system.sh -t example -c sents-tst.gr -u -o -s n -g s -m

Eval.sh parameters:

• -t <test-file>
This option is used to specify the the test file name (test-file). That is, the x in
the RASP output file x.out. Note that if the -r switch is used the test file specified
will be created by parsing the appropriate test suite.

• -r : run rasp switch
This switch specifies to run rasp over the text file $RASP-EVAL/parc700/test.not-
ne to create the specified test-file.out file.

• -n : NE switch
This switch specifies that sentences with NE mark-up were or are to be parsed.
Therefore, the file sent-ne-tst.gr will be used as the standard in place of the sents-
tst.gr. Note that these standard files are automatically created by eval.sh using ei-
ther $RASP-EVAL/parc700/gold560.raspor $RASP-EVAL/parc700/gold560ne.rasp.

13

Therefore, the most recent version of the gold standard(s) will be employed dur-
ing evaluation.
Used in conjunction with the -r switch results in RASP parsing the text file with
NE mark-up $RASP-EVAL/parc700/test.ne instead of $RASP-EVAL/parc700/test.not-
ne.

• -x : translate switch
This switch specifies that test-file.out file contains GRs that specify the orig-
inal word already (in the case that the user has deliberately parsed $RASP-
EVAL/parc700/test.(not-)ne.stag file instead of $RASP-EVAL/parc700/test.(not-
)ne.stag.data using the rasp parse.sh script. Hence this switch specifies that the
eval transform.sh script should not be applied.

• -d : debug switch
This switch should be used if the user wishes to keep copies of the x.grtext and
x.parses files. Otherwise these files are removed after the evaluation system
terminates.

• -e <eval system parameters>
The -e option specifies (in single quotes, e.g., -e’-o -u’) the evaluation system pa-
rameters to be passed to the eval system.sh script. These parameters are outlined
below.

Eval system.sh parameters:

• -t <test-file>
This option is used to specify the the test file name (test-file). That is, the x in
the RASP output file x.out and the input files x.grtext and x.parses.

• -c <std-file>
This is the name of the standard file: sents-tst.gr or sents-ne-tst.gr depending on
whether NE markup was used.

• -g <gr-type match>

The different matching schemes for GR-types is outlined in Section 4 including
(e)quality-, (s)ubsumption- and (h)ierarchy-based matching. Hence, the speci-
fied parameters passed with the -g switch are e, s, and h to select these schemes,
respectively. The default value is h.

• -s <slot-compare>
Section 3 outlines the various sets of slots that may be compared including (a)ll,
(h)ead-dependent, head-dependent-(n)csubj. Hence, the specified parameters
passed with the -s switch are a, h, and n to select these schemes, respectively.
The default value is a.

14

• -o : output the original evaluation schemes’ performance
This switch enables the user to output the original evaluation schemes’ per-
formance in addition to the new schemes’. Note that feedback on which GRs
matched is provided for each sentence as well (i.e. common, missing and extra
GR lists outlined in Section 2).

• -u : output the unlabelled dependency performance
This switch enables the user to output the micro- and macro-averaged scores for
unlabelled dependency performance in addition to the new schemes’. Again,
feedback on which GRs matched is provided for each sentence as well.

• -m : output the confusion matrix to standard-out
This switch enables the user to output the confusion matrix for the new scheme
specified.

5.2.3 Error Messages

This section briefly outlines the possible error messages (output by eval system.sh) and
why these errors occur:

• “Reached end of file at different times”
The user has input .grtext .parses and a standard file in which the number of
sentences differs between files. That is, one or more files does not contain enough
sentences compared to the longest file. The .grtext and/or .parses files must be
modified so that the same number of sentences occurs in all three files.

• “Mismatch in sentence numbers: W (text), S (standard), T (test)”
The user has input .grtext .parses and a standard file in which the sentences num-
bers differ at a point in the files. The files are expected to contain sentence
numbers starting from 1 and incrementing by 1 until the end of file. If a sentence
number is missing in one of the input files then this error will occur. The user is
provided with the sentence number specified in the text, standard and test files:
W, S, and T, respectively. The .grtext and/or .parses files must be modified so
that the same sentence numbers occur in order in all three files.

