
Parsing with CCG

- Lecture 6-

Syntactic formalisms for natural language parsing

FI MU autumn 2011

2

Categorial Grammar is

: a lexicalized theory of grammar along with other theories of grammar

such as HPSG, TAG, LFG, . . .

: linguistically and computationally attractive

language invariant combination rules, high efficient parsing

3

Outline

1. A-B categorial system

2. Lambek calculus

3. Extended Categorial Grammar

● Variation based on Lambek calculus

– Abstract Categorial Grammar, Categorial Type Logic

● Variation based on Combinatory Logic

– Combinatory Categorial Grammar (CCG)

– Multi-modal Combinatory Categorial Grammar

4

Main idea in CG and application operation

● All natural language consists of operators and of operands.

● Operator (functor) and operand (argument)
● Application: (operator(operand))
● Categorial type: typed operator and operand

5

1. A-B categorial system

The product of the directional adaptation by Bar-Hillel (1953) of Ajdukiewicz’s

calculus of syntactic connection (Ajdukiewicz, 1935)

Definition 1 (AB categories).
Given A, a finite set of atomic categories, the set of categories C is the

smallest set such that:

• A C⊆

• (X\Y), (X/Y) C if X,Y C∈ ∈

6

● Categories (type): primitive categories and derivative

categories

– Primitive: S for sentence, N for nominal phrase

– Derivative: S/N, N/N, (S\N)/N, NN/N, S/S...

● Forward(>) and backward (<) functional application

a. X/Y Y X ⇒ (>)

b. Y X\Y X ⇒ (<)

7

● Calculus on types in CG are analogue to arithmetic subtraction

x/y x → y ≈ 2/4 * 2 = 4

8

defeated Germany Brazil
operator operand operand

@ defeated (Germany)

@ ((defeated(Germany))Brazil)

Applicative tree of Brazil defeated Germany

9

Limitation of AB system

1. Relative construction
a. team

i
that t

i
 defeated Germany

b. team
i
 that Brazil defeated t

i

a'. that (n\n)/(s\n)

b'. that (n\n)/(s/n)

team [that]
(n\n)/(s\n)

 [defeated Germany]
s\n

team [that]
(n\n)/(s/n)

 [Brazil defeated]
s/n

team that

Brazil defeated

 (n\n)/(s/n) n (s\n)/n
(?)

10

2. Agrammatical sentence considered as well-formed structure

*a man good

 n/n n n\n

 n : ((good)man)

 n : (a((good)man))

a good man

n/n n\n n

 n : ((good)man)

 n : (a((good)man))

3. Many others complex phenomena

– Coordination

– Object extraction, unbounded dependencies,...

4. AB's generative power is too weak.

11

2. Lambek calculus (Lambek, 1958, 1961)
- on the calculus of syntactic types

The axioms of Lambek calculus are the following:

1 . x → x
2 . (xy)z → x(yz) →(xy)z (the axioms 1, 2 with inference rules, 3, 4, 5)
3 . If xy → z then x → z/y, if xy → z then y → x\z ;
4 . If x → z/y then xy → z, if y → x\z then xy → z ;
5 . If x → y and y → z then x → z.

12

The rules obtained from the previous axioms are the following:

1 . Hypothesis: if x and y are types, then x/y and y\x are types.

2 . Application rules : (x/y)y → x, y (y\x) → x

ex: Poor John works.

3 . Associativity rule : (x\y)/z ↔ x\(y/z)

ex: John likes Jane.

4. Composition rules : (x/y)(y/z) → x/z, (x\y)(y\z) → x\z

ex: He likes him.

s/(n\s) n\s/n

5. Type-raising rules : x → y/(x/y), x → (y/x)\y

13

3. Combinatory Categorial Grammar

➢ Developed originally by M. Steedman (1988, 1990, 2000, ...)

➢ Combinatory Categorial Grammar (CCG) is a grammar formalism equivalent

to Tree Adjoining Grammar, i.e.

✗ it is lexicalized

✗ it is parsable in polynomial time (See Vijay-Shanker and Weir, 1990)

✗ it can capture cross-serial dependencies

➢ Just like TAG, CCG is used for grammar writing

➢ CCG is especially suitable for statistical parsing

14

● several of the combinators which Curry and Feys (1958) use to define

the λ-calculus and applicative systems in general are of considerable

syntactic interest (Steedman, 1988)

● The relationships of these combinators to terms of the λ-calculus are

defined by the following equivalences (Steedman, 2000b):

a. Bfg ≡ λx.f(g x)

b. Tx ≡ λf.f x

c. Sfg ≡ λx.fx(g x)

15

CCG categories

● Atomic categories: S, N, NP, PP, TV. . .
● Complex categories are built recursively from atomic categories and

slashes

● Example complex categories for verbs:

– intransitive verb: S\NP walked

– transitive verb: (S\NP)/NP respected

– ditransitive verb: ((S\NP)/NP)/NP gave

16

Lexical categories in CCG

● An elementary syntactic structure – a lexical category – is assigned to

each word in a sentence, eg:

walked: S\NP ‘give me an NP to my left and I return a sentence’

● Think of the lexical category for a verb as a function: NP is the

argument, S the result, and the slash indicates the direction of the

argument

17

The typed lexicon item

● The CCG lexicon assigns categories to words, i.e. it specifies which

categories a word can have.

