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INTRODUCTION

Transmission of classical information in time and space is nowadays very easy
(through noiseless channel).

It took centuries, and many ingenious developments and discoveries (writing, book
printing, photography, movies, telegraph, telephone, radio transmissions,TV, -sounds
recording – records, tapes, discs) and the idea of the digitalisation of all forms of
information to discover fully this property of information.

Coding theory develops methods to protect information against a noise.

Information is becoming an increasingly valuable commodity for both individuals and
society.

Cryptography develops methods how to ensure secrecy of information and identity,
privacy or anonymity of users.

A very important property of information is that it is often very easy to make
unlimited number of copies of information.

Steganography develops methods to hide important information in innocently looking
information (and that can be used to protect intellectual properties).



HISTORY OF CRYPTOGRAPHY

The history of cryptography is the story of centuries-old battles between codemakers
(ciphermakers) and codebreakers (cipherbreakers), an intellectual arms race that has had
a dramatic impact on the course of history.

The ongoing battle between codemakers and codebreakers has inspired a whole series of
remarkable scientific breakthroughts.

History is full of ciphers. They have decided the outcomes of battles and led to the
deaths of kings and queens.

Security of communication and data and identity or privacy of users are of key
importance for information society. Cryptography, broadly understood, is an important
tool to achieve such a goal.



Part I

Basics of coding theory



CHAPTER 1: BASICS of CODING THEORY

ABSTRACT

Coding theory - theory of error correcting codes - is one of the most interesting and
applied part of mathematics and informatics.

All real communication systems that work with digitally represented data, as CD players,
TV, fax machines, internet, satellites, mobiles, require to use error correcting codes
because all real channels are, to some extent, noisy – due to interference caused by
environment

Coding theory problems are therefore among the very basic and most frequent
problems of storage and transmission of information.

Coding theory results allow to create reliable systems out of unreliable systems to
store and/or to transmit information.

Coding theory methods are often elegant applications of very basic concepts and
methods of (abstract) algebra.

This first chapter presents and illustrates the very basic problems, concepts, methods and
results of coding theory.
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CODING - BASIC CONCEPTS

Without coding theory and error-correcting codes there would be no deep-space travel
and pictures, no satellite TV, no compact disc, no . . . no . . . no . . . .

Error-correcting codes are used to correct messages when they are transmitted through
noisy channels.

W W

channel
code
wordmessage

source Encoding Decoding user
code
word

C(W) C'(W)noise

Error correcting framework

Example

YES YES00000message
YES or NO YES  00000

NO   11111

Decoding
user

01001Encoding
01001
00000

A code C over an alphabet Σ is a subset of Σ∗(C ⊆ Σ∗).
A q-nary code is a code over an alphabet of q-symbols.
A binary code is a code over the alphabet {0, 1}.

Examples of codes C1 = {00, 01, 10, 11} C2 = {000, 010, 101, 100}
C3 = {00000, 01101, 10111, 11011}
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CHANNEL

is any physical medium through which information is transmitted.
(Telephone lines and the atmosphere are examples of channels.)

NOISE

may be caused by sunspots, lighting, meteor showers, random radio disturbance, poor
typing, poor hearing, . . . .

TRANSMISSION GOALS

1 Fast encoding of information.

2 Easy transmission of encoded messages.

3 Fast decoding of received messages.

4 Reliable correction of errors introduced in the channel.

5 Maximum transfer of information per unit time.

BASIC METHOD OF FIGHTING ERRORS: REDUNDANCY!!!

0 is encoded as 00000 and 1 is encoded as 11111.
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IMPORTANCE of ERROR-CORRECTING CODES

In a good cryptosystem a change of a single bit of the cryptotext should change so
many bits of the plaintext obtained from the cryptotext that the plaintext gets
uncomprehensible.

Methods to detect and correct errors when cryptotexts are transmitted are
therefore much needed.

Also many non-cryptographic applications require error-correcting codes. For
example, mobiles, CD-players,. . .
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BASIC IDEA

The details of techniques used to protect information against noise in practice are
sometimes rather complicated, but basic principles are easily understood.

The key idea is that in order to protect a message against a noise, we should
encode the message by adding some redundant information to the message.

In such a case, even if the message is corrupted by a noise, there will be enough
redundancy in the encoded message to recover – to decode the message
completely.
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EXAMPLE

In case of the encoding

0→ 000 1→ 111

the probability of the bit error p ≤ 1
2

, and the majority voting decoding

000, 001, 010, 100→ 000 and 111, 110, 101, 011→ 111

the probability of an erroneous decoding (if there are 2 or 3 errors) is

3p2(1− p) + p3 = 3p2 − 2p3 < p
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EXAMPLE: Coding of a path avoiding an enemy territory

Story Alice and Bob share an identical map (Fig. 1) gridded as shown in Fig.1. Only
Alice knows the route through which Bob can reach her avoiding the enemy territory.
Alice wants to send Bob the following information about the safe route he should take.

NNWNNWWSSWWNNNNWWN

Three ways to encode the safe route from Bob to
Alice are:

1 C1 = {N = 00,W = 01, S = 11,E = 10}
Any error in the code word

000001000001011111010100000000010100

would be a disaster.

2 C2 = {000, 011, 101, 110}

x Bob

Fig. 1

Alice
HQ

N

A single error in encoding each of symbols N, W, S, E can be detected.

3 C3 = {00000, 01101, 10110, 11011}
A single error in decoding each of symbols N, W, S, E can be corrected.
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Basic terminology

Block code - a code with all words of the same length.
Codewords - words of some code.

Basic assumptions about channels

1 Code length preservation Each output word of a channel has the same length as the
input codeword.

2 Independence of errors The probability of any one symbol being affected in
transmissions is the same.

Basic strategy for decoding

For decoding we use the so-called maximal likehood principle, or nearest neighbor
decoding strategy, or majority voting decoding strategy which says that the receiver
should decode a word w’ as that codeword w that is the closest one to w’.
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HAMMING DISTANCE

The intuitive concept of “closeness“ of two words is well formalized through Hamming
distance h(x , y) of words x , y . For two words x, y

h(x, y) = the number of symbols in which the words x and y differ.

Example: h(10101, 01100) = 3, h(fourth, eighth) = 4

Properties of Hamming distance

1 h(x , y) = 0⇔ x = y
2 h(x , y) = h(y , x)
3 h(x , z) ≤ h(x , y) + h(y , z) triangle inequality

An important parameter of codes C is their minimal distance.

h(C) = min{h(x , y) | x , y ∈ C , x 6= y},
because h(C) is the smallest number of errors needed to change one codeword into
another.

Theorem Basic error correcting theorem

1 A code C can detect up to s errors if h(C) ≥ s + 1.
2 A code C can correct up to t errors if h(C) ≥ 2t + 1.

Proof (1) Trivial. (2) Suppose h(C) ≥ 2t + 1. Let a codeword x is transmitted and a
word y is recceived with h(x , y) ≤ t. If x ′ 6= x is a codeword, then h(y , x ′) ≥ t + 1
because otherwise h(y , x ′) < t + 1 and therefore h(x , x ′) ≤ h(x , y) + h(y , x ′) < 2t + 1
what contradicts the assumption h(C) ≥ 2t + 1.
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BINARY SYMMETRIC CHANNEL

Consider a transition of binary symbols such that each symbol has probability of error
p < 1

2
.

p

p

1 - p

1 - p0 0

11

Binary symmetric channel

If n symbols are transmitted, then the probability of t errors is

pt(1− p)n−t
`
n
t

´
In the case of binary symmetric channels, the ”nearest neighbour decoding strategy” is
also ”maximum likelihood decoding strategy”.
Example Consider C = {000, 111} and the nearest neighbour decoding strategy.
Probability that the received word is decoded correctly

as 000 is (1− p)3 + 3p(1− p)2,
as 111 is (1− p)3 + 3p(1− p)2,

Therefore Perr (C) = 1− ((1− p)3 + 3p(1− p)2)
is probability of erroneous decoding.
Example If p = 0.01, then Perr (C) = 0.000298 and only one word in 3356 will reach the
user with an error.
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POWER of PARITY BITS

Example Let all 211 of binary words of length 11 be codewords.
Let the probability p of a bit error be 10−8.
Let bits be transmitted at the rate 107 bits per second.
The probability that a word is transmitted incorrectly is approximately

11p(1− p)10 ≈ 11
108 .

Therefore 11
108 · 107

11
= 0.1 of words per second are transmitted incorrectly.

One wrong word is transmitted every 10 seconds, 360 erroneous words every hour and
8640 words every day without being detected!
Let now one parity bit be added.
Any single error can be detected!!!
The probability of at least two errors is:

1− (1− p)12 − 12(1− p)11p ≈
`

12
2

´
(1− p)10p2 ≈ 66

1016

Therefore approximately 66
1016 · 107

12
≈ 5.5 · 10−9 words per second are transmitted with an

undetectable error.
Corollary One undetected error occurs only every 2000 days! (2000 ≈ 109

5.5×86400
).
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TWO-DIMENSIONAL PARITY CODE

The two-dimensional parity code arranges the data into a two-dimensional array and then
to each row (column) parity bit is attached.
Example Binary string

10001011000100101111

is represented and encoded as follows

1 0 0 0 1
0 1 1 0 0
0 1 0 0 1
0 1 1 1 1

→

1 0 0 0 1 0
0 1 1 0 0 0
0 1 0 0 1 0
0 1 1 1 1 0
1 1 0 1 1 0

Question How much better is two-dimensional encoding than one-dimensional encoding?

prof. Jozef Gruska IV054 1. Basics of coding theory 19/616



NOTATIONS and EXAMPLES

Notation: An (n,M, d)-code C is a code such that

n - is the length of codewords.

M - is the number of codewords.

d - is the minimum distance in C .

Example:
C1 = {00, 01, 10, 11} is a (2,4,1)-code.
C2 = {000, 011, 101, 110} is a (3,4,2)-code.
C3 = {00000, 01101, 10110, 11011} is a (5,4,3)-code.

Comment: A good (n,M, d)-code has small n and large M and d .
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EXAMPLES from DEEP SPACE TRAVELS

Examples (Transmission of photographs from the deep space)

In 1965-69 Mariner 4-5 took the first photographs of another planet - 22 photos.
Each photo was divided into 200 × 200 elementary squares - pixels. Each pixel was
assigned 6 bits representing 64 levels of brightness. Hadamard code was used.

Transmission rate: 8.3 bits per second.

In 1970-72 Mariners 6-8 took such photographs that each picture was broken into
700 × 832 squares. Reed-Muller (32,64,16) code was used.

Transmission rate was 16200 bits per second. (Much better pictures)
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HADAMARD CODE

In Mariner 5, 6-bit pixels were encoded using 32-bit long Hadamard code that could
correct up to 7 errors.

