
Part V

Public-key cryptosystems, I. Key exchange, knapsack, RSA

CHAPTER 5: Public-key cryptography I. RSA

Rapidly increasing needs for flexible and secure transmission of information require to use
new cryptographic methods.

The main disadvantage of the classical (symmetric) cryptography is the need to send a
(long) key through a super secure channel before sending the message itself.

In the classical or secret-key (symmetric) cryptography both sender and receiver share the
same secret key.

In the public-key (assymetric) cryptography there are two different keys:

a public encryption key (at the sender side)

and

a private (secret) decryption key (at the receiver side).

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 2/44

Basic idea - example

Basic idea: If it is infeasible from the knowledge of an encryption algorithm ek to
construct the corresponding description algorithm dk , then ek can be made public.

Toy example: (Telephone directory encryption)

Start: Each user U makes public a unique telephone directory tdU to encrypt messages
for U and U is the only user to have an inverse telephone directory itdU .

Encryption: Each letter X of a plaintext w is replaced, using the telephone directory tdU

of the intended receiver U, by the telephone number of a person whose name starts with
letter X.

Decryption: easy for Uk , with the inverse telephone directory, infeasible for others.

Analogy between secret and public-key cryptography:

Secret-key cryptography 1. Put the message into a box, lock it with a padlock and send
the box. 2. Send the key by a secure channel.

Public-key cryptography Open padlocks, for each user different ones, are freely available.
Only legitimate user has key from his padlocks. Transmission: Put the message into the
box of the intended receiver, close the padlock and send the box.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 3/44

Public Establishment of Secret Keys

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Helmann Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 4/44

KEY DISTRIBUTION / AGREEMENT

One should distinguish between key distribution and key agreement.

Key distribution is a mechanism whereby one party chooses a secret key and then
transmits it to another party or parties.

Key agreement is a protocol whereby two (or more) parties jointly establish a secret
key by communication over a public channel.

The objective of key distribution or key agreement protocols is that, at the end of the
protocols, the two parties involved both have possession of the same key k, and the value
of k is not known (at all) to any other party.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 5/44

MAN-IN-THE-MIDDLE ATTACK

The following attack, by a man-in-the-middle, is possible against the Diffie-Hellman key
establishment protocol.

1 Eve chooses an exponent z.

2 Eve intercepts qx and qy .

3 Eve sends qz to both Alice and Bob. (After that Alice believes she has received qy

and Bob believes he has received qx .)

4 Eve computes KA = qxz (mod p) and KB = qyz (mod p).
Alice, not realizing that Eve is in the middle, also computes KA and
Bob, not realizing that Eve is in the middle, also computes KB .

5 When Alice sends a message to Bob, encrypted with KA, Eve intercepts it, decrypts
it, then encrypts it with KB and sends it to Bob.

6 Bob decrypts the message with KB and obtains the message. At this point he has no
reason to think that communication was insecure.

7 Meanwhile, Eve enjoys reading Alice’s message.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 6/44

Blom’s key pre-distribution protocol

allows a trusted authority (Trent - TA) to distribute secret keys to n(n−1)
2

pairs of n users.

Let a large prime p > n be publiclly known. Steps of the protocol:

1 Each user U in the network is assigned, by Trent, a unique public number rU < p.

2 Trent chooses three random numbers a, b and c, smaller than p.

3 For each user U, Trent calculates two numbers

aU = (a + brU) mod p, bU = (b + crU) mod p

and sends them via his secure channel to U.

4 Each user U creates the polynomial

gU(x) = aU + bU(x).

5 If Alice (A) wants to send a message to Bob (B), then Alice computes her key
KAB = gA(rB) and Bob computes his key KBA = gB(rA).

6 It is easy to see that KAB = KBA and therefore Alice and Bob can now use their
(identical) keys to communicate using some secret-key cryptosystem.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 7/44

Secure communication with secret-key cryptosystems

and without any need for secret key distribution

(Shamir’s “no-key algorithm”)

Basic assumption: Each user X has its own

secret encryption function eX

secret decryption function dX

and all these functions commute (to form a commutative cryptosystem).

Communication protocol

with which Alice can send a message w to Bob.

1 Alice sends eA(w) to Bob

2 Bob sends eB(eA(w)) to Alice

3 Alice sends dA(eB(eA(w))) = eB(w) to Bob

4 Bob performs the decryption to get dB(eB(w)) = w .

Disadvantage: 3 communications are needed (in such a context 3 is a much too large
number).

Advantage: A perfect protocol for distribution of secret keys.
prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 8/44

Cryptography and Computational Complexity

Modern cryptography uses such encryption methods that no “enemy” can have enough
computational power and time to do decryption (even those capable to use thousands of
supercomputers during tens of years for encryption).