• “Unexpected end of file, stream S”
The stream S may be one of text-str, std-str, or tst-str for the .grtext .parses and
standard file, respectively. The stream specified ended while a GR was being
read in. The user should check the respective file’s end to correct the source of
error.

• “Expecting left parenthesis at byte B, stream S”
The stream S may be one of text-str, std-str, or tst-str for the .grtext .parses and
standard file, respectively. The system was expecting to read in ‘(’ (the beginning
of a GR) at byte B but found a different character. The user should check the
respective file’s end to correct the source of error.

15

All Head-Dependent-NCSUBJ Head-Dependent
GR-type/Model Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Original 71.73 61.25 - - - -
Equality 71.24 56.32 71.49 56.52 71.49 56.52
Subsumption 71.53 59.60 71.78 59.79 71.78 59.79
Hierarchy 73.68 61.98 73.94 62.21 73.94 62.21
Unlabelled 75.91 75.91 76.16 76.16 76.16 76.16

Table 1: Parser Performance over Parc DepBank using different Slot selection schemes
and GR-type match schemes.

• “Unknown relation name G”
The relation name G is not in the set of possible GR-types allowed (see Figure 2
containing the list of allowable GR-types). This could occur in any of the input
files.

• “Not enough arguments to relation in G - expecting S”
An input file contains a GR G that does not contain the specified number of slots.
The slots expected are reported as S.

• “Wrong number of slots in relation G - expecting S”
This error message specifies the same error as the previous message.

6 Current System Performance
This section briefly outlines the ‘current’ performance3 of the RASP system (without
NE markup) measured using the range of evaluation schemes available. The perfor-
mance can be summarised in Table 1, while system performance using NE mark-up is
shown in Table 2.4

References
Briscoe, T. (2005), An introduction to tag sequence grammars and the rasp system

parser.

Briscoe, T. & Carroll, J. (2002), Robust accurate statistical annotation of general text,
in ‘Proceedings of the Conference on Language Resources and Evaluation (LREC
2002)’, Palmas, Canary Islands, pp. 1499–1504.

3This performance was measured in December 2005 since which time the system has been modified.
Users can ascertain the performance of the system they currently utilise via the scripts outlined herein.

4Performance for the schemes was derived by pre-processing the input. Given (ncsubj Vb x i)
and (passive Vb) GRs where Vb is a given verb and x and i can hold any value: we remove the
(passive Vb) GR from the GR set and ensure that i is set to the value obj.

16

All Head-Dependent-NCSUBJ Head-Dependent
GR-type/Model Micro-F1 Macro-F1 Micro-F1 Macro-F1 Micro-F1 Macro-F1

Original 72.96 61.65 - - - -
Equality 72.47 56.75 72.74 56.96 72.74 56.96
Subsumption 72.78 59.97 73.05 60.19 73.05 60.19
Hierarchy 74.84 62.42 75.11 62.66 75.11 62.66
Unlabelled 77.56 77.56 77.83 77.83 77.83 77.83

Table 2: Parser Performance over Parc DepBank NE data using different Slot selection
schemes and GR-type match schemes.

Briscoe, T. & Carroll, J. (2005), Evaluating the speed and accuracy of a domain-
independent stastistical parser on the PARC Depbank. Submitted.

Kaplan, R., Riezler, S., King, T., Maxwell, J., Vasserman, A. & Crouch, R. (2004),
Speed and accuracy in shallow and deep stochastic parsing, in ‘Proceedings of the
Human Language Technology conference / North American chapter of the Asso-
ciation for Computational Linguistics annual meeting’, Boston, Massachusetts,
pp. 97–113.

King, T., Crouch, R., Riezler, S., Dalrymple, M. & Kaplan, R. (2003), The PARC700
Dependency Bank, in ‘Proceedings of the 4th International Workshop on Linguis-
tically Interpreted Corpora (LINC-03)’.

17

	Introduction
	Evaluation System
	Output Formats
	GR Match

	Slot Comparison
	All
	Head-Dependent
	Head-Dependent-NCSUBJ

	GR-Type Match
	Original
	Equality Based
	Subsumption Based
	Hierarchy Based

	Resources
	Test Files and Gold Standard
	Running the Evaluation System

	Current System Performance