Hadamard code has 64 codewords. 32 of them are represented by the 32 × 32 matrix
H = {hIJ}, where 0 ≤ i , j ≤ 31 and

hij = (−1)a0b0+a1b1+...+a4b4

where i and j have binary representations

i = a4a3a2a1a0, j = b4b3b2b1b0

The remaing 32 codewords are represented by the matrix −H.
Decoding is quite simple.
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CODE RATE

For q-nary (n,M, d)-code we define code rate, or information rate, R, by

R =
lgqM

n
.

The code rate represents the ratio of the number of needed input data symbols to the
number of transmitted code symbols.

Code rate (6/32 for Hadamard code), is an important parameter for real implementations,
because it shows what fraction of the bandwidth is being used to transmit actual data.
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The ISBN-code I

Each book till 1.1.2007 had International Standard Book Number which was a 10-digit
codeword produced by the publisher with the following structure:

l
language

0

p
publisher

07

m
number
709503

w
weighted check sum

0

= x10 . . . x1

such that
P10

i=1 ixi ≡ 0 (mod11)

The publisher has to put x1 = X if x1 is to be 10.
The ISBN code was designed to detect: (a) any single error (b) any double error created
by a transposition

Single error detection

Let X = x10 . . . x1 be a correct code and let

Y = x10 . . . xj+1yjxj−1 . . . x1 with yJ = xJ + a, a 6= 0

In such a case: P10
i=1 iyi =

P10
i=1 ixi + ja 6= 0 (mod11)
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The ISBN-code II

Transposition detection

Let xJ and xk be exchanged.P10
i=1 iyi =

P10
i=1 ixi + (k − j)xj + (j − k)xk = (k − j)(xj − xk) 6= 0 (mod11)

if k 6= j and xj 6= xk .
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New ISBN code

Starting 1.1.2007 instead of 10-digit ISBN code a 13-digit
ISBN code is being used.

New ISBN number can be obtained from the old one by preceeding
the old code with three digits 978.

For details about 13-digit ISBN see

http://www.en.wikipedia.org/Wiki/International_Standard_Book_Number
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EQUIVALENCE of CODES

Definition Two q-ary codes are called equivalent if one can be obtained from the other by
a combination of operations of the following type:

(a) a permutation of the positions of the code.

(b) a permutation of symbols appearing in a fixed position.

Question: Let a code be displayed as an M × n matrix. To what correspond operations
(a) and (b)?
Claim: Distances between codewords are unchanged by operations (a), (b).
Consequently, equivalent codes have the same parameters (n,M,d) (and correct the same
number of errors).

Examples of equivalent codes

(1)

8>><>>:
0 0 1 0 0
0 0 0 1 1
1 1 1 1 1
1 1 0 0 0

9>>=>>;
8>><>>:

0 0 0 0 0
0 1 1 0 1
1 0 1 1 0
1 1 0 1 1

9>>=>>; (2)

8<:
0 0 0
1 1 1
2 2 2

9=;
8<:

0 1 2
1 2 0
2 0 1

9=;
Lemma Any q-ary (n,M, d)-code over an alphabet {0, 1, . . . , q − 1} is equivalent to an
(n,M, d)-code which contains the all-zero codeword 00 . . . 0.
Proof Trivial.
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THE MAIN CODING THEORY PROBLEM

A good (n,M, d)-code has small n, large M and large d .

The main coding theory problem is to optimize one of the parameters n, M, d for given
values of the other two.

Notation: Aq(n, d) is the largest M such that there is an q-nary (n,M, d)-code.

Theorem
(a) Aq(n, 1) = qn;

(b) Aq(n, n) = q.

Proof

(a) obvious;

(b) Let C be an q-nary (n,M, n)-code. Any two distinct codewords of C differ in all n
positions. Hence symbols in any fixed position of M codewords have to be different
⇒ Aq(n, n) ≤ q. Since the q-nary repetition code is (n, q, n)-code, we get
Aq(n, n) ≥ q.
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EXAMPLE

Example Proof that A2(5, 3) = 4.

(a) Code C3 is a (5, 4, 3)-code, hence A2(5, 3) ≥ 4.

(b) Let C be a (5,M, 3)-code with M = 5.

By previous lemma we can assume that 00000 ∈ C .

C has to contain at most one codeword with at least four 1’s. (otherwise
d(x , y) ≤ 2 for two such codewords x , y)

Since 00000 ∈ C , there can be no codeword in C with at most one or two 1.

Since d = 3, C cannot contain three codewords with three 1’s.

Since M ≥ 4, there have to be in C two codewords with three 1’s. (say 11100,
00111), the only possible codeword with four or five 1’s is then 11011.
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DESIGN of ONE CODE from ANOTHER ONE

Theorem Suppose d is odd. Then a binary (n,M, d)-code exists if a binary
(n + 1,M, d + 1)-code exists.

Proof Only if case: Let C be a binary (n,M, d) code. Let

C ′ =
˘

x1 . . . xnxn+1|x1 . . . xn ∈ C , xn+1 =
`Pn

i=1 xi

´
mod 2

¯
Since parity of all codewords in C ′ is even, d(x ′, y ′) is even for all

x ′, y ′ ∈ C ′.

Hence d(C ′) is even. Since d ≤ d(C ′) ≤ d + 1 and d is odd,

d(C ′) = d + 1.

Hence C ′ is an (n + 1,M, d + 1)-code.

If case: Let D be an (n + 1,M, d + 1)-code. Choose code words x , y of D such that
d(x , y) = d + 1.
Find a position in which x, y differ and delete this position from all codewords of D.
Resulting code is an (n,M, d)-code.
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A COROLLARY

Corollary:
If d is odd, then A2(n, d) = A2(n + 1, d + 1).
If d is even, then A2(n, d) = A2(n − 1, d − 1).

Example A2(5, 3) = 4⇒ A2(6, 4) = 4
(5, 4, 3)-code ⇒ (6, 4, 4)-code

0 0 0 0 0
0 1 1 0 1
1 0 1 1 0
1 1 0 1 1

by adding check.
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A SPEHERE and its CONTENTS

Notation F n
q - is a set of all words of length n over the alphabet {0, 1, 2, . . . , q − 1}

Definition For any codeword u ∈ F n
q and any integer r ≥ 0 the sphere of radius r and

centre u is denoted by

S(u, r) = {v ∈ F n
q |h(u, v) ≤ r}.

Theorem A sphere of radius r in F n
q , 0 ≤ r ≤ n contains`

n
0

´
+
`
n
1

´
(q − 1) +

`
n
2

´
(q − 1)2 + . . .+

`
n
r

´
(q − 1)r

words.

Proof Let u be a fixed word in F n
q . The number of words that differ from u in m

positions is `
n
m

´
(q − 1)m.
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GENERAL UPPER BOUNDS

Theorem (The sphere-packing or Hamming bound)
If C is a q-nary (n,M, 2t + 1)-code, then

M
˘`

n
0

´
+
`
n
1

´
(q − 1) + . . .+

`
n
t

´
(q − 1)t

¯
≤ qn

(1)

Proof Any two spheres of radius t centred on distinct codewords have no codeword in
common. Hence the total number of words in M spheres of radius t centred on M
codewords is given by the left side (1). This number has to be less or equal to qn.

A code which achieves the sphere-packing bound from (1), i.e. such a code that equality
holds in (1), is called a perfect code.

Singleton bound: If C is an q-ary (n,M, d) code, then

M ≤ qn−d+1
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A GENERAL UPPER BOUND on Aq(n, d)

Example An (7,M, 3)-code is perfect if

M
``

7
0

´
+
`

7
1

´´
= 27

i.e. M = 16

An example of such a code:

C4 = {0000000, 1111111, 1000101, 1100010, 0110001, 1011000, 0101100,
0010110, 0001011, 0111010, 0011101, 1001110, 0100111, 1010011, 1101001, 1110100}

Table of A2(n, d) from 1981

n d = 3 d = 5 d = 7
5 4 2 -
6 8 2 -
7 16 2 2
8 20 4 2
9 40 6 2

10 72-79 12 2
11 144-158 24 4
12 256 32 4
13 512 64 8
14 1024 128 16
15 2048 256 32
16 2560-3276 256-340 36-37

For current best results see http://www.codetables.de
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LOWER BOUND for Aq(n, d)

The following lower bound for Aq(n, d) is known as Gilbert-Varshamov bound:

Theorem Given d ≤ n, there exists a q-ary (n,M, d)-code with

M ≥ qnPd−1
j=0 (n

j)(q−1)j

and therefore

Aq(n, d) ≥ qnPd−1
j=0 (n

j)(q−1)j
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ERROR DETECTION

Error detection is much more modest aim than error correction.

Error detection is suitable in the cases that channel is so good that probability of error is
small and if an error is detected, the receiver can ask to renew the transmission.

For example, two main requirements for many telegraphy codes used to be:

Any two codewords had to have distance at least 2;

No codeword could be obtained from another codeword

by transposition of two adjacent letters.
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Pictures of Saturn taken by Voyager

Pictures of Saturn taken by Voyager, in 1980, had 800 × 800 pixels with 8 levels of
brightness.

Since pictures were in color, each picture was transmitted three times; each time through
different color filter. The full color picture was represented by

3 × 800 × 800 × 8 = 13360000 bits.

To transmit pictures Voyager used the Golay code G24.
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GENERAL CODING PROBLEM

Important problems of information theory are how to define formally such concepts as
information and how to store or transmit information efficiently.

Let X be a random variable (source) which takes any value x with probability p(x). The
entropy of X is defined by

S(X ) = −
P

x p(x)lg p(x)

and it is considered to be the information content of X.

In a special case of a binary variable X which takes on the value 1 with probability p and
the value 0 with probability 1− p

S(X ) = H(p) = −p lg p − (1− p)lg(1− p)

Problem: What is the minimal number of bits needed to transmit n values of X ?
Basic idea: To encode more probable outputs of X by shorter binary words.
Example (Morse code - 1838)

a .- b -... c -.-. d -.. e . f ..-. g –.
h .... i .. j .— k -.- l .-.. m – n -.
o — p .–. q –.- r .-. s ... t - u ..-
v ...- w .– x -..- y -.– z –..
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SHANNON’s NOISLESS CODING THEOREM

Shannon’s noiseless coding theorem says that in order to transmit n values of X, we need,
and it is sufficient, to use nS(X ) bits.

More exactly, we cannot do better than the bound nS(X ) says, and we can reach the
bound nS(X ) as close as desirable.

Example Let a source X produce the value 1 with probability p = 1
4

and the value 0 with probability 1− p = 3
4

Assume we want to encode blocks of the outputs of X of length 4.

By Shannon’s theorem we need 4H( 1
4
) = 3.245 bits per blocks (in average)

A simple and practical method known as Huffman code requires in this case 3.273 bits
per a 4-bit message.

mess. code mess. code mess. code mess. code
0000 10 0100 010 1000 011 1100 11101
0001 000 0101 11001 1001 11011 1101 111110
0010 001 0110 11010 1010 11100 1110 111101
0011 11000 0111 1111000 1011 111111 1111 1111001

Observe that this is a prefix code - no codeword is a prefix of another codeword.
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DESIGN of HUFFMAN CODE II

Given a sequence of n objects, x1, . . . , xn with probabilities p1 ≥ . . . ≥ pn.