Modern cryptography is based on negative and positive results of complexity theory – on
the fact that for some algorithm problems no efficient algorithm seem to exists,
surprisingly, and for some “small” modifications of these problems, surprisingly, simple,
fast and good (randomized) algorithms do exist. Examples:

Integer factorization: Given n(= pq), it is, in general, unfeasible, to find p, q.

There is a list of “most wanted to factor integers”. Top recent successes, using
thousands of computers for months.

(*) Factorization of 229

+ 1 with 155 digits (1996)

(**) Factorization of a “typical” 155-digits integer (1999)

Primes recognition: Is a given n a prime? – fast randomized algorithms exist (1977).
The existence of polynomial deterministic algorithms has been shown only in 2002

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 9/44

Computationaly infeasible problems

Discrete logarithm problem: Given x , y , n, determine integer a such that y ≡ xa(mod n)
– infeasible in general.

Discrete square root problem: Given integers y , n, compute an integer x such that
y ≡ x2(mod n) – infeasible in general, easy if factorization of n is known

Knapsack problem: Given a (knapsack - integer) vector X = (x1, . . . , xn) and a (integer
capacity) c, find a binary vector (b1, . . . , bn) such thatPn

i=1 bixi = c.

Problem is NP-hard in general, but easy if xi >
Pi−1

j=1 xj , 1 < i ≤ n.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 10/44

One-way functions

Informally, a function F : N → N is said to be one-way function if it is easily computable
- in polynomial time - but any computation of its inverse is infeasible.

A one-way permutation is a 1-1 one-way function.
easy

computationaly infeasible

x f(x)

A more formal approach
Definition A function f : {0, 1}∗ → {0, 1}∗ is called a strongly one-way function if the
following conditions are satisfied:

1 f can be computed in polynomial time;

2 there are c, ε > 0 such that |x |ε ≤ |f (x)| ≤ |x |c ;

3 for every randomized polynomial time algorithm A, and any constant c > 0, there
exists an nc such that for n > nc

Pr (A(f (x)) ∈ f −1(f (x))) < 1
nc .

Candidates: Modular exponentiation: f (x) = ax mod n
Modular squaring f (x) = x2 mod n, n − a Blum integer
Prime number multiplication f (p, q) = pq.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 11/44

Trapdoor One-way Functions

The key concept for design of public-key cryptosystems is that of trapdoor one-way
functions.

A function f : X → Y is trapdoor one-way function

if f and its inverse can be computed efficiently,

yet even the complete knowledge of the algorithm to compute f does not make it
feasible to determine a polynomial time algorithm to compute the inverse of f .

A candidate: modular squaring with a fixed modulus.

computation of discrete square roots is unfeasible in general, but quite easy if the
decomposition of the modulus into primes is known.

A way to design a trapdoor one-way function is to transform an easy case of a hard
(one-way) function to a hard-looking case of such a function, that can be, however,
solved easily by those knowing how the above transformation was performed.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 12/44

Example – Computer passwords

A naive solution is to keep in computer a file with entries as

login CLINTON password BUSH,

that is with logins and their passwords. This is not sufficiently safe.

A more safe method is to keep in the computer a file with entries as

login CLINTON password BUSH one-way function fc

The idea is that BUSH is a “public” password and CLINTON is the only one that knows
a “secret” password, say MADONA, such that

fc(MADONA) = BUSH

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 13/44

LAMPORT’s ONE-TIME PASSWORDS

One-way functions can be used to create a sequence of passwords:

1 Alice chooses a random w and computes, using a one-way function h, a sequence of
passwords

w , h(w), h(h(w)), . . . , hn(w)

2 Alice then transfers securely “the initial secret” w0 = hn(w) to Bob.

3 The i-th authentication, 0 < i < n + 1, is performed as follows:

- - - - - - - Alice sends wi = hn−i (w) to Bob for I = 1, 2,. . . ,n-1

- - - - - - - Bob checks whether wi−1 = h(wi).

When the number of identifications reaches n, a new w has to be chosen.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 14/44

General knapsack problem – unfeasible

KNAPSACK PROBLEM: Given an integer-vector X = (x1, . . . , xn) and an integer c.
Determine a binary vector B = (b1, . . . , bn) (if it exists) such that XBT = c.

Knapsack problem with superincreasing vector – easy

Problem Given a superincreasing integer-vector X = (x1, . . . , xn) (i.e.
xi >

Pi−1
j=1 xj , i > 1) and an integer c,

determine a binary vector B = (b1, . . . , bn) (if it exists) such that XBT = c.