● Furthermore, the lexicon specifies the semantic counterpart of the

syntactic rules, e.g.:

love (S\NP)/NP λxλy.loves′xy

● Combinatory rules determine what happens with the category and the

semantics on combination

18

● Attribution of types to lexical items: examples

Predicate

ex: is as an identificator of nominal

 as an operator of predication from a nominal (S\NP)/NP

 from an adjective (S\NP)/(N/N)

 from an adverb (S\NP)/(S\NP)\(S\NP)

 from a preposition (S\NP)/((S\NP)\(S\NP)/NP)

ex: verbs unary (S\NP)

 binary (S\NP)/NP

 ternary (S\NP)/NP/NP

19

Adverbs

Adverb of verb

(S\NP)/(S\NP)

(S\NP)/NP/(S\NP)/NP
Adverb of adverb

(S\NP)/(S\NP)/(S\NP)/(S\NP)

(S\NP)/NP/(S\NP)/NP/(S\NP)/NP/(S\NP)/NP

Adverb of adjective

(N/N)/(N/N)

(N\N)/(N\N)

Adverb of proposition

S/S

Adverb: operator of determination of type (X/X)

20

Preposition

Prep. 1:
constructor of adverbial phrase

(S\NP)\(S\NP)/NP

(S/S)/NP

(S/S)/N

Prep. 2:
constructor of adjectival phrase

(N\N)/NP

(N\N)/N

Preposition: constructor of determination of type (X/X)

21

Dictionary of typed words

Syntactic categories Syntactic types Lexical entries

Nom. N Olivia, apple...

Completed nom. NP an apple, the school

Pron. NP She, he...

Adj. (N/N), (N\N) pretty woman,...

Adv. (N/N)/(N/N),

(S\NP)\(S\NP)...

very delicious,...

Vb (S\NP), (S\NP)/NP... run, give...

Prep. (S\NP)\(S\NP)/NP

(NP\NP)/NP...

run in the park,

book of John,...
Relative (S\NP)/S... I believe that...

22

Combinatorial categorial rules

● Functional application (>,<)
● Functional composition (>B, <B)
● Type-raising (<T, >T)
● Distribution (<S, >S)
● Coordination (<Φ, >Φ)

23

Functional application (FA)

X/Y:f Y:a ⇒ X:fa (forward functional application, >)

Y:a X\Y:f ⇒ X:fa (backward functional application, <)

● Combine a function with its argument:

NP S\NP
S

Mary sleeps → (sleeps (Mary))

NP (S\NP)/NP NP
S\NP → (likes (Mary))

 S
John likes Mary → ((likes (Mary))John)

● Direction of the slash indicates position of the argument with respect to the function

24

Derivation in CCG

● The combinatorial rule used in each derivation step is usually

indicated on the right of the derivation line

● Note especially what happens with the semantic information

25

Function composition (FC)

X/Y:f Y/Z:g ⇒
B
 X/Z:λx.f(gx) (>B)

● Functional composition composes two complex categories (two functions):

(S\NP)/PP (PP/NP) ⇒
Β
(S\NP)/NP

S/(S\NP) (S\NP)/NP ⇒
Β
S/NP

Generalized forward composition (>Bn)

26

Generalized backward composition (<Bn)

Y\Z:f X\Y:g ⇒
B
 X\Z:λx.f(gx) (<B)

27

Type-raising (T)

X:a ⇒ T/(T\X):λf.fa (>T)

● Type-raising turns an argument into a function (e.g. for case assignment)

NP ⇒ S/(S\NP) (nominative)

● This must be used e.g. in the case of WH-movement

Forward type-raising (>T)

28

Example of functional composition (>B) and type-raising (T)

29

X:a ⇒ T\(T/X):λf.fa (<T)

● Type-raising turns an argument into a function (e.g. for case assignment)

NP ⇒ (S\NP)\((S\NP)/NP) (accusative)

Backward type-raising (<T)

30

Coordination (&)

X CONJ X⇒
Φ
 X (Coordination (Φ))

31

Substitution (S)

Forward substitution (>S)

(X/Y)/Z Y/Z ⇒
S
 X/Z

• Application to parasitic gap such as the following:

a. team that I persuaded every detractor of to support

32

Substitution (S)

Backward crossed substitution (<S×)

Y/Z (X\Y)/Z ⇒
S
 X/Z

• Application to parasitic gap such as the following:

a. John watched without enjoying the game between Germany and Paraguay.
b. game that John watched without enjoying

game that John [watched]
(s\np)/np

 [without enjoying]
((s\np)\(s\np))/np

33

Limit on possible rules

➢ The Principle of Adjacency:
Combinatory rules may only apply to entities which are linguistically realised

and adjacent.