Stage 1 - shrinking of the sequence.

Replace xn−1, xn with a new object yn−1 with probability pn−1 + pn and rearrange
sequence so one has again non-increasing probabilities.

Keep doing the above step till the sequence shrinks to two objects.

.50 .50 .50 .50 .50 .50 .50

.50.28.22.15.15.15.15

.12

.10

.04

.04

.03

.02

.12 .12 .13 .15 .22

.10 .10 .12 .13

.05 .08 .10

.04 .05

.04

Stage 2 - extending the code - Apply again and again the following method.

If C = {c1, . . . , cr} is a prefix optimal code for a source Sr , then C ′ = {c ′1, . . . , c ′r+1} is
an optimal code for Sr+1, where

c ′i = ci 1 ≤ i ≤ r − 1
c ′r = cr 1

c ′r+1 = cr 0.
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DESIGN of HUFFMAN CODE II

Stage 2 Apply again and again the following method:

If C = {c1, . . . , cr} is a prefix optimal code for a source Sr , then C ′ = {c ′1, . . . , c ′r+1} is
an optimal code for Sr+1, where

c ′i = ci 1 ≤ i ≤ r − 1
c ′r = cr 1

c ′r+1 = cr 0.

0.04 - 01010

0.04 - 01011

0.03 - 01001

0.02 - 01000

0.08 - 0101

0.05 - 0100

0.15 - 011

0.13 - 010

0.12 - 001

0.1 - 000

0.28 - 01

0.22 - 00

0.5 - 1

0.5 - 0

.50 .50 .50 .50 .50 .50 .50

.50.28.22.15.15.15.15

.12

.10

.04

.04

.03

.02

.12 .12 .13 .15 .22

.10 .10 .12 .13

.05 .08 .10

.04 .05

.04

1

011

001

000

01011
01010

01001

01000
1

0

1

0

1

0

1

0

1

0

1

0

1

0
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A BIT OF HISTORY I

The subject of error-correcting codes arose originally as a response to practical problems
in the reliable communication of digitally encoded information.

The discipline was initiated in the paper

Claude Shannon: A mathematical theory of communication, Bell Syst.Tech. Journal
V27, 1948, 379-423, 623-656

Shannon’s paper started the scientific discipline information theory and error-correcting
codes are its part.

Originally, information theory was a part of electrical engineering. Nowadays, it is an
important part of mathematics and also of informatics.
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A BIT OF HISTORY II

SHANNON’s VIEW

In the introduction to his seminal paper “A mathematical theory of communication”
Shannon wrote:

The fundamental problem of communication is that of reproducing at one point
either exactly or approximately a message selected at another point.
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Part II

Linear codes



CHAPTER 2: LINEAR CODES

ABSTRACT

Most of the important codes are special types of so-called linear codes.

Linear codes are of very large importance because they have
very concise description,
very nice properties,
very easy encoding
and,
in principle, easy to describe decoding.
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LINEAR CODES

Linear codes are special sets of words of the length n over an alphabet Σq = {0, .., q− 1},
where q is a power of prime. Since now on F n

q will be the vector spaces of all n-tuples
over the finite field Fq (on the set {0, .., q − 1} and arithmetical operations modulo q.)

Definition A subset C ⊆ V (n, q) is a linear code if

1 u + v ∈ C for all u, v ∈ C

2 au ∈ C for all u ∈ C , a ∈ GF (q) - {Galoi field over Σq}

Example Codes C1,C2,C3 introduced in Lecture 1 are linear codes.

Lemma A subset C ⊆ V (n, q) is a linear code iff one of the following conditions is
satisfied

1 C is a subspace of V (n, q)

2 sum of any two codewords from C is in C (for the case q = 2)

If C is a k-dimensional subspace of V (n, q), then C is called [n, k]-code. It has qk

codewords if q is prime. If minimal distance of C is d , then it is called [n, k, d ] code.

Linear codes are also called ”group codes”.
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EXERCISE

Which of the following binary codes are linear?
C1 = {00, 01, 10, 11}
C2 = {000, 011, 101, 110}
C3 = {00000, 01101, 10110, 11011}
C5 = {101, 111, 011}
C6 = {000, 001, 010, 011}
C7 = {0000, 1001, 0110, 1110}

How to create a linear code

Notation If S is a set of vectors of a vector space, then let 〈S〉 be the set of all linear
combinations of vectors from S .

Theorem For any subset S of a linear space, 〈S〉 is a linear space that consists of the
following words:

the zero word,

all words in S,

all sums of two or more words in S.

Example S = {0100, 0011, 1100}
〈S〉 = {0000, 0100, 0011, 1100, 0111, 1011, 1000, 1111}.
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BASIC PROPERTIES of LINEAR CODES I

Notation: w(x) (weight of x) denotes the number of non-zero entries of x .

Lemma If x , y ∈ V (n, q), then h(x , y) = w(x − y).

Proof x − y has non-zero entries in exactly those positions where x and y differ.

Theorem Let C be a linear code and let weight of C , notation w(C), be the smallest of
the weights of non-zero codewords of C . Then h(C) = w(C).

Proof There are x , y ∈ C such that h(C) = h(x , y). Hence h(C) = w(x − y) ≥ w(C).

On the other hand, for some x ∈ C

w(C) = w(x) = h(x , 0) ≥ h(C).

Consequence

If C is a code with m codewords, then in order to determine h(C) one has to make`
m
2

´
= Θ(m2) comparisons in the worst case.

If C is a linear code, then in order to compute h(C),m − 1 comparisons are enough.
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BASIC PROPERTIES of LINEAR CODES II

If C is a linear [n, k]-code, then it has a basis consisting of k codewords.

Example

Code
C4 = {0000000, 1111111, 1000101, 1100010,

0110001, 1011000, 0101100, 0010110,
0001011, 0111010, 0011101, 1001110,
0100111, 1010011, 1101001, 1110100}

has the basis
{1111111, 1000101, 1100010, 0110001}.

How many different bases has a linear code?

Theorem A binary linear code of dimension k has

1
k!

Qk−1
i=0 (2k − 2i )

bases.
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ADVANTAGES and DISADVANTAGES of LINEAR CODES I.

Advantages - big.

1 Minimal distance h(C) is easy to compute if C is a linear code.

2 Linear codes have simple specifications.

To specify a non-linear code usually all codewords have to be listed.

To specify a linear [n, k]-code it is enough to list k codewords (of a basis).

Definition A k × n matrix whose rows form a basis of a linear [n, k]-code (subspace) C is
said to be the generator matrix of C .

Example The generator matrix of the code

C2 =

8>><>>:
0 0 0
0 1 1
1 0 1
1 1 0

9>>=>>; is

„
0 1 1
1 0 1

«

and of the code

C4 = is

0BB@
1 1 1 1 1 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
0 1 1 0 0 0 1

1CCA
3 There are simple encoding/decoding procedures for linear codes.
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ADANTAGES and DISADVANTAGES of LINEAR CODES II.

Disadvantages of linear codes are small:

1 Linear q-codes are not defined unless q is a prime power.

2 The restriction to linear codes might be a restriction to weaker codes than
sometimes desired.
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EQUIVALENCE of LINEAR CODES I

Definition Two linear codes on GF (q) are called equivalent if one can be obtained from
another by the following operations:

(a) permutation of the words or positions of the code;

(b) multiplication of symbols appearing in a fixed position by a non-zero scalar.

Theorem Two k × n matrices generate equivalent linear [n, k]-codes over GF (q) if one
matrix can be obtained from the other by a sequence of the following operations:

(a) permutation of the rows

(b) multiplication of a row by a non-zero scalar

(c) addition of one row to another

(d) permutation of columns

(e) multiplication of a column by a non-zero scalar

Proof Operations (a) - (c) just replace one basis by another. Last two operations convert
a generator matrix to one of an equivalent code.
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(c) addition of one row to another

(d) permutation of columns

(e) multiplication of a column by a non-zero scalar

Proof Operations (a) - (c) just replace one basis by another. Last two operations convert
a generator matrix to one of an equivalent code.
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EQUIVALENCE of LINEAR CODES II

Theorem Let G be a generator matrix of an [n, k]-code. Rows of G are then linearly
independent .By operations (a) - (e) the matrix G can be transformed into the form:
[Ik |A] where Ik is the k × k identity matrix, and A is a k × (n − k) matrix.

Example 0BB@
1 1 1 1 1 1 1
1 0 0 0 1 0 1
1 1 0 0 0 1 0
1 1 1 0 0 0 1

1CCA→
0BB@

1 1 1 1 1 1 1
0 1 1 1 0 1 0
0 0 1 1 1 0 1
0 0 0 1 1 1 0

1CCA→
0BB@

1 0 0 0 1 0 1
0 1 1 1 0 1 0
0 0 1 1 1 0 1
0 0 0 1 1 1 0

1CCA→
0BB@

1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 1 1 0 1
0 0 0 1 1 1 0

1CCA→
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ENCODING with LINEAR CODES

is a vector × matrix multiplication
Let C be a linear [n, k]-code over GF (q) with a generator matrix G .

Theorem C has qk codewords.

Proof Theorem follows from the fact that each codeword of C can be expressed uniquely
as a linear combination of the basis vectors.

Corollary The code C can be used to encode uniquely qk messages.
Let us identify messages with elements V (k, q).

Encoding of a message u = (u1, . . . , uk) with the code C :

u · G =
Pk

i=1 ui ri where r1, . . . , rk are rows of G .

Example Let C be a [7, 4]-code with the generator matrix

G=

2664
1 0 0 0 1 0 1
0 1 0 0 1 1 1
0 0 1 0 1 1 0
0 0 0 1 0 1 1

3775
A message (u1, u2, u3, u4) is encoded as:???
For example:
0 0 0 0 is encoded as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ?
1 0 0 0 is encoded as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ?
1 1 1 0 is encoded as . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ?
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UNIQUENESS of ENCODING

with linear codes

Theorem If G = {wi}ki=1 is a generator matrix of a binary linear code C of length n and
dimension k, then

v = uG

ranges over all 2k codewords of C as u ranges over all 2k words of length k.
Therefore

C = {uG |u ∈ {0, 1}k}

Moreover

u1G = u2G

if and only if

u1 = u2.

Proof If u1G–u2G = 0, then

0 =
Pk

i=1 u1,i wi −
Pk

i=1 u2,i wi =
Pk

i=1(u1,i − u2,i )wi

And, therefore, since wi are linearly independent, u1 = u2.
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DECODING of LINEAR CODES

Decoding problem: If a codeword: x = x1 . . . xn is sent and the word y = y1 . . . yn is
received, then e = y–x = e1 . . . en is said to be the error vector. The decoder must
decide, from y , which x was sent, or, equivalently, which error e occurred.

To describe main Decoding method some technicalities have to be introduced

Definition Suppose C is an [n, k]-code over GF (q) and u ∈ V (n, q). Then the set

u + C = {u + x |x ∈ C}

is called a coset (u-coset) of C in V (n, q).

