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Categorial Grammar is

: a lexicalized theory of grammar along with other theories of grammar 

such as HPSG, TAG, LFG, . . .

: linguistically and computationally attractive

language invariant combination rules, high efficient parsing
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Outline

1. A-B categorial system

2. Lambek calculus

3. Extended Categorial Grammar

● Variation based on Lambek calculus

– Abstract Categorial Grammar, Categorial Type Logic

● Variation based on Combinatory Logic

– Combinatory Categorial Grammar (CCG)

– Multi-modal Combinatory Categorial Grammar
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Main idea in CG and application operation

● All natural language consists of operators and of operands.

● Operator (functor) and operand (argument)
● Application: (operator(operand))
● Categorial type: typed operator and operand 
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1.  A-B categorial system

The product of the directional adaptation by Bar-Hillel (1953) of Ajdukiewicz’s

calculus of syntactic connection (Ajdukiewicz, 1935)

Definition 1 (AB categories). 
Given A, a finite set of atomic categories, the set of categories C is the 

smallest set such that:

• A C⊆

• (X\Y), (X/Y)  C if X,Y  C∈ ∈
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● Categories (type): primitive categories and derivative 

categories

– Primitive: S for sentence, N for nominal phrase

– Derivative: S/N, N/N, (S\N)/N, NN/N, S/S...

● Forward(>) and backward (<) functional application

a. X/Y Y  X ⇒       (>)

b. Y X\Y  X ⇒  (<)
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● Calculus on types in CG are analogue to arithmetic subtraction 

x/y   x   → y       ≈        2/4  *  2  = 4
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defeated Germany Brazil
operator   operand operand

@ defeated (Germany)

@ ((defeated(Germany))Brazil)

Applicative tree of Brazil defeated Germany
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Limitation of AB system

1. Relative construction
a. team

i 
that t

i 
 defeated Germany

b. team
i 
 that Brazil defeated t

i 

a'. that (n\n)/(s\n)

b'. that (n\n)/(s/n)

team [that]
(n\n)/(s\n)

 [defeated Germany]
s\n

team [that]
(n\n)/(s/n)

 [Brazil defeated]
s/n

team      that        
 
Brazil      defeated

                   (n\n)/(s/n)      n          (s\n)/n
(?)
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2. Agrammatical sentence considered as well-formed structure

*a   man good

 n/n   n     n\n

 n : ((good)man)

 n : (a((good)man))

a     good   man

n/n   n\n     n 

              n : ((good)man)   

 n : (a((good)man)) 

3. Many others complex phenomena

– Coordination

– Object extraction, unbounded dependencies,...

4. AB's generative power is too weak.
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2.  Lambek calculus (Lambek, 1958, 1961)
- on the calculus of syntactic types

The axioms of Lambek calculus are the following:

1 . x → x
2 . (xy)z → x(yz) →(xy)z (the axioms 1, 2 with inference rules, 3, 4, 5)
3 . If xy → z then x → z/y, if xy → z then y → x\z ;
4 . If x → z/y then xy → z, if y → x\z then xy → z ;
5 . If x → y and y → z then x → z.
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The rules obtained from the previous axioms are the following:

1 . Hypothesis: if x and y are  types, then x/y and y\x are types.

2 . Application rules : (x/y)y → x, y (y\x) → x

ex: Poor John works.

3 . Associativity rule : (x\y)/z ↔ x\(y/z)

ex: John likes Jane.

4. Composition rules : (x/y)(y/z) → x/z, (x\y)(y\z) → x\z

ex: He likes him.

s/(n\s) n\s/n

5. Type-raising rules : x → y/(x/y), x → (y/x)\y
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3.  Combinatory Categorial Grammar

➢ Developed originally by M. Steedman (1988, 1990, 2000, ...)

➢ Combinatory Categorial Grammar (CCG) is a grammar formalism equivalent 

to Tree Adjoining Grammar, i.e.

✗ it is lexicalized

✗ it is parsable in polynomial time (See Vijay-Shanker and Weir, 1990)

✗ it can capture cross-serial dependencies

➢ Just like TAG, CCG is used for grammar writing

➢ CCG is especially suitable for statistical parsing
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● several of the combinators which Curry and Feys (1958) use to define 

the λ-calculus and applicative systems in general are of considerable 

syntactic interest (Steedman, 1988)

● The relationships of these combinators to terms of the λ-calculus are 

defined by the following equivalences (Steedman, 2000b):

a. Bfg ≡ λx.f(g x)

b. Tx ≡ λf.f x

c. Sfg ≡ λx.fx(g x)
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CCG categories

● Atomic categories: S, N, NP, PP, TV. . . 
● Complex categories are built recursively from atomic categories and

slashes

●  Example complex categories for verbs:

– intransitive verb: S\NP walked

– transitive verb: (S\NP)/NP respected

– ditransitive verb: ((S\NP)/NP)/NP gave
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Lexical categories in CCG

● An elementary syntactic structure – a lexical category – is assigned to

each word in a sentence, eg:

walked: S\NP ‘give me an NP to my left and I return a sentence’

● Think of the lexical category for a verb as a function: NP is the 

argument, S the result, and the slash indicates the direction of the 

argument
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The typed lexicon item

● The CCG lexicon assigns categories to words, i.e. it specifies which 

categories a word can have.