Algorithm – to solve knapsack problems with superincreasing vectors:

for i ← downto 2 do
if c ≥ 2xi then terminate {no solution}

else if c > xi then bi ← 1; c ← c − xi ;
else bi = 0;

if c = x1 then b1 ← 1
else if c = 0 then b1 ← 0;

else terminate {no solution}

Example X = (1,2,4,8,16,32,64,128,256,512) c = 999
X = (1,3,5,10,20,41,94,199) c = 242

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 15/44

KNAPSACK ENCODING – BASIC IDEAS

Let a (knapsack) vector

A = (a1, . . . , an)

be given.

Encoding of a (binary) message B = (b1, b2, . . . , bn) by A is done by the vector/vector
multiplication:

ABT = c

and results in the cryptotext c.

Decoding of c requires to solve the knapsack problem for the instant given by the
knapsack vector A and the cryptotext c.

The problem is that decoding seems to be infeasible.

Example
If A = (74, 82, 94, 83, 39, 99, 56, 49, 73, 99) and B = (1100110101) then

ABT =

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 16/44

Design of knapsack cryptosystems

1 Choose a superincreasing vector X = (x1, . . . , xn).

2 Choose m, u such that m > 2xn, gcd(m, u) = 1.

3 Compute u−1 mod m,X ′ = (x ′1, . . . , x
′
n), x ′i = uxi|{z}

diffusion

mod m.

| {z }
confusion

Cryptosystem: X ′ – public key
X , u,m – trapdoor information

Encryption: of a binary vector w of length n: c = X ′w
Decryption: compute c ′ = u−1c mod m

and solve the knapsack problem with X and c ′.

Lemma Let X ,m, u,X ′, c, c ′ be as defined above. Then the knapsack problem instances
(X , c ′) and (X ′, c) have at most one solution, and if one of them has a solution, then the
second one has the same solution.

Proof Let X ′w = c. Then

c ′ ≡ u−1c ≡ u−1X ′w ≡ u−1uXw ≡ Xw(mod m).

Since X is superincreasing and m > 2xn we have

(Xw) mod m = Xw
c ′ = Xw .and therefore

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 17/44

Design of knapsack cryptosystems – example

Example X = (1,2,4,9,18,35,75,151,302,606)
m = 1250, u = 41
X’ = (41,82,164,369,738,185,575,1191,1132,1096)

In order to encrypt an English plaintext, we first encode its letters by 5-bit numbers -
00000, A - 00001, B - 00010,. . . and then divide the resulting binary strings into blocks of
length 10.

Plaintext: Encoding of AFRICA results in vectors

w1 = (0000100110) w2 = (1001001001) w3 = (0001100001)

Encryption: c1′ = X ′w1 = 3061 c2′ = X ′w2 = 2081 c3′ = X ′w3 = 2203

Cryptotext: (3061,2081,2203)

Decryption of cryptotexts: (2163, 2116, 1870, 3599)

By multiplying with u–1 = 61 (mod 1250) we get new cryptotexts (several new c ′)

(693, 326, 320, 789)

And, in the binary form, solutions B of equations XBT = c ′ have the form

(1101001001, 0110100010, 0000100010, 1011100101)

Therefore, the resulting plaintext is:

ZIMBABWE

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 18/44

Story of the Knapsack

Invented: 1978 - Ralph C. Merkle, Martin Hellman
Patented: in 10 countries
Broken: 1982: Adi Shamir

New idea: iterated knapsack cryptosystem using hyper-reachable vectors.

Definition A knapsack vector X ′ = (x1′ , . . . , xn′) is obtained from a knapsack vector
X = (x1, . . . , xn) by strong modular multiplication if

X ′i = uxi mod m, i = 1, . . . , n,
m > 2

Pn
i=1 xiwhere

and gcd(u,m) = 1. A knapsack vector X ′ is called hyper-reachable, if there is a sequence
of knapsack vectors X = x0, x1, . . . , xk = X ′,

where x0 is a super-increasing vector and for i = 1, . . . , k xi is obtained from xi−1 by a
strong modular multiplication.

Iterated knapsack cryptosystem was broken in 1985 - E. Brickell

New ideas: dense knapsack cryptosystems. Density of a knapsack vector X = (x1, . . . , xn)
is defined by d(x) = n

log(max{xi |1≤i≤n})

Remark. Density of super-increasing vectors is ≤ n
n−1

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 19/44

KNAPSACK CRYPTOSYSTEM – COMMENTS

The term “knapsack” in the name of the cryptosystem is quite misleading.

By the Knapsack problem one usually understands the following problem:

Given n items with weights w1,w2, . . . ,wn and values v1, v2, . . . , vn and a knapsack limit
c, the task is to find a bit vector (b1, b2, . . . , bn) such that

Pn
i=1 biwi ≤ c and

Pn
i=1 bivi

is as large as possible.

The term subset problem is usually used for the problem used in our construction of the
knapsack cryptosystem. It is well-known that the decision version of this problem is
NP-complete.