Example Let C = {0000, 1011, 0101, 1110}
Cosets:
0000 + C = C ,
1000 + C = {1000, 0011, 1101, 0110},
0100 + C = {0100, 1111, 0001, 1010} = 0001 + C ,
0010 + C = {0010, 1001, 0111, 1100}.

Are there some other cosets in this case?
Theorem Suppose C is a linear [n, k]-code over GF (q). Then

(a) every vector of V (n, q) is in some coset of C ,

(b) every coset contains exactly qk elements,

(c) two cosets are either disjoint or identical.
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NEAREST NEIGHBOUR DECODING SCHEME

Each vector having minimum weight in a coset is called a coset leader.

1. Design a (Slepian) standard array for an [n, k]-code C - that is a qn−k × qk array of
the form:

codewords coset leader codeword 2 . . . codeword 2k

coset leader + . . . +
. . . + + +

coset leader + . . . +
coset leader

Example

0000 1011 0101 1110
1000 0011 1101 0110
0100 1111 0001 1010
0010 1001 0111 1100

A word y is decoded as codeword of the first row of the column in which y occurs.
Error vectors which will be corrected are precisely coset leaders!
In practice, this decoding method is too slow and requires too much memory.
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PROBABILITY of GOOD ERROR CORRECTION

What is the probability that a received word will be decoded correctly - that is as the
codeword that was sent (for binary linear codes and binary symmetric channel)?

Probability of an error in the case of a given error vector of weight i is

pi (1− p)n−i .

Therefore, it holds.

Theorem Let C be a binary [n, k]-code, and for i = 0, 1, . . . , n let αi be the number of
coset leaders of weight i . The probability Pcorr (C) that a received vector when decoded
by means of a standard array is the codeword which was sent is given by

Pcorr (C) =
Pn

i=0 αi p
i (1− p)n−i .

Example For the [4, 2]-code of the last example

α0 = 1, α1 = 3, α2 = α3 = α4 = 0.

Hence

Pcorr (C) = (1− p)4 + 3p(1− p)3 = (1− p)3(1 + 2p).

If p = 0.01, then Pcorr = 0.9897
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PROBABILITY of GOOD ERROR DETECTION

Suppose a binary linear code is used only for error detection.

The decoder will fail to detect errors which have occurred if the received word y is a
codeword different from the codeword x which was sent, i. e. if the error vector
e = y − x is itself a non-zero codeword.

The probability Pundetect(C) that an incorrect codeword is received is given by the
following result.

Theorem Let C be a binary [n, k]-code and let Ai denote the number of codewords of C
of weight i . Then, if C is used for error detection, the probability of an incorrect message
being received is

Pundetect(C) =
Pn

i=0 Ai p
i (1− p)n−i .

Example In the case of the [4, 2] code from the last example

A2 = 1 A3 = 2
Pundetect(C) = p2(1− p)2 + 2p3(1− p) = p2 − p4.

For p = 0.01

Pundetect(C) = 0.00009999.
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DUAL CODES

Inner product of two vectors (words)

u = u1 . . . un, v = v1 . . . vn

in V (n, q) is an element of GF (q) defined (using modulo q operations) by

u · v = u1v1 + . . .+ unvn.

Example In V (4, 2) : 1001 · 1001 = 0

In V (4, 3) : 2001 · 1210 = 2

1212 · 2121 = 2

If u · v = 0 then words (vectors) u and v are called orthogonal.

Properties If u, v ,w ∈ V (n, q), λ, µ ∈ GF (q), then
u · v = v · u, (λu + µv) · w = λ(u · w) + µ(v · w).

Given a linear [n, k]-code C , then the dual code of C , denoted by C⊥, is defined by

C⊥ = {v ∈ V (n, q) | v · u = 0 for all u ∈ C}.
Lemma Suppose C is an [n, k]-code having a generator matrix G . Then for v ∈ V (n, q)

v ∈ C⊥ ⇔ vG> = 0,

where G> denotes the transpose of the matrix G .
Proof Easy.
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PARITE CHECKS versus ORTHOGONALITY

For understanding of the role the parity checks play for linear codes, it is important to
understand relation between orthogonality and special parity checks.

If binary words x and y are orthogonal, then the word y has even number of ones (1’s) in
the positions determined by ones (1’s) in the word x .

This implies that if words x and y are orthogonal, then x is a parity check word for y and
y is a parity check word for x .

Exercise: Let the word

100001

be orthogonal to a set S of binary words of length 6. What can we say about the words
in S?
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EXAMPLE

For the [n, 1]-repetition code C , with the generator matrix

G = (1, 1, . . . , 1)

the dual code C⊥ is [n, n − 1]-code with the generator matrix G⊥, described by

G⊥ =

0BB@
1 1 0 0 . . . 0
1 0 1 0 . . . 0

. . .
1 0 0 0 . . . 1

1CCA
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PARITY CHECK MATRICES I

Example If

C5 =

0BB@
0 0 0 0
1 1 0 0
0 0 1 1
1 1 1 1

1CCA, then C⊥5 = C5.

If

C6 =

0BB@
0 0 0
1 1 0
0 1 1
1 0 1

1CCA, then C⊥6 =

„
0 0 0
1 1 1

«
.

Theorem Suppose C is a linear [n, k]-code over GF (q), then the dual code C⊥ is a linear
[n, n − k]-code.

Definition A parity-check matrix H for an [n, k]-code C is a generator matrix of C⊥.
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PARITY CHECK MATRICES

Definition A parity-check matrix H for an [n, k]-code C is a generator matrix of C⊥.

Theorem If H is parity-check matrix of C , then

C = {x ∈ V (n, q)|xH> = 0},

and therefore any linear code is completely specified by a parity-check matrix.

Example Parity-check matrix for

C5 is

„
1 1 0 0
0 0 1 1

«
and for

C6 is
`
1 1 1

´
The rows of a parity check matrix are parity checks on codewords. They say that certain
linear combinations of elements of every codeword are zeros.
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SYNDROME DECODING

Theorem If G = [Ik |A] is the standard form generator matrix of an [n, k]-code C , then a
parity check matrix for C is H = [−A>|In−k ].
Example

Generator matrix G =

˛̨̨̨
˛̨̨̨I4

˛̨̨̨
˛̨̨̨1 0 1
1 1 1
1 1 0
0 1 1

˛̨̨̨
˛̨̨̨ ⇒ parity check m. H =

˛̨̨̨
˛̨1 1 1 0
0 1 1 1
1 1 0 1

˛̨̨̨
˛̨ I3

˛̨̨̨
˛̨

Definition Suppose H is a parity-check matrix of an [n, k]-code C . Then for any
y ∈ V (n, q) the following word is called the syndrome of y :

S(y) = yH>.

Lemma Two words have the same syndrome iff they are in the same coset.
Syndrom decoding Assume that a standard array of a code C is given and, in addition,
let in the last two columns the syndrome for each coset be given.

0 0 0 0
1 0 0 0
0 1 0 0
0 0 1 0

˛̨̨̨
˛̨̨̨1 0 1 1
0 0 1 1
1 1 1 1
1 0 0 1

˛̨̨̨
˛̨̨̨ 0 1 0 1

1 1 0 1
0 0 0 1
0 1 1 1

˛̨̨̨
˛̨̨̨1 1 1 0
0 1 1 0
1 0 1 0
1 1 0 0

˛̨̨̨
˛̨̨̨ 0 0

1 1
0 1
1 0

When a word y is received, compute S(y) = yH>, locate S(y) in the “syndrome
column”, and then locate y in the same row and decode y as the codeword in the same
column and in the first row.
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KEY OBSERVATION for SYNDROM COMPUTATION

When preparing a “syndrome decoding” it is sufficient to store only two columns: one for
coset leaders and one for syndromes.

Example

coset leaders syndromes
l(z) z

0000 00
1000 11
0100 01
0010 10

Decoding procedure

Step 1 Given y compute S(y).

Step 2 Locate z = S(y) in the syndrome column.

Step 3 Decode y as y − l(z).

Example If y = 1111, then S(y) = 01 and the above decoding procedure produces

1111–0100 = 1011.

Syndrom decoding is much faster than searching for a nearest codeword to a received
word. However, for large codes it is still too inefficient to be practical.

In general, the problem of finding the nearest neighbour in a linear code is NP-complete.
Fortunately, there are important linear codes with really efficient decoding.
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HAMMING CODES

An important family of simple linear codes that are easy to encode and decode, are
so-called Hamming codes.

Definition Let r be an integer and H be an r × (2r − 1) matrix columns of which are all
non-zero distinct words from V (r , 2). The code having H as its parity-check matrix is
called binary Hamming code and denoted by Ham(r , 2).

Example

Ham(2, 2) : H =

»
1 1 0
1 0 1

–
⇒ G =

ˆ
1 1 1

˜

Ham(3, 2) = H =

240 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

35⇒ G =

2664
1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

3775

Theorem Hamming code Ham(r , 2)

is [2r − 1, 2r –1− r ]-code,

has minimum distance 3,

is a perfect code.

Properties of binary Hamming codes Coset leaders are precisely words of weight ≤ 1.
The syndrome of the word 0 . . . 010 . . . 0 with 1 in j-th position and 0 otherwise is the
transpose of the j-th column of H.
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HAMMING CODES - DECODING

Decoding algorithm for the case the columns of H are arranged in the order of increasing
binary numbers the columns represent.

Step 1 Given y compute syndrome S(y) = yH>.

Step 2 If S(y) = 0, then y is assumed to be the codeword sent.

Step 3 If S(y) 6= 0, then assuming a single error, S(y) gives the binary position of
the error.
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EXAMPLE

For the Hamming code given by the parity-check matrix

H =

240 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1

35
and the received word

y = 1101011,

we get syndrome

S(y) = 110

and therefore the error is in the sixth position.

Hamming code was discovered by Hamming (1950), Golay (1950).

It was conjectured for some time that Hamming codes and two so called Golay codes are
the only non-trivial perfect codes.

Comment

Hamming codes were originally used to deal with errors in long-distance telephon calls.
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ADVANTAGES of HAMMING CODES

Let a binary symmetric channel be used which with probability q correctly transfers a
binary symbol.

If a 4-bit message is transmitted through such a channel, then correct transmission of the
message occurs with probability q4.

If Hamming (7, 4, 3) code is used to transmit a 4-bit message, then probability of correct
decoding is

q7 + 7(1− q)q6.

In case q = 0.9 the probability of correct transmission is 0.6561 in the case no error
correction is used and 0.8503 in the case Hamming code is used - an essential
improvement.
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IMPORTANT CODES

Hamming (7, 4, 3)-code. It has 16 codewords of length 7. It can be used to send
27 = 128 messages and can be used to correct 1 error.

Golay (23, 12, 7)-code. It has 4 096 codewords. It can be used to transmit 8 388 608
messages and can correct 3 errors.

Quadratic residue (47, 24, 11)-code. It has

16 777 216 codewords

and can be used to transmit

140 737 488 355 238 messages

and correct 5 errors.