● Furthermore, the lexicon specifies the semantic counterpart of the 

syntactic rules, e.g.:

love (S\NP)/NP λxλy.loves′xy

● Combinatory rules determine what happens with the category and the 

semantics on combination
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● Attribution of types to lexical items: examples

Predicate

ex: is  as an identificator of nominal

          as an operator of predication from a nominal (S\NP)/NP

 from an adjective     (S\NP)/(N/N)

 from an adverb     (S\NP)/(S\NP)\(S\NP)

 from a preposition     (S\NP)/((S\NP)\(S\NP)/NP)

ex:  verbs unary (S\NP) 

         binary (S\NP)/NP

         ternary (S\NP)/NP/NP
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Adverbs

Adverb of verb

(S\NP)/(S\NP)

(S\NP)/NP/(S\NP)/NP
Adverb of adverb

(S\NP)/(S\NP)/(S\NP)/(S\NP)

(S\NP)/NP/(S\NP)/NP/(S\NP)/NP/(S\NP)/NP

Adverb of adjective

(N/N)/(N/N)

(N\N)/(N\N)

Adverb of proposition

S/S

Adverb: operator of determination of type (X/X)
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Preposition

Prep. 1:
constructor of adverbial phrase

(S\NP)\(S\NP)/NP

(S/S)/NP

(S/S)/N

Prep. 2:
constructor of adjectival phrase

(N\N)/NP

(N\N)/N

Preposition: constructor of determination of type (X/X)
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Dictionary of typed words

Syntactic categories Syntactic types Lexical entries

Nom. N Olivia, apple...

Completed nom. NP an apple, the school

Pron. NP She, he...

Adj. (N/N), (N\N) pretty woman,...

Adv. (N/N)/(N/N),

(S\NP)\(S\NP)...

very delicious,...

Vb (S\NP), (S\NP)/NP... run, give... 

Prep. (S\NP)\(S\NP)/NP

(NP\NP)/NP...

run in the park,

book of John,...
Relative (S\NP)/S... I believe that...
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Combinatorial categorial rules

● Functional application (>,<)
● Functional composition (>B, <B)
● Type-raising (<T, >T)
● Distribution (<S, >S)
● Coordination (<Φ, >Φ)
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Functional application (FA)

X/Y:f      Y:a  ⇒    X:fa (forward functional application, >)

Y:a   X\Y:f  ⇒   X:fa (backward functional application, <)

● Combine a function with its argument:

NP S\NP 
S

Mary sleeps → (sleeps (Mary))

NP (S\NP)/NP NP  
S\NP → (likes (Mary))

         S
John likes Mary →  ((likes (Mary))John)

● Direction of the slash indicates position of the argument with respect to the function
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Derivation in CCG

● The combinatorial rule used in each derivation step is usually 

indicated on the right of the derivation line

● Note especially what happens with the semantic information
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Function composition (FC)

X/Y:f      Y/Z:g   ⇒
B
 X/Z:λx.f(gx)     (>B)

● Functional composition composes two complex categories (two functions):

(S\NP)/PP   (PP/NP)  ⇒
Β 
(S\NP)/NP

S/(S\NP)    (S\NP)/NP ⇒
Β 
S/NP

Generalized forward composition (>Bn)
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Generalized backward composition (<Bn)

Y\Z:f      X\Y:g   ⇒
B
 X\Z:λx.f(gx)     (<B)
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Type-raising (T)

X:a    ⇒    T/(T\X):λf.fa     (>T)

● Type-raising turns an argument into a function (e.g. for case assignment)

NP ⇒ S/(S\NP)  (nominative)

● This must be used e.g. in the case of WH-movement

Forward type-raising (>T)
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Example of functional composition (>B) and type-raising (T)



29

X:a    ⇒    T\(T/X):λf.fa     (<T)

● Type-raising turns an argument into a function (e.g. for case assignment)

NP ⇒ (S\NP)\((S\NP)/NP)  (accusative)

Backward type-raising (<T)
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Coordination (&)

X CONJ X⇒
Φ
 X         (Coordination (Φ))
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Substitution (S)

Forward substitution (>S)

(X/Y)/Z Y/Z ⇒
S
 X/Z

• Application to parasitic gap such as the following:

a. team that I persuaded every detractor of to support
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Substitution (S)

Backward crossed substitution (<S×)

Y/Z (X\Y)/Z ⇒
S
 X/Z

• Application to parasitic gap such as the following:

a. John watched without enjoying the game between Germany and Paraguay.
b. game that John watched without enjoying

game that John [watched]
(s\np)/np

 [without enjoying]
((s\np)\(s\np))/np
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Limit on possible rules

➢ The Principle of Adjacency: 
Combinatory rules may only apply to entities which are linguistically realised 

and adjacent.