Sometimes, for our main version of the knapsack problem the term Merkle-Hellmman
(Knapsack) Cryptosystem is used.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 20/44

McEliece Cryptosystem

McEliece cryptosystem is based on a similar design principle as the Knapsack
cryptosystem. McEliece cryptosystem is formed by transforming an easy to break
cryptosystem into a cryptosystem that is hard to break because it seems to be based on a
problem that is, in general, NP-hard.

The underlying fact is that the decision version of the decryption problem for linear codes
is in general NP-complete. However, for special types of linear codes polynomial-time
decryption algorithms exist. One such a class of linear codes, the so-called Goppa codes,
are used to design McEliece cryptosystem.

Goppa codes are [2m, n −mt, 2t + 1]-codes, where n = 2m.
(McEliece suggested to use m = 10, t = 50.)

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 21/44

McEliece Cryptosystem – DESIGN

Goppa codes are [2m, n −mt, 2t + 1]-codes, where n = 2m.

Design of McEliece cryptosystems. Let

G be a generating matrix for an [n, k, d] Goppa code C ;

S be a k × k binary matrix invertible over Z2;

P be an n × n permutation matrix;

G ′ = SGP.

Plaintexts: P = (Z2)k ; cryptotexts: C = (Z2)n, key: K = (G , S ,P,G ′), message: w
G ′ is made public, G , S ,P are kept secret.

Encryption: eK (w , e) = wG ′ + e, where e is any binary vector of length n & weight t.

Decryption of a cryptotext c = wG ′ + e ∈ (Z2)n.

1 Compute c1 = cP−1 = wSGPP−1 + eP−1 = wSG + eP−1

2 Decode c1 to get w1 = wS ,

3 Compute w = w1S
−1

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 22/44

COMMENTS on McELIECE CRYPTOSYSTEM

1 Each irreducible polynomial over Zm
2 of degree t generates a Goppa code with

distance at least 2t + 1.

2 In the design of McEliece cryptosystem the goal of matrices S and C is to modify a
generator matrix G for an easy-to-decode Goppa code to get a matrix that looks as a
general random matrix for a linear code for which decoding problem is NP-complete.

3 An important novel and unique trick is an introduction, in the encoding process, of a
random vector e that represents an introduction of up to t errors – such a number
of errors that are correctable using the given Goppa code and this is the basic trick
of the decoding process.

4 Since P is a permutation matrix eP−1 has the same weight as e.

5 As already mentioned, McEliece suggested to use a Goppa code with m = 10 and
t = 50. This provides a [1024, 524, 101]-code. Each plaintext is then a 524-bit
string, each cryptotext is a 1024-bit string. The public key is an 524 × 1024 matrix.

6 Observe that the number of potential matrices S and P is so large that probability
of guessing these matrices is smaller that probability of guessing correct plaintext!!!

7 It can be shown that it is not safe to encrypt twice the same plaintext with the same
public key (and different error vectors).

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 23/44

FINAL COMMENTS

1 Public-key cryptosystems can never provide unconditional security. This is because
an eavesdropper, on observing a cryptotext c can encrypt each possible plaintext by
the encryption algorithm eA until he finds c such that eA(w) = c.

2 One-way functions exist if and only if P = UP, where UP is the class of languages
accepted by unambiguous polynomial time bounded nondeterministic Turing
machine.

3 There are actually two types of keys in practical use: A session key is used for
sending a particular message (or few of them). A master key is usually used to
generate several session keys.

4 Session keys are usually generated when actually required and discarded after their
use. Session keys are usually keys of a secret-key cryptosystem.

5 Master keys are usually used for longer time and need therefore be carefully stored.
Master keys are usually keys of a public-key cryptosystem.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 24/44

SATELLITE VERSION of ONE-TIME PAD

Suppose a satellite produces and broadcasts several random sequences of bits at a rate
fast enough that no computer can store more than a small fraction of the output.

If Alice wants to send a message to Bob they first agree, using a public key cryptography,
on a method of sampling bits from the satellite outputs.

Alice and Bob use this method to generate a random key and they use it with
ONE-TIME PAD for encryption.

By the time Eve decrypted their public key communications, random streams produced
by the satellite and used by Alice and Bob to get the secret key have disappeared, and
therefore there is no way for Eve to make decryption.

The point is that satellites produce so large amount of date that Eve cannot store all of
them

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 25/44

RSA cryptosystem

The most important public-key cryptosystem is the RSA cryptosystem on which one can
also illustrate a variety of important ideas of modern public-key cryptography.

For example, we will discuss various possible attacks on the RSA cryptosystem and
problems related to security of RSA.

A special attention will be given in Chapter 7 to the problem of factorization of integers
that play such an important role for security of RSA.