Hamming and Golay codes are the only non-trivial perfect codes.
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GOLAY CODES - DESCRIPTION

Golay codes G24 and G23 were used by Voyager I and Voyager II to transmit color pictures
of Jupiter and Saturn. Generation matrix for G24 has the form

G =

0BBBBBBBBBBBBBBBB@

1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 0 1 1 0 1 1 0 1 1 1 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0
0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 1 1 0 1 1 1 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 1 0 1 1 0 1 1 1
0 0 0 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1
0 0 0 0 0 0 0 1 0 0 0 0 1 1 1 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0 1 0 0 0 1 1 1 1 0 0 0 1 0 1 1 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 1 1 0 0 0 1 0 1 1
0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1 1 1 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 0 0 1 0

1CCCCCCCCCCCCCCCCA

G24 is (24, 12, 8)-code and the weights of all codewords are multiples of 4. G23 is obtained
from G24 by deleting last symbols of each codeword of G24. G23 is (23, 12, 7)-code.
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GOLAY CODES - CONSTRUCTION

Matrix G for Golay code G24 has actually a simple and regular construction.

The first 12 columns are formed by a unitary matrix I12, next column has all 1’s.

Rows of the last 11 columns are cyclic permutations of the first row which has 1 at those
positions that are squares modulo 11, that is

0, 1, 3, 4, 5, 9.
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REED-MULLER CODES

Reed-Muller codes form a family of codes defined recursively with interesting properties
and easy decoding.

If D1 is a binary [n, k1, d1]-code and D2 is a binary [n, k2, d2]-code, a binary code C of
length 2n is defined as follows C = {u|u + v ,where u ∈ D1, v ∈ D2}.

Lemma C is [2n, k1 + k2,min{2d1, d2}]-code and if Gi is a generator matrix for Di ,

i = 1, 2, then

»
G1 G1

0 G2

–
is a generator matrix for C .

Reed-Muller codes R(r ,m), with 0 ≤ r ≤ m are binary codes of length n = 2m.R(m,m)
is the whole set of words of length n,R(0,m) is the repetition code.

If 0 < r < m, then R(r + 1,m + 1) is obtained from codes R(r + 1,m) and R(r ,m) by
the above construction.

Theorem The dimension of R(r ,m) equals 1 +
`
m
1

´
+ . . .+

`
m
r

´
. The minimum weight of

R(r ,m) equals 2m−r . Codes R(m − r − 1,m) and R(r ,m) are dual codes.
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SINGLETON BOUND

Singleton bound: Let C be a q-ary (n,M, d)-code.
Then

M ≤ qn−d+1.

Proof Take some d −1 coordinates and project all codewords to the resulting coordinates.

The resulting codewords are all different and therefore M cannot be larger than the
number of q-ary words of length n − d − 1.

Codes for which M = qn−d+1 are called MDS-codes (Maximum Distance Separable).

Corollary: If C is a q-ary linear [n, k, d ]-code, then

k + d ≤ n + 1.
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SHORTENING and PUNCTURING of LINEAR CODES

Let C be a q-ary linear [n, k, d ]-code. Let

D = {(x1, . . . , xn−1)|(x1, . . . , xn−1, 0) ∈ C}. then D is a linear code - a shortening of the
code C .

If d > 1, then D is a linear [n − 1, k, d∗]-code or [n − 1, k, d − 1]-code a shortening of
the code C .

Corollary: If there is a q-ary [n, k, d ]-code, then shortening yields a q-ary
[n − 1, k − 1, d ]-code.

Let C be a q-ary [n, k, d ]-code. Let

E = {(x1, . . . , xn−1)|(x1, . . . , xn−1, x) ∈ C , for some x ≤ q},

then E is a linear code - a puncturing of the code C .
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If d > 1, then E is an [n − 1, k, d∗] code where d∗ = d − 1 if C has a minimum weight
codeword with wit non-zero llast coordinate and D∗ = d otherwise.

when d = 1, then E is an [n − 1, k, 1] code, if C has no codeword of weight 1 whose
nonzero entry is in last coordinate; otherwise, if k > 1, then E s an [n − 1, k − 1, d∗]
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code with d∗ > 1

REED-SOLOMON CODES

An important example of MDS-codes are q-ary Reed-Solomon codes RSC(k, q), for
k ≤ q.

They are codes generator matrix of which has rows labelled by polynomials X i ,
0 ≤ i ≤ k − 1, columns by elements 0, 1, . . . , q− 1 and the element in a row labelled by a
polynomial p and in a column labelled by an element u is p(u).

RSC(k, q) code is [q, k, q − k + 1] code.

Example Generator matrix for RSC(3, 5) code is241 1 1 1 1
0 1 2 3 4
0 1 4 4 1

35
Interesting property of Reed-Solomon codes:

RSC(k, q)⊥ = RSC(q − k, q).

Reed-Solomon codes are used in digital television, satellite communication, wireless
communication, barcodes, compact discs, DVD,. . . They are very good to correct burst
errors - such as ones caused by solar energy.
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SOCCER GAMES BETTING SYSTEM

Ternary Golay code with parameters (11, 729, 5) can be used to bet for results of 11
soccer games with potential outcomes 1 (if home team wins), 2 (if guests win) and 3 (in
case of a draw).

If 729 bets are made, then at least one bet has at least 9 results correctly guessed.

In case one has to bet for 13 games, then one can usually have two games with pretty
sure outcomes and for the rest one can use the above ternary Golay code.
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LDPC (Low-Density Parity Check) - CODES

A LDPC code is a binary linear code whose parity check matrix is very sparse - it
contains only very few 1’s.

A linear [n, k] code is a regular [n, k, r , c] LDPC code if r << n, c << n − k and its
parity-check matrix has exactly r 1’s in each row and exactly c 1’s in each column.

In the last years LDPC codes are replacing in many important applications other types of
codes for the following reasons:

1 LDPC codes are in principle also very good channel codes, so called Shannon
capacity approaching codes, they allow the noise threshold to be set arbitrarily
close to the theoretical maximum - to Shannon limit - for symmetric channel.

2 Good LDPC codes can be decoded in time linear to their block length using special
(for example ”iterative belief propagation”) approximation techniques.

3 Some LDPC codes are well suited for implementations that make heavy use of
parallelism.

Parity-check matrices for LDPC codes are often (pseudo)-randomly generated, subject to
sparsity constrains. Such LDPC codes are proven to be good with a high probability.
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DISCOVERY and APPLICATION of LDPC CODES

LDPC codes were discovered in 1960 by R.C. Gallager in his PhD thesis, but ignored till
1996 when linear time decoding methods were discovered for some of them.

LDPC codes are used for: deep space communication; digital video broadcasting;
10GBase-T Ethernet, which sends data at 10 gigabits per second over Twisted-pair
cables; Wi-Fi standard,....
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TANNER GRAPHS REPRESENTATION of LDPC CODES

An [n, k] LDPC code can be represented by a bipartite graph between a set of n top
”variable-nodes (v-nodes)” and a set of bottom (n − k) ”constrain nodes (c-nodes)”.

= = = = = =

+ + +

a a a a a a1 2 3 4 5 6

The corresponding parity check matrix has n − k rows and n columns and i-th column
has 1 in the j-th row exactly in case if i-th v-node is connected to j-th c-node.

H =

0@ 1 1 1 1 0 0
0 0 1 1 0 1
1 0 0 1 1 0

1A
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TANNER GRAPHS - CONTINUATION

Valid codewords for the LDPC-code with Tanner graph

= = = = = =

+ + +

a a a a a a1 2 3 4 5 6

with parity check matrix

H =

0@ 1 1 1 1 0 0
0 0 1 1 0 1
1 0 0 1 1 0

1A
have to satisfy constrains

a1 + a2 + a3 + a4 = 0

a3 + a4 + a6 = 0

a1 + a4 + a5 = 0
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APPENDIX
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COMMENTS

GF (q) for a prime q is the set {0, 1, . . . , q − 1} with operations + and · modulo q.
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Part III

Cyclic codes and channel codes



CHAPTER 3: CYCLIC CODES and CHANNEL CODES

Cyclic codes are special linear codes of large interest and importance because

They posses a rich algebraic structure that can be utilized in a variety of ways.

They have extremely concise specifications.

Their encodings can be efficiently implemented using simple shift registers.

Many of the practically very important codes are cyclic.

Channel codes are used to encode streams of data (bits). Some of them, as Turbo codes,
reach theoretical Shannon bound concerning efficiency, and are currently used often.
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IMPORTANT NOTE

In order to specify a binary code with 2k codewords of length n one may need to write
down

2k

codewords of length n.

In order to specify a linear binary code of the dimension k with 2k codewords of length n
it is sufficient to write down

k

codewords of length n.

In order to specify a binary cyclic code with 2k codewords of length n it is sufficient to
write down

1

codeword of length n.
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BASIC DEFINITION AND EXAMPLES

Definition A code C is cyclic if

(i) C is a linear code;
(ii) any cyclic shift of a codeword is also a codeword, i.e. whenever a0, . . . an−1 ∈ C ,

then also an−1a0 . . . an–2 ∈ C and a1a2 . . . an−1a0 ∈ C .

Example

(i) Code C = {000, 101, 011, 110} is cyclic.
(ii) Hamming code Ham(3, 2): with the generator matrix

G =

2664
1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

3775
is equivalent to a cyclic code.

(iii) The binary linear code {0000, 1001, 0110, 1111} is not cyclic, but it is equivalent to
a cyclic code.

(iv) Is Hamming code Ham(2, 3) with the generator matrix»
1 0 1 1
0 1 1 2

–
(a) cyclic?
(b) or at least equivalent to a cyclic code?
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FREQUENCY of CYCLIC CODES

Comparing with linear codes, cyclic codes are quite scarce. For example, there are 11 811
linear [7,3] binary codes, but only two of them are cyclic.

Trivial cyclic codes. For any field F and any integer n ≥ 3 there are always the following
cyclic codes of length n over F :

No-information code - code consisting of just one all-zero codeword.

Repetition code - code consisting of all codewords (a, a, . . . ,a) for a ∈ F .

Single-parity-check code - code consisting of all codewords with parity 0.

No-parity code - code consisting of all codewords of length n

For some cases, for example for n = 19 and F = GF (2), the above four trivial cyclic
codes are the only cyclic codes.
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EXAMPLE of a CYCLIC CODE

The code with the generator matrix

G =

241 0 1 1 1 0 0
0 1 0 1 1 1 0
0 0 1 0 1 1 1

35
has, in addition to the codeword 0000000, the following codewords

c1 = 1011100

c1 + c2 = 1110010

c2 = 0101110

c1 + c3 = 1001011

c1 + c2 + c3 = 1100101

c3 = 0010111

c2 + c3 = 0111001

and it is cyclic because the right shifts have the following impacts

c1 → c2,

c1 + c2 → c2 + c3,

c2 → c3,

c1 + c3 → c1 + c2 + c3,

c1 + c2 + c3 → c1 + c2

c3 → c1 + c3

c2 + c3 → c1
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POLYNOMIALS over GF(q)

A codeword of a cyclic code is usually denoted

a0a1 . . . an−1

and to each such a codeword the polynomial

a0 + a1x + a2x2 + . . .+ an−1xn−1

will be associated.