➢ The Principle of Directional Consistency: 
All syntactic combinatory rules must be consistent with the directionality of the 

principal function.    ex: X\Y Y ≠> X

➢ The Principle of Directional Inheritance: 
If the category that results from the application of a combinatory rule is a 

function category, then the slash defining directionality for a given argument in 

that category will be the same as the one defining directionality for the 

corresponding arguments in the input functions.     ex: X/Y Y/Z ≠> X\Z.
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Semantic in CCG

● CCG offers a syntax-semantics interface.

● The lexical categories are augmented with an explicit identification of their 

semantic interpretation and the rules of functional application are 

accordingly expanded with an explicit semantics.

● Every syntactic category and rule has a semantic counterpart.

● The lexicon is used to pair words with syntactic categories and semantic 

interpretations:

love (S\NP)/NP ⇒ λxλy.loves′xy
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● The semantic interpretation of all combinatory rules is fully determined by 

the Principle of Type Transparency:

– Categories: All syntactic categories reflect the semantic type of the 

associated logical form.

– Rules: All syntactic combinatory rules are type-transparent versions of 

one of a small number of semantic operations over functions including 

application, composition, and type-raising.
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proved := (S\NP
3s

)/NP : λxλy.prove'xy

● the semantic type of the reduction is the same as its syntactic type, here functional 
application.
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CCG with semantics : Mary will copy and file without reading these articles
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Parsing a sentence in CCG 

Step 1: tokenization

Step 2: tagging the concatenated lexicon

Step 3: calculate on types attributed to the concatenated lexicons by 

applying the adequate combinatorial rules

Step 4: eliminate the applied combinators (we will see how to do on next week)

Step 5: finding the parsing results presented in the form of an 

operator/operand structure (predicate -argument structure)
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Example: I requested and would prefer musicals

STEP 1 : tokenization/lemmatization  → ex) POS Tagger, tokenizer, lemmatizer

a. I-requested-and-would-prefer-musicals

b. I-request-ed-and-would-prefer-musical-s

STEP 2 : tagging the concatenated expressions  → ex) Supertagger, 
Inventory of typed words

I                              NP

Requested          (S\NP)/NP
And CONJ
Would     (S\NP)/VP
Prefer VP/NP
musicals               NP
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STEP 3 : categorial calculus

a. apply the type-raising rules

b. apply the functional composition rules

c. apply the coordination rules 

I-                    requested- and- would-        prefer- musicals

1/  NP                         (S\NP)/NP    CONJ    (S\NP)/VP       VP/NP       NP

2/  S/(S\NP)       (S\NP)/NP    CONJ    (S\NP)/VP       VP/NP      NP (>T)

3/  S/(S\NP)                 (S\NP)/NP    CONJ               (S\NP)/NP            NP      (>B) 

4/  S/(S\NP)                           (S\NP)/NP                                                NP     (>Ф)
5/  S/(S\NP)                           (S\NP)/NP                                                NP     (>B)

6/                          S/NP    NP      (>)

7/ S
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STEP 4 : semantic representation (predicate-argument structure)

I     requested  and  would  prefer  musicals

1/  :i'       :request'           :and'            :  will'             :prefer'          : musicals'

2/ :λf.f I'

3/ : λx.λy.will'(prefer'x)y   

4/ : λtvλxλy.and'(will'(prefer'x)y))(tv xy)

5/         : λxλy.and'(will'(prefer'x)y)(request'xy)

6/          :λy.and'(would'(prefer' musicals')y)(request' musicals' y)

7/S: and'(will'(prefer' musicals') i')(request' musicals' i')
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Variation of CCG : Multi-modal CCG (Baldridge, 2002)

● Modalized CCG system

● Combination of Categorial Type Logic (CTL, Morrill, 1994; Moortgat, 1997) into the 

CCG (Steedman, 2000)

● Rules restrictions by introducing the modalities: *, x, •, ◊

● Modalized functional composition rules

● Invite you to read the paper “Multi-Modal CCG” of (Baldridge and M.Kruijff, 2003 )
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The positions of several formalisms on the Chomsky hierarchy
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Classwork

Exercise of taggings and of categorial calculus 

See the given paper!!
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