➢ The Principle of Directional Consistency:
All syntactic combinatory rules must be consistent with the directionality of the

principal function. ex: X\Y Y ≠> X

➢ The Principle of Directional Inheritance:
If the category that results from the application of a combinatory rule is a

function category, then the slash defining directionality for a given argument in

that category will be the same as the one defining directionality for the

corresponding arguments in the input functions. ex: X/Y Y/Z ≠> X\Z.

34

Semantic in CCG

● CCG offers a syntax-semantics interface.

● The lexical categories are augmented with an explicit identification of their

semantic interpretation and the rules of functional application are

accordingly expanded with an explicit semantics.

● Every syntactic category and rule has a semantic counterpart.

● The lexicon is used to pair words with syntactic categories and semantic

interpretations:

love (S\NP)/NP ⇒ λxλy.loves′xy

35

● The semantic interpretation of all combinatory rules is fully determined by

the Principle of Type Transparency:

– Categories: All syntactic categories reflect the semantic type of the

associated logical form.

– Rules: All syntactic combinatory rules are type-transparent versions of

one of a small number of semantic operations over functions including

application, composition, and type-raising.

36

proved := (S\NP
3s

)/NP : λxλy.prove'xy

● the semantic type of the reduction is the same as its syntactic type, here functional
application.

37

CCG with semantics : Mary will copy and file without reading these articles

38

Parsing a sentence in CCG

Step 1: tokenization

Step 2: tagging the concatenated lexicon

Step 3: calculate on types attributed to the concatenated lexicons by

applying the adequate combinatorial rules

Step 4: eliminate the applied combinators (we will see how to do on next week)

Step 5: finding the parsing results presented in the form of an

operator/operand structure (predicate -argument structure)

39

Example: I requested and would prefer musicals

STEP 1 : tokenization/lemmatization → ex) POS Tagger, tokenizer, lemmatizer

a. I-requested-and-would-prefer-musicals

b. I-request-ed-and-would-prefer-musical-s

STEP 2 : tagging the concatenated expressions → ex) Supertagger,
Inventory of typed words

I NP

Requested (S\NP)/NP
And CONJ
Would (S\NP)/VP
Prefer VP/NP
musicals NP

40

STEP 3 : categorial calculus

a. apply the type-raising rules

b. apply the functional composition rules

c. apply the coordination rules

I- requested- and- would- prefer- musicals

1/ NP (S\NP)/NP CONJ (S\NP)/VP VP/NP NP

2/ S/(S\NP) (S\NP)/NP CONJ (S\NP)/VP VP/NP NP (>T)

3/ S/(S\NP) (S\NP)/NP CONJ (S\NP)/NP NP (>B)

4/ S/(S\NP) (S\NP)/NP NP (>Ф)
5/ S/(S\NP) (S\NP)/NP NP (>B)

6/ S/NP NP (>)

7/ S

41

STEP 4 : semantic representation (predicate-argument structure)

I requested and would prefer musicals

1/ :i' :request' :and' : will' :prefer' : musicals'

2/ :λf.f I'

3/ : λx.λy.will'(prefer'x)y

4/ : λtvλxλy.and'(will'(prefer'x)y))(tv xy)

5/ : λxλy.and'(will'(prefer'x)y)(request'xy)

6/ :λy.and'(would'(prefer' musicals')y)(request' musicals' y)

7/S: and'(will'(prefer' musicals') i')(request' musicals' i')

42

Variation of CCG : Multi-modal CCG (Baldridge, 2002)

● Modalized CCG system

● Combination of Categorial Type Logic (CTL, Morrill, 1994; Moortgat, 1997) into the

CCG (Steedman, 2000)

● Rules restrictions by introducing the modalities: *, x, •, ◊

● Modalized functional composition rules

● Invite you to read the paper “Multi-Modal CCG” of (Baldridge and M.Kruijff, 2003)

43

The positions of several formalisms on the Chomsky hierarchy

44

Classwork

Exercise of taggings and of categorial calculus

See the given paper!!

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44