NOTATION: Fq[x ] denotes the set of all polynomials over GF (q).

deg(f (x)) = the largest m such that xm has a non-zero coefficient in f (x).

Multiplication of polynomials If f (x), g(x) ∈ Fq[x ], then

deg(f (x)g(x)) = deg(f (x)) + deg(g(x)).

Division of polynomials For every pair of polynomials a(x), b(x) 6= 0 in Fq[x ] there exists
a unique pair of polynomials q(x), r(x) in Fq[x ] such that

a(x) = q(x)b(x) + r(x), deg(r(x)) < deg(b(x)).

Example Divide x3 + x + 1 by x2 + x + 1 in F2[x ].
Definition Let f (x) be a fixed polynomial in Fq[x ]. Two polynomials g(x), h(x) are said
to be congruent modulo f (x), notation

g(x) ≡ h(x)(mod f (x)),

if g(x)− h(x) is divisible by f (x).
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RINGS of POLYNOMIALS

For any polynomial f (x), the set of all polynomials in Fq[x ] of degree less than deg(f (x)),
with addition and multiplication modulo f (x), forms a ring denoted Fq[x ]/f (x).

Example Calculate (x + 1)2 in F2[x ]/(x2 + x + 1). It holds

(x + 1)2 = x2 + 2x + 1 ≡ x2 + 1 ≡ x (mod x2 + x + 1).

How many elements has Fq[x ]/f (x)?

Result |Fq[x ]/f (x)| = qdeg(f (x)).

Example Addition and multiplication tables for F2[x ]/(x2 + x + 1)

+ 0 1 x 1+x
0 0 1 x 1+x
1 1 0 1+x x
x x 1+x 0 1

1+x 1+x x 1 0

• 0 1 x 1+x
0 0 0 0 0
1 0 1 x 1+x
x 0 x 1+x 1

1+x 0 1+x 1 x

Definition A polynomial f (x) in Fq[x ] is said to be reducible if f (x) = a(x)b(x), where
a(x), b(x) ∈ Fq[x ] and

deg(a(x)) < deg(f (x)), deg(b(x)) < deg(f (x)).

If f (x) is not reducible, then it is said to be irreducible in Fq[x ].
Theorem The ring Fq[x ]/f (x) is a field if f (x) is irreducible in Fq[x ].
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FIELD Rn,Rn = Fq[x ]/(xn − 1)

Computation modulo xn − 1 in the field Rn = Fq[x ]/(xn − 1)

Since xn ≡ 1(mod (xn − 1)) we can compute f (x) mod (xn − 1) by replacing, in f (x),
xnby1, xn+1 by x , xn+2 by x2, xn+3 by x3, . . .

Replacement of a word

w = a0a1 . . . an−1

by a polynomial

p(w) = a0 + a1x + . . .+ an−1xn−1

is of large importance because

multiplication of p(w) by x in Rn corresponds to a single cyclic shift of w

x(a0 + a1x + . . . an−1xn−1) = an−1 + a0x + a1x2 + . . .+ an−2xn−1
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ALGEBRAIC CHARACTERIZATION of CYCLIC CODES

Theorem A code C is cyclic if and only if it satisfies two conditions

(i) a(x), b(x) ∈ C ⇒ a(x) + b(x) ∈ C

(ii) a(x) ∈ C , r(x) ∈ Rn ⇒ r(x)a(x) ∈ C

Proof

(1) Let C be a cyclic code. C is linear ⇒
(i) holds.
(ii)

Let a(x) ∈ C , r(x) = r0 + r1x + . . .+ rn−1x
n−1

r(x)a(x) = r0a(x) + r1xa(x) + . . .+ rn−1x
n−1a(x)

is in C by (i) because summands are cyclic shifts of a(x).

(2) Let (i) and (ii) hold
Taking r(x) to be a scalar the conditions imply linearity of C .
Taking r(x) = x the conditions imply cyclicity of C .
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CONSTRUCTION of CYCLIC CODES

Notation For any f (x) ∈ Rn, we can define

〈f (x)〉 = {r(x)f (x) | r(x) ∈ Rn}

(with multiplication modulo xn − 1) a set of polynomials - a code.

Theorem For any f (x) ∈ Rn, the set 〈f (x)〉 is a cyclic code (generated by f ).

Proof We check conditions (i) and (ii) of the previous theorem.

(i) If a(x)f (x) ∈ 〈f (x)〉 and also b(x)f (x) ∈ 〈f (x)〉, then

a(x)f (x) + b(x)f (x) = (a(x) + b(x))f (x) ∈ 〈f (x)〉
(ii) If a(x)f (x) ∈ 〈f (x)〉, r(x) ∈ Rn, then

r(x)(a(x)f (x)) = (r(x)a(x))f (x) ∈ 〈f (x)〉
Example let C = 〈1 + x2〉, n = 3, q = 2.
In order to determine C we have to compute r(x)(1 + x2) for all r(x) ∈ R3.

R3 = {0, 1, x , 1 + x , x2, 1 + x2, x + x2, 1 + x + x2}.

Result

C = {0, 1 + x , 1 + x2, x + x2}
C = {000, 011, 101, 110}
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CHARACTERIZATION THEOREM for CYCLIC CODES

We show that all cyclic codes C have the form C = 〈f (x)〉 for some f (x) ∈ Rn.

Theorem Let C be a non-zero cyclic code in Rn. Then

there exists a unique monic polynomial g(x) of the smallest degree such that

C = 〈g(x)〉
g(x) is a factor of xn − 1.

Proof

(i) Suppose g(x) and h(x) are two monic polynomials in C of the smallest degree.
Then the polynomial g(x)− h(x) ∈ C and it has a smaller degree and a
multiplication by a scalar makes out of it a monic polynomial. If g(x) 6= h(x) we
get a contradiction.

(ii) Suppose a(x) ∈ C .

Then

a(x) = q(x)g(x) + r(x), (deg r(x) < deg g(x)).
and

r(x) = a(x)− q(x)g(x) ∈ C .

By minimality

r(x) = 0

and therefore a(x) ∈ 〈g(x)〉.
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CHARACTERIZATION THEOREM for CYCLIC CODES - continuation

(iii) Clearly,

xn − 1 = q(x)g(x) + r(x) with deg r(x) < deg g(x)

and therefore

r(x) ≡ −q(x)g(x)(mod xn − 1) and
r(x) ∈ C ⇒ r(x) = 0⇒ g(x) is a factor of xn − 1.

GENERATOR POLYNOMIALS

Definition If

C = 〈g(x)〉,

holds for a cyclic code C , then g is called the generator polynomial for the code C .
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HOW TO DESIGN CYCLIC CODES?

The last claim of the previous theorem gives a recipe to get all cyclic codes of the given
length n in GF(q).

Indeed, all we need to do is to find all factors (in GF(q)) of

xn − 1.

Problem: Find all binary cyclic codes of length 3.

Solution: Since

x3 − 1 = (x − 1)(x2 + x + 1)| {z }
both factors are irreducible in GF(2)

we have the following generator polynomials and codes.

Generator polynomials
1

x + 1
x2 + x + 1

x3 − 1 ( = 0)

Code in R3

R3

{0, 1 + x , x + x2, 1 + x2}
{0, 1 + x + x2}

{0}

Code in V (3, 2)
V (3, 2)

{000, 110, 011, 101}
{000, 111}
{000}
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DESIGN of GENERATOR MATRICES for CYCLIC CODES

Theorem Suppose C is a cyclic code of codewords of length n with the generator
polynomial

g(x) = g0 + g1x + . . . + gr x
r .

Then dim (C) = n − r and a generator matrix G1 for C is

G1 =

0BBB@
g0 g1 g2 . . . gr 0 0 0 . . . 0
0 g0 g1 g2 . . . gr 0 0 . . . 0
0 0 g0 g1 g2 . . . gr 0 . . . 0

. . . . . . . . .
0 0 . . . 0 0 . . . 0 g0 . . . gr

1CCCA

Proof

(i) All rows of G1 are linearly independent.
(ii) The n − r rows of G represent codewords

g(x), xg(x), x2g(x), . . . , xn−r−1g(x) (*)

(iii) It remains to show that every codeword in C can be expressed as a linear
combination of vectors from (*).

Indeed, if a(x) ∈ C , then
a(x) = q(x)g(x).

Since deg a(x) < n we have deg q(x) < n − r .
Hence

q(x)g(x) = (q0 + q1x + . . . + qn−r−1x
n−r−1)g(x)

= q0g(x) + q1xg(x) + . . . + qn−r−1x
n−r−1g(x).
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EXAMPLE

The task is to determine all ternary codes of length 4 and generators for them.
Factorization of x4 − 1 over GF (3) has the form

x4 − 1 = (x − 1)(x3 + x2 + x + 1) = (x − 1)(x + 1)(x2 + 1)

Therefore there are 23 = 8 divisors of x4 − 1 and each generates a cyclic code.

Generator polynomial Generator matrix
1 I4

x − 1

24−1 1 0 0
0 −1 1 0
0 0 −1 1

35
x + 1

241 1 0 0
0 1 1 0
0 0 1 1

35
x2 + 1

»
1 0 1 0
0 1 0 1

–
(x − 1)(x + 1) = x2 − 1

»
−1 0 1 0
0 −1 0 1

–
(x − 1)(x2 + 1) = x3 − x2 + x − 1

ˆ
−1 1 −1 1

˜
(x + 1)(x2 + 1)

ˆ
1 1 1 1

˜
x4 − 1 = 0

ˆ
0 0 0 0

˜
The last matrix is not, however, formally a generator matrix - the corresponding code is empty.prof. Jozef Gruska IV054 3. Cyclic codes and channel codes 100/616



COMMENT

On the previous slide ”generator polynomials” x − 1, x2 − 1 and x3 − x2 + x + 1 are
formally not in Rn becasue only allowable coefficients are 0, 1, 2.

A good practice is, however, to use also coefficients −2, and −1 as ones that are equal,
modulo 3, to 1 nd 2 and they can be replace in such a way also in matrices to be fully
correct formally.
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CHECK POLYNOMIALS and PARITY CHECK MATRICES for CYCLIC
CODES

Let C be a cyclic [n, k]-code with the generator polynomial g(x) (of degree n − k). By
the last theorem g(x) is a factor of xn − 1. Hence

xn − 1 = g(x)h(x)

for some h(x) of degree k. (h(x) is called the check polynomial of C .)

Theorem Let C be a cyclic code in Rn with a generator polynomial g(x) and a check
polynomial h(x). Then an c(x) ∈ Rn is a codeword of C if and only if c(x)h(x) ≡ 0
–(this and next congruences are all modulo xn − 1).