In doing that we will illustrate modern distributed techniques to factorize very large
integers.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 26/44

DESIGN and USE of RSA CRYPTOSYSTEM

Invented in 1978 by Rivest, Shamir, Adleman
Basic idea: prime multiplication is very easy, integer factorization seems to be unfeasible.

Design of RSA cryptosystems

1 Choose two large s-bit primes p,q, s in [512,1024], and denote

n = pq, φ(n) = (p − 1)(q − 1)

2 Choose a large d such that
gcd(d , φ(n)) = 1

and compute
e = d−1(mod φ(n))

Public key: n (modulus), e (encryption exponent)
Trapdoor information: p, q, d (decryption exponent)

Plaintext w
Encryption: cryptotext c = w e mod n
Decryption: plaintext w = cd mod n

Details: A plaintext is first encoded as a word over the alphabet {0, 1, . . . , 9}, then
divided into blocks of length i − 1, where 10i−1 < n < 10i . Each block is taken as an
integer and decrypted using modular exponentiation.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 27/44

Correctness of RSA

Let c = w emod n be the cryptotext for a plaintext w , in the cryptosystem with

n = pq, ed ≡ 1 (mod φ(n)), gcd(d , φ(n)) = 1

In such a case
w ≡ cd mod n

and, if the decryption is unique, w = cdmod n.
Proof Since ed ≡ 1 (mod φ(n)), there exist a j ∈ N such that ed = jφ(n) + 1.

Case 1. Neither p nor q divides w .
In such a case gcd(n,w) = 1 and by the Euler’s Totien Theorem we get that

cd = w ed = w jφ(n)+1 ≡ w (mod n)

Case 2. Exactly one of p, q divides w – say p.
In such a case w ed ≡ w (mod p) and by Fermat’s Little theorem wq−1 ≡ 1 (mod q)

⇒ wq−1 ≡ 1 (mod q)⇒ wφ(n) ≡ 1 (mod q)

⇒ w jφ(n) ≡ 1 (mod q)

⇒ w ed ≡ w (mod q)

Therefore: w ≡ w ed ≡ cd (mod n)

Case 3. Both p, q divide w .
This cannot happen because, by our assumption, w < n.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 28/44

DESIGN and USE of RSA CRYPTOSYSTEM

Example of the design and of the use of RSA cryptosystems.

By choosing p = 41, q = 61 we get n = 2501, φ(n) = 2400
By choosing d = 2087 we get e = 23
By choosing d = 2069 we get e = 29
By choosing other values of d we would get other values of e.

Let us choose the first pair of encryption/decryption exponents (e = 23 and d = 2087).

Plaintext: KARLSRUHE Encoding: 100017111817200704

Since 103 < n < 104, the numerical plaintext is divided into blocks of 3 digits ⇒ 6
plaintext integers are obtained

100, 017, 111, 817, 200, 704

Encryption:

10023 mod 2501, 1723 mod 2501, 11123 mod 2501
81723 mod 2501, 20023 mod 2501, 70423 mod 2501

provides cryptotexts:
2306, 1893, 621, 1380, 490, 313

Decryption:

23062087 mod 2501 = 100, 18932087 mod 2501 = 17
6212087 mod 2501 = 111, 13802087 mod 2501 = 817
4902087 mod 2501 = 200, 3132087 mod 2501 = 704

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 29/44

RSA challenge

One of the first descriptions of RSA was in the paper.

Martin Gardner: Mathematical games, Scientific American, 1977

and in this paper RSA inventors presented the following challenge.

Decrypt the cryptotext:

9686 9613 7546 2206 1477 1409 2225 4355 8829 0575 9991 1245 7431 9874 6951 2093
0816 2982 2514 5708 3569 3147 6622 8839 8962 8013 3919 9055 1829 9451 5781 5154

Encrypted using the RSA cryptosystem with 129 digit number, called also RSA129

n: 114 381 625 757 888 867 669 235 779 976 146 612 010 218 296 721 242 362 562 561
842 935 706 935 245 733 897 830 597 123 513 958 705 058 989 075 147 599 290 026
879 543 541.

and with e = 9007.

The problem was solved in 1994 by first factorizing n into one 64-bit prime and one
65-bit prime, and then computing the plaintext

THE MAGIC WORDS ARE SQUEMISH OSSIFRAGE

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 30/44

How to design a good RSA cryptosystem

1 How to choose large primes p, q?
Choose randomly a large integer p, and verify, using a randomized algorithm,
whether p is prime. If not, check p + 2, p + 4, . . . From the Prime Number Theorem
it follows that there are approximately

2d

log 2d
− 2d−1

log 2d−1

d bit primes. (A probability that a 512-bit number is prime is 0.00562.)