Proof Note, that g(x)h(x) = xn − 1 ≡ 0

(i) c(x) ∈ C ⇒ c(x) = a(x)g(x) for some a(x) ∈ Rn

⇒ c(x)h(x) = a(x) g(x)h(x)| {z }
≡0

≡ 0.

(ii) c(x)h(x) ≡ 0

c(x) = q(x)g(x) + r(x), deg r(x) < n − k = deg g(x)
c(x)h(x) ≡ 0⇒ r(x)h(x) ≡ 0 (mod xn − 1)

Since deg (r(x)h(x)) < n − k + k = n, we have r(x)h(x) = 0 in F [x ] and therefore

r(x) = 0⇒ c(x) = q(x)g(x) ∈ C .

prof. Jozef Gruska IV054 3. Cyclic codes and channel codes 102/616



CHECK POLYNOMIALS and PARITY CHECK MATRICES for CYCLIC
CODES

Let C be a cyclic [n, k]-code with the generator polynomial g(x) (of degree n − k). By
the last theorem g(x) is a factor of xn − 1. Hence

xn − 1 = g(x)h(x)

for some h(x) of degree k. (h(x) is called the check polynomial of C .)

Theorem Let C be a cyclic code in Rn with a generator polynomial g(x) and a check
polynomial h(x). Then an c(x) ∈ Rn is a codeword of C if and only if c(x)h(x) ≡ 0
–(this and next congruences are all modulo xn − 1).

Proof Note, that g(x)h(x) = xn − 1 ≡ 0

(i) c(x) ∈ C ⇒ c(x) = a(x)g(x) for some a(x) ∈ Rn

⇒ c(x)h(x) = a(x) g(x)h(x)| {z }
≡0

≡ 0.

(ii) c(x)h(x) ≡ 0

c(x) = q(x)g(x) + r(x), deg r(x) < n − k = deg g(x)
c(x)h(x) ≡ 0⇒ r(x)h(x) ≡ 0 (mod xn − 1)

Since deg (r(x)h(x)) < n − k + k = n, we have r(x)h(x) = 0 in F [x ] and therefore

r(x) = 0⇒ c(x) = q(x)g(x) ∈ C .

prof. Jozef Gruska IV054 3. Cyclic codes and channel codes 102/616



POLYNOMIAL REPRESENTATION of DUAL CODES

Since dim (〈h(x)〉) = n− k = dim(C⊥) we might easily be fooled to think that the check
polynomial h(x) of the code C generates the dual code C⊥.

Reality is “slightly different”:

Theorem Suppose C is a cyclic [n, k]-code with the check polynomial

h(x) = h0 + h1x + . . .+ hkxk ,

then

(i) a parity-check matrix for C is

H =

0BB@
hk hk−1 . . . h0 0 . . . 0
0 hk . . . h1 h0 . . . 0
. . . . . .
0 0 . . . 0 hk . . . h0

1CCA
(ii) C⊥ is the cyclic code generated by the polynomial

h(x) = hk + hk−1x + . . .+ h0xk

i.e. the reciprocal polynomial of h(x).
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POLYNOMIAL REPRESENTATION of DUAL CODES

Proof A polynomial c(x) = c0 + c1x + . . .+ cn−1xn−1 represents a code from C if
c(x)h(x) = 0. For c(x)h(x) to be 0 the coefficients at xk , . . . , xn−1 must be zero, i.e.

c0hk + c1hk−1 + . . .+ ckh0 = 0

c1hk + c2hk−1 + . . .+ ck+1h0 = 0

. . .

cn−k−1hk + cn−khk−1 + . . .+ cn−1h0 = 0

Therefore, any codeword c0c1 . . . cn−1 ∈ C is orthogonal to the word hkhk−1 . . . h000 . . . 0
and to its cyclic shifts.

Rows of the matrix H are therefore in C⊥. Moreover, since hk = 1, these row vectors are
linearly independent. Their number is n − k = dim (C⊥). Hence H is a generator matrix
for C⊥, i.e. a parity-check matrix for C .

In order to show that C⊥ is a cyclic code generated by the polynomial

h(x) = hk + hk−1x + . . .+ h0xk

it is sufficient to show that h(x) is a factor of xn − 1.

Observe that h(x) = xkh(x−1)and since h(x−1)g(x−1) = (x−1)n − 1

we have that xkh(x−1)xn−kg(x−1) = xn(x−n − 1) = 1− xn

and therefore h(x) is indeed a factor of xn − 1.
prof. Jozef Gruska IV054 3. Cyclic codes and channel codes 104/616



ENCODING with CYCLIC CODES I

Encoding using a cyclic code can be done by a multiplication of two polynomials - a
message polynomial and the generating polynomial for the cyclic code.

Let C be an [n, k]-code over an field F with the generator polynomial

g(x) = g0 + g1x + . . .+ gr−1x r−1 of degree r = n − k.

If a message vector m is represented by a polynomial m(x) of degree k and m is encoded
by

m⇒ c = mG ,

then the following relation between m(x) and c(x) holds

c(x) = m(x)g(x).

Such an encoding can be realized by the shift register shown in Figure below, where input
is the k-bit message to be encoded followed by n − k 0’ and the output will be the
encoded message.

input

output

Shift-register encodings of cyclic codes. Small circles represent multiplication by
the corresponding constant,

L
nodes represent modular addition, squares are shift

elements
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EXAMPLE

input

output

Shift-register encodings of cyclic codes. Small circles represent multiplication by
the corresponding constant,

L
nodes represent modular addition, squares are delay

elements
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HAMMING CODES as CYCLIC CODES I

Definition (Again!) Let r be a positive integer and let H be an r × (2r − 1) matrix whose
columns are all distinct non-zero vectors of V (r , 2). Then the code having H as its
parity-check matrix is called binary Hamming code denoted by Ham (r , 2).

It can be shown that:

Theorem The binary Hamming code Ham (r , 2) is equivalent to a cyclic code.

Definition If p(x) is an irreducible polynomial of degree r such that x is a primitive
element of the field F [x ]/p(x), then p(x) is called a primitive polynomial.

Theorem If p(x) is a primitive polynomial over GF (2) of degree r , then the cyclic code
〈p(x)〉 is the code Ham (r , 2).
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Definition If p(x) is an irreducible polynomial of degree r such that x is a primitive
element of the field F [x ]/p(x), then p(x) is called a primitive polynomial.

Theorem If p(x) is a primitive polynomial over GF (2) of degree r , then the cyclic code
〈p(x)〉 is the code Ham (r , 2).
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HAMMING CODES as CYCLIC CODES II

Example Polynomial x3 + x + 1 is irreducible over GF (2) and x is primitive element of
the field F2[x ]/(x3 + x + 1).

F2[x ]/(x3 + x + 1) =

{0, 1, x , x2, x3 = x + 1, x4 = x2 + x , x5 = x2 + x + 1, x6 = x2 + 1}

The parity-check matrix for a cyclic version of Ham (3, 2)

H =

0@1 0 0 1 0 1 1
0 1 0 1 1 1 0
0 0 1 0 1 1 1

1A
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PROOF of THEOREM

The binary Hamming code Ham (r , 2) is equivalent to a cyclic code.
It is known from algebra that if p(x) is an irreducible polynomial of degree r , then the ring
F2[x]/p(x) is a field of order 2r .
In addition, every finite field has a primitive element. Therefore, there exists an element α of
F2[x]/p(x) such that

F2[x]/p(x) = {0, 1, α, α2, . . . , α2r−2}.

Let us identify an element a0 + a1 + . . . ar−1x r−1 of F2[x]/p(x) with the column vector

(a0, a1, . . . , ar−1)>

and consider the binary r × (2r − 1) matrix

H = [1 α α2 . . . α2r−2].

Let now C be the binary linear code having H as a parity check matrix.
Since the columns of H are all distinct non-zero vectors of V (r , 2),C = Ham (r , 2).
Putting n = 2r − 1 we get

C = {f0f1 . . . fn−1 ∈ V (n, 2)|f0 + f1α+ . . .+ fn−1α
n−1 = 0} (1)

= {f (x) ∈ Rn|f (α) = 0 in F2[x]/p(x)} (2)

If f (x) ∈ C and r(x) ∈ Rn, then r(x)f (x) ∈ C because

r(α)f (α) = r(α) • 0 = 0

and therefore, by one of the previous theorems, this version of Ham (r , 2) is cyclic.
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BCH CODES and REED-SOLOMON CODES

To the most important cyclic codes for applications belong BCH codes and
Reed-Solomon codes.

Definition A polynomial p is said to be minimal for a complex number x in Zq if p(x) = 0
and p is irreducible over Zq.

Definition A cyclic code of codewords of length n over Zq, q = pr , p is a prime, is called
BCH code1 of distance d if its generator g(x) is the least common multiple of the
minimal polynomials for

ωl , ωl+1, . . . , ωl+d−2

for some l, where

ω is the primitive n-th root of unity.

If n = qm − 1 for some m, then the BCH code is called primitive.

Definition A Reed-Solomon code is a primitive BCH code with n = q − 1.

Properties:

Reed-Solomon codes are self-dual.

1BHC stands for Bose and Ray-Chaudhuri and Hocquenghem who discovered these codes.
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CHANNEL (STREAMS) CODING I.

The task of channel coding is to encode streams of data in such a way that if they are
sent over a noisy channel errors can be detected and/or corrected by the receiver.

In case no receiver-to-sender communication is allowed we speak about forward error
correction.

An important parameter of a channel code is code rate

r =
k

n

in case k bits are encoded by n bits.

The code rate expressed the amount of redundancy in the code - the lower is the rate,
the more redundant is the code.
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CHANNEL (STREAM) CODING II

Design of a channel code is always a tradeoff between energy efficiency and bandwidth
efficiency.

Codes with lower code rate can usually correct more errors. Consequently, the
communication system can operate

with a lower transmit power;

transmit over longer distances;

tolerate more interference;

use smaller antennas;

transmit at a higher data rate.

These properties make codes with lower code rate energy efficient.

On the other hand such codes require larger bandwidth and decoding is usually of higher
complexity.

The selection of the code rate involves a tradeoff between energy efficiency and
bandwidth efficiency.

Central problem of channel encoding: encoding is usually easy, but decoding is usually
hard.
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CONVOLUTION CODES

Our first example of channel codes are convolution codes.

Convolution codes have simple encoding and decoding, are quite a simple generalization
of linear codes and have encodings as cyclic codes.

An (n, k) convolution code (CC) is defined by an k × n generator matrix, entries of which
are polynomials over F2.

For example,

G1 = [x2 + 1, x2 + x + 1]

is the generator matrix for a (2, 1) convolution code CC1 and

G2 =

„
1 + x 0 x + 1

0 1 x

«
is the generator matrix for a (3, 2) convolution code CC2
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ENCODING of FINITE POLYNOMIALS

An (n,k) convolution code with a k x n generator matrix G can be used to encode a
k-tuple of plain-polynomials (polynomial input information)

I = (I0(x), I1(x), . . . , Ik−1(x))

to get an n-tuple of crypto-polynomials

C = (C0(x),C1(x), . . . ,Cn−1(x))

As follows

C = I · G
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EXAMPLES

EXAMPLE 1

(x3 + x + 1) · G1 = (x3 + x + 1) · (x2 + 1, x2 + x + 1)

= (x5 + x2 + x + 1, x5 + x4 + 1)

EXAMPLE 2

(x2 + x , x3 + 1) · G2 = (x2 + x , x3 + 1) ·
„

1 + x 0 x + 1
0 1 x

«
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ENCODING of INFINITE INPUT STREAMS

The way infinite streams are encoded using convolution codes will be Illustrated on the
code CC1.