2 What kind of relations should be between p and q?
2.1 Difference |p − q| should be neither too small nor too large.
2.2 gcd(p − 1, q − 1) should not be large.
2.3 Both p − 1 and q − 1 should contain large prime factors.
2.4 Quite ideal case: q, p should be safe primes - such that also (p–1)/2 and (q − 1)/2 are

primes. (83, 107, 10100 − 166517 are examples of safe primes).

3 How to choose e and d?
3.1 Neither d nor e should be small.
3.2 d should not be smaller than n

1
4 . (For d < n

1
4 a polynomial time algorithm is known

to determine d).

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 31/44

Prime recognition and factorization

The key problems for the development of RSA cryptosystem are that of prime recognition
and integer factorization.

On August 2002, the first polynomial time algorithm was discovered that allows to
determine whether a given m bit integer is a prime. Algorithm works in time O(m12).

Fast randomized algorithms for prime recognition has been known since 1977. One of the
simplest one is due to Rabin and will be presented later.

For integer factorization situation is somehow different.

No polynomial time classical algorithm is known.

Simple, but not efficient factorization algorithms are known.

Several sophisticated distributed factorization algorithms are known that allowed to
factorize, using enormous computation power, surprisingly large integers.

Progress in integer factorization, due to progress in algorithms and technology, has
been recently enormous.

Polynomial time quantum algorithms for integer factorization are known since 1994
(P. Shor).

Several simple and some sophisticated factorization algorithms will be presented and
illustrated in the following.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 32/44

Rabin-Miller’s prime recognition

Rabin-Miller’s Monte Carlo prime recognition algorithm is based on the following result
from the number theory.

Lemma Let n ∈ N. Denote, for 1 ≤ x ≤ n, by C(x) the condition:

Either xn−1 6= 1 (mod n), or there is an m = n−1
2i for some i, such that gcd(n, xm− 1) 6= 1

If C(x) holds for some 1 ≤ x ≤ n, then n is not a prime. If n is not a prime, then C(x)
holds for at least half of x between 1 and n.

Algorithm:

Choose randomly integers x1, x2, . . . , xm such that 1 ≤ xi ≤ n.
For each xi determine whether C(xi) holds.

Claim: If C(xi) holds for some i , then n is not a prime for sure. Otherwise n is prime,
with probability of error 2−m.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 33/44

Factorization of 512-bits and 663-bits numbers

On August 22, 1999, a team of scientists from 6 countries found, after 7 months of
computing, using 300 very fast SGI and SUN workstations and Pentium II, factors of the
so-called RSA-155 number with 512 bits (about 155 digits).

RSA-155 was a number from a Challenge list issue by the US company RSA Data
Security and “represented” 95% of 512-bit numbers used as the key to protect electronic
commerce and financinal transmissions on Internet.

Factorization of RSA-155 would require in total 37 years of computing time on a single
computer.

When in 1977 Rivest and his colleagues challenged the world to factor RSA-129, they
estimated that, using knowledge of that time, factorization of RSA-129 would require
1016 years.

In 2005 RSA-200, a 663-bits number, was factorized by a team of German Federal
Agency for Information Technology Security, using CPU of 80 AMD Opterons.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 34/44

LARGE NUMBERS

Hindus named many large numbers - one having 153 digits.

Romans initially had no terms for numbers larger than 104.

Greeks had a popular belief that no number is larger than the total count of sand grains
needed to fill the universe.

Large numbers with special names:

duotrigintillion=googol−10100 googolplex−1010100

FACTORIZATION of very large NUMBERS

W. Keller factorized F23471 which has 107000 digits.

J. Harley factorized: 10101000

+ 1.

One factor: 316, 912, 650, 057, 350, 374, 175, 801, 344, 000, 001

1992 E. Crandal, Doenias proved, using a computer that F22, which has more than
million of digits, is composite (but no factor of F22 is known).

Number 10101034

was used to develop a theory of the distribution of prime numbers.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 35/44

DESIGN OF GOOD RSA CRYPTOSYSTEMS

Claim 1. Difference |p − q| should not be small.

Indeed, if |p − q| is small, and p > q, then (p+q)
2

is only slightly larger than
√

n because

(p + q)2

4
− n =

(p − q)2

4

In addition (p+q)2

4
− n is a square, say y 2.

In order to factor n, it is then enough to test x >
√

n until x is found such that x2 − n is
a square, say y 2. In such a case

p + q = 2x , p − q = 2y and therefore p = x + y , q = x − y .

Claim 2. gcd(p − 1, q − 1) should not be large.

Indeed, in the opposite case s = lcm(p − 1, q − 1) is much smaller than φ(n) If

d ′e ≡ 1 mod s,

then, for some integer k,

cd ≡ w ed ≡ w ks+1 ≡ w mod n

since p − 1|s, q − 1|s and therefore w ks ≡ 1 mod p and w ks+1 ≡ w mod q. Hence, d ′

can serve as a decryption exponent.
Moreover, in such a case s can be obtained by testing.
Question Is there enough primes (to choose again and again new ones)?
No problem, the number of primes of length 512 bit or less exceeds 10150.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 36/44

How important is factorization for breaking RSA?

1 If integer factorization is feasible, then RSA is breakable.

2 There is no proof that factorization is indeed needed to break RSA.

3 If a method of breaking RSA would provide an effective way to get a trapdoor
information, then factorization could be done effectively.

Theorem Any algorithm to compute φ(n) can be used to factor integers with the
same complexity.

Theorem Any algorithm for computing d can be converted into a break randomized
algorithm for factoring integers with the same complexity.

4 There are setups in which RSA can be broken without factoring modulus n.

Example An agency chooses p, q and computes a modulus n = pq that is publicized
and common to all users U1,U2, . . . and also encryption exponents e1, e2, . . . are
publicized. Each user Ui gets his decryption exponent di .

In such a setting any user is able to find in deterministic quadratic time another
user’s decryption exponent.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 37/44

Security of RSA

None of the numerous attempts to develop attacks on RSA has turned out to be
successful.

There are various results showing that it is impossible to obtain even only partial
information about the plaintext from the cryptotext produced by the RSA cryptosystem.

We will show that were the following two functions, that are computationally
polynomially equivalent, be efficiently computable, then the RSA cryptosystem with the
encryption (decryption) exponents ek(dk) would be breakable.

parity ek(c) =the least significant bit of such an w that ek(w) = c;
halfek(c) = 0 if 0 ≤ w < n

2
and halfek(c) = 1 if n

2
≤ w ≤ n − 1

We show two important properties of the functions half and parity .

1 Polynomial time computational equivalence of the functions half and parity follows
from the following identities

halfek(c) = parityek((c × ek(2)) mod n

parityek(c) = halfek((c × ek(
1

2
)) mod n

and the multiplicative rule ek(w1)ek(w2) = ek(w1w2).

2 There is an efficient algorithm to determine plaintexts w from the cryptotexts c
obtained by RSA-decryption provided efficiently computable function half can be
used as the oracle:

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 38/44

Security of RSA

BREAKING RSA USING AN ORACLE

Algorithm:

for i = 0 to dlgne do
ci ← half (c); c ← (c × ek (2)) mod n

l ← 0; u ← n
for i = 0 to dlgne do

m← (i + u)/2;
if ci = 1 then i ← m else u ← m;

output ← [u]

Indeed, in the first cycle

ci = half (c × (ek(2))i) = half (ek(2iw)),

is computed for 0 ≤ i ≤ lgn.

In the second part of the algorithm binary search is used to determine interval in which w
lies. For example, we have that

half (ek(w)) = 0 ≡ w ∈ [0,
n

2
)

half (ek(2w)) = 0 ≡ w ∈ [0,
n

4
) ∪ [

n

2
,

3n

4
)

half (ek(4w)) = 0 ≡ w ∈

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 39/44

Security of RSA

There are many results for RSA showing that certain parts are as hard as whole. For
example any feasible algorithm to determine the last bit of the plaintext can be converted
into a feasible algorithm to determine the whole plaintext.

Example Assume that we have an algorithm H to determine whether a plaintext x
designed in RSA with public key e, n is smaller than n

2
if the cryptotext y is given.

We construct an algorithm A to determine in which of the intervals (jn
8
, (j+1)n

8
), 0 ≤ j ≤ 7

the plaintext lies.

Basic idea H can be used to decide whether the plaintexts for cryptotexts
xe mod n, 2exe mod n, 4exe mod n are smaller than n

2
.

Answers

yes, yes, yes 0 <x <
n

8

yes, yes, no
n

8
<x <

n

4

yes, no, yes
n

4
<x <

3n

8

yes, no, no
3n

8
<x <

n

2

no, yes, yes
n

2
<x <

5n

8

no, yes, no
5n

8
<x <

3n

4

no, no, yes
3n

4
<x <

7n

8

no, no, no
7n

8
<x < n

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 40/44

RSA with a composite “to be a prime”

Let us explore what happens if some integer p used, as a prime, to design a RSA is
actually not a prime.

Let n = pq where q be a prime, but p = p1p2, where p1, p2 are primes. In such a case

φ(n) = (p1 − 1)(p2 − 1)(q − 1)

but assume that the RSA-designer works with φ1(n) = (p − 1)(q − 1)
Let u = lcm(p−1, p2 − 1, q − 1) and let gcd(w , n) = 1. In such a case

wp1−1 ≡ 1 (mod p1),wp2−1 ≡ 1 (mod p2),wq−1 ≡ 1 (mod q)

and as a consequence wu ≡ 1 (mod n)

In such a case u divides φ(n) and let us assume that also u divides φ1(n) Then

wφ1(n)+1 ≡ w (mod n).

So if ed ≡ 1 mod φ1(n), then encryption and decryption work as if p were prime.

Example p = 91 = 7 · 13, q = 41, n = 3731, φ1(n) = 3600, φ(n) = 2880, lcm(6, 12, 40) =
120, 120|φ1(n).
If gcd(d , φ1(n)) = 1, then gcd(d , φ(n)) = 1⇒ one can compute e using φ1(n). However,
if u does not divide φ1(n), then the cryptosystem does not work properly.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 41/44

Two users should not use the same modulus

Otherwise, users, say A and B, would be able to decrypt messages of each other using the
following method.

Decryption: B computes

f = gcd(eBdB − 1, eA),m =
eBdB − 1

f

eBdB − 1 = kφ(n) for some k

It holds:
gcd(eA, φ(n)) = 1⇒ gcd(f , φ(n)) = 1

and therefore
m is a multiple of φ(n).

m and eA have no common divisor and therefore there exist integers u, v such that

um + veA = 1

Since m is a multiple of φ(n), we have

veA = 1− um ≡ 1 mod φ(n)

and since eAdA ≡ 1 mod φ(n), we have

(v − dA)eA ≡ 0 mod φ(n)

and therefore
v ≡ dA mod φ(n)

is a decryption exponent of A. Indeed, for a cryptotext c:

cv ≡ w eAv ≡ w eAdA+cφ(n) ≡ w mod (n)

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 42/44

Private-key versus public-key cryptography

The prime advantage of public-key cryptography is increased security – the private
keys do not ever need to be transmitted or revealed to anyone.

Public key cryptography is not meant to replace secret-key cryptography, but rather
to supplement it, to make it more secure.

Example RSA and DES (AES) are usually combined as follows
1 The message is encrypted with a random DES key
2 DES-key is encrypted with RSA
3 DES-encrypted message and RSA-encrypted DES-key are sent.

This protocol is called RSA digital envelope.

In software (hardware) DES is generally about 100 (1000) times faster than RSA.

If n users communicate with secrete-key cryptography, they need n (n - 1) / 2 keys.

If n users communicate with public-key cryptography 2n keys are sufficient.

Public-key cryptography allows spontaneous communication.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 43/44

KERBEROS

We describe a very popular key distribution protocol with trusted authority TA with
which each user A shares a secret key KA.

To communicate with user B the user A asks TA for a session key (K)

TA chooses a random session key K , a time-stamp T , and a lifetime limit L.

TA computes

m1 = eKA (K , ID(B),T , L); m2 = eKB (K , ID(B),T , L);

and sends m1,m2 to A.

A decrypts m1, recovers K ,T , L, ID(B), computes m3 = eK (ID(B),T) and sends m2

and m3 to B.

B decrypts m2 and m3, checks whether two values of T and of ID(B) are the same.
If so, B computes m4 = eK (T + 1) and sends it to A.

A decrypts m4 and verifies that she got T + 1.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 44/44

	Public-key cryptosystems, I. Key exchange, knapsack, RSA
	CHAPTER 5: Public-key cryptography I. RSA
	Basic idea - example
	Public Establishment of Secret Keys
	KEY DISTRIBUTION / AGREEMENT
	MAN-IN-THE-MIDDLE ATTACK
	Blom's key pre-distribution protocol
	Secure communication with secret-key cryptosystems
	Cryptography and Computational Complexity
	Computationaly infeasible problems
	One-way functions
	Trapdoor One-way Functions
	Example -- Computer passwords
	LAMPORT’s ONE-TIME PASSWORDS
	General knapsack problem -- unfeasible
	KNAPSACK ENCODING -- BASIC IDEAS
	Design of knapsack cryptosystems
	Design of knapsack cryptosystems -- example
	Story of the Knapsack
	KNAPSACK CRYPTOSYSTEM -- COMMENTS
	McEliece Cryptosystem
	McEliece Cryptosystem -- DESIGN
	COMMENTS on McELIECE CRYPTOSYSTEM
	FINAL COMMENTS
	SATELLITE VERSION of ONE-TIME PAD
	RSA cryptosystem
	DESIGN and USE of RSA CRYPTOSYSTEM
	Correctness of RSA
	DESIGN and USE of RSA CRYPTOSYSTEM
	RSA challenge
	How to design a good RSA cryptosystem
	Prime recognition and factorization
	Rabin-Miller's prime recognition
	Factorization of 512-bits and 663-bits numbers
	LARGE NUMBERS
	DESIGN OF GOOD RSA CRYPTOSYSTEMS
	How important is factorization for breaking RSA?
	Security of RSA
	Security of RSA
	Security of RSA
	RSA with a composite ``to be a prime''
	Two users should not use the same modulus
	Private-key versus public-key cryptography
	KERBEROS