An input stream I = (I0, I1, I2, . . .) is mapped into the output stream
C = (C00,C10,C01,C11 . . .) defined by

C0(x) = C00 + C01x + . . . = (x2 + 1)I (x)

and

C1(x) = C10 + C11x + . . . = (x2 + x + 1)I (x).

The first multiplication can be done by the first shift register from the next figure; second
multiplication can be performed by the second shift register on the next slide and it holds

C0i = Ii + Ii+2, C1i = Ii + Ii−1 + Ii−2.

That is the output streams C0 and C1 are obtained by convolving the input stream with
polynomials of G1.
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ENCODING

The first shift register

input

output

will multiply the input stream by x2 + 1 and the second shift register

input

output

will multiply the input stream by x2 + x + 1.
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ENCODING and DECODING

The following shift-register will therefore be an encoder for the code CC1

input
output streams

For decoding of the convolution codes so called

Viterbi algorithm

Is used.
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SHANNON CHANNEL CAPACITY

For every combination of bandwidth (W ), channel type , signal power (S) and received
noise power (N), there is a theoretical upper bound, called channel capacity or Shannon
capacity, on the data transmission rate R for which error-free data transmission is
possible.

For so-called Additive White Gaussian Noise (AWGN) channels, that well capture deep
space channels, this limit is (so-called Shannon-Hartley theorem):

R < W log

„
1 +

S

N

«
{bits per second}

Shannon capacity sets a limit to the energy efficiency of the code.

Till 1993 channel code designers were unable to develop codes with performance close to
Shannon capacity limit, that is Shannon capacity approaching codes, and practical codes
required about twice as much energy as theoretical minimum predicted.

Therefore there was a big need for better codes with performance (arbitrarily) close to
Shannon capacity limits.

Concatenated codes and Turbo codes have such a Shannon capacity approaching
property.
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CONCATENATED CODES

Let Cin : Ak → An be an [n, k, d ] code over alphabet A.

Let Cout : BK → BN be an [N,K ,D] code over alphabet B with |B| = |A|k symbols.

Concatenation of Cout (as outer code) with Cin (as inner code), denoted Cout ◦ Cin is the
[nN, kK , dD] code

Cout ◦ Cin : AkK → AnN

that maps an input message m = (m1,m2, . . . ,mK ) to a codeword

(Cin(m
′
1),Cin(m

′
2), . . . ,Cin(m

′
N)), where

(m
′
1,m

′
2, . . . ,m

′
N) = Cout(m1,m2, . . . ,mK )

outer
encoder

inner
encoder

inner
decoder

outer
decoder

super decodersuper encoder

noisy
channel

super
channel
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CONCATENATED CODES

outer
encoder

inner
encoder

inner
decoder

outer
decoder

super decodersuper encoder

noisy
channel

super
channel

Of the key importance is the fact that if Cin is decoded using the maximum-likelihood
principle (thus showing an exponentially decreasing error probability with increasing
length) and Cout is a code with length N = 2nr that can be decoded in polynomial time
in N, then the concatenated code can be decoded in polynomial time with respect to
n2nr and has exponentially decreasing error probability even if Cin has exponential
decoding complexity.
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APPLICATIONS

Concatenated codes started to be used for deep space communication starting with
Voyager program in 1977 and stayed so until the invention of Turbo codes and
LDPC codes.

Concatenated codes are used also on Compact Disc.

The best concatenated codes for many applications were based on outer
Reed-Solomon codes and inner Viterbi-decoded short constant length convolution
codes.
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TURBO CODES

Turbo codes were introduced by Berrou, Glavieux and Thitimajshima in 1993.
A Turbo code is formed from the parallel composition of two (convolution) codes
separated by an interleaver (that permutes blocks of data in a fixed (pseudo)-random
way).
A Turbo encoder is formed from the parallel composition of two (convolution) encoders
separated by an interleaver.

input x

interleaver

convolution

i

convolution

encoder

encoder

parity bit b1

parity bit b2
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EXAMPLE of TURBO and CONVOLUTION ENCODERS

A Turbo encoder

input x

interleaver

convolution

i

convolution

encoder

encoder

parity bit b1

parity bit b2

and a convolution encoder
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DECODING and PERFORMANCE of TURBO CODES

A soft-in-soft-out decoding is used - the decoder gets from the analog/digital
demodulator a soft value of each bit - probability that it is 1 and produces only a
soft-value for each bit.

The overall decoder uses decoders for outputs of two encoders that also provide only
soft values for bits and by exchanging information produced by two decoders and
from the original input bit, the main decoder tries to increase, by an iterative
process, likelihood for values of decoded bits and to produce finally hard outcome - a
bit 1 or 0.

Turbo codes performance can be very close to theoretical Shannon limit.

This was, for example the case for UMTS (the third Generation Universal Mobile
Telecommunication System) Turbo code having a less than 1.2-fold overhead. in
this case the interleaver worked with block of 40-5114 bits.

Turbo codes were incorporated into standards used by NASA for deep space
communications, digital video broadcasting and both third generation cellular
standards.

Literature: M.C. Valenti and J.Sun: Turbo codes - tutorial, Handbook of RF and
Wireless Technologies, 2004 - reachable by Google.
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REACHING SHANNON LIMIT

Though Shannon developed his capacity bound already in 1940, till recently code
designers were unable to come with codes with performance close to theoretical limit.

In 1990 the gap between theoretical bound and practical implementations was still
at best about 3dB A decibel is a relative measure. If E is the actual energy and Eref

is the theoretical lower bound, then the relative energy increase in decibels is

10 log10

E

Eref

Since log10 2 = 0.3 a two-fold relative energy increase equals 3dB.

For code rate 1
2

the relative increase in energy consumption is about 4.8 dB for
convolution codes and 0.98 for Turbo codes.
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WHY ARE TURBO CODES SO GOOD?

Turbo codes are linear codes.

A ”good” linear code is one that has mostly high-weight codewords.

High-weight codewords are desirable because they are more distinct and the decoder
can more easily distinguish among them.

A big advantage of Turbo encoders is that they reduce the number of low-weight
codewords because their output is the sum of the weights of the input and two
parity output bits.
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Part IV

Secret-key cryptosystems



CHAPTER 4: CLASSICAL (SECRET-KEY) CRYPTOSYSTEMS

In this chapter we deal with some of the very old or quite old classical
(secret-key or symmetric) cryptosystems that were primarily used in the
pre-computer era.

These cryptosystems are too weak nowadays, too easy to break, especially
with computers.

However, these simple cryptosystems give a good illustration of several of the
important ideas of the cryptography and cryptanalysis.

Moreover, most of them can be very useful in combination with more modern
cryptosystem - to add a new level of security.
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CRYPTOLOGY, CRYPTOSYSTEMS - SECRET-KEY CRYPTOGRAPHY

Cryptology (= cryptography + cryptanalysis)
has more than two thousand years of history.

Basic historical observation

People have always had fascination with keeping information away from others.

Some people – rulers, diplomats, military people, businessmen – have always had
needs to keep some information away from others.

Importance of cryptography nowadays

Applications: cryptography is the key tool to make modern information transmission
secure, and to create secure information society.

Foundations: cryptography gave rise to several new key concepts of the foundation
of informatics: one-way functions, computationally perfect pseudorandom
generators, zero-knowledge proofs, holographic proofs, program self-testing and
self-correcting, . . .

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 130/616



CRYPTOLOGY, CRYPTOSYSTEMS - SECRET-KEY CRYPTOGRAPHY

Cryptology (= cryptography + cryptanalysis)
has more than two thousand years of history.

Basic historical observation

People have always had fascination with keeping information away from others.

Some people – rulers, diplomats, military people, businessmen – have always had
needs to keep some information away from others.

Importance of cryptography nowadays

Applications: cryptography is the key tool to make modern information transmission
secure, and to create secure information society.

Foundations: cryptography gave rise to several new key concepts of the foundation
of informatics: one-way functions, computationally perfect pseudorandom
generators, zero-knowledge proofs, holographic proofs, program self-testing and
self-correcting, . . .

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 130/616



CRYPTOLOGY, CRYPTOSYSTEMS - SECRET-KEY CRYPTOGRAPHY

Cryptology (= cryptography + cryptanalysis)
has more than two thousand years of history.

Basic historical observation

People have always had fascination with keeping information away from others.

Some people – rulers, diplomats, military people, businessmen – have always had
needs to keep some information away from others.

Importance of cryptography nowadays

Applications: cryptography is the key tool to make modern information transmission
secure, and to create secure information society.

Foundations: cryptography gave rise to several new key concepts of the foundation
of informatics: one-way functions, computationally perfect pseudorandom
generators, zero-knowledge proofs, holographic proofs, program self-testing and
self-correcting, . . .

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 130/616



APPROACHES and PARADOXES of CRYPTOGRAPHY

Sound approaches to cryptography

Shannon’s approach based on information theory (enemy has not enough
information to break a cryptosystem).

Current approach based on complexity theory (enemy has not enough computation
power to break a cryptosystem).

Very recent approach based on the laws and limitations of quantum physics (enemy
would need to break laws of nature to break a cryptosystem).

Paradoxes of modern cryptography

Positive results of modern cryptography are based on negative results of complexity
theory.

Computers, that were designed originally for decryption, seem to be now more useful
for encryption.
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CRYPTOSYSTEMS - CIPHERS

The cryptography deals with problem of sending a message (plaintext, cleartext), through
an insecure channel, that may be tapped by an adversary (eavesdropper, cryptanalyst), to
a legal receiver.

encryption
plaintext

key source

adversary
?

sender

decryption
plaintext

legal
receivercryptotext

C
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COMPONENTS of CRYPTOSYSTEMS:

Plaintext-space: P – a set of plaintexts over an alphabet
∑

Cryptotext-space: C – a set of cryptotexts (ciphertexts) over alphabet ∆

Key-space: K – a set of keys

Each key k determines an encryption algorithm ek and an decryption algorithm dk

such that, for any plaintext w , ek(w) is the corresponding cryptotext and

w ∈ dk(ek(w)) or w = dk(ek(w)).

Note: As encryption algorithms we can use also randomized algorithms.

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 133/616



COMPONENTS of CRYPTOSYSTEMS:

Plaintext-space: P – a set of plaintexts over an alphabet
∑

Cryptotext-space: C – a set of cryptotexts (ciphertexts) over alphabet ∆

Key-space: K – a set of keys

Each key k determines an encryption algorithm ek and an decryption algorithm dk

such that, for any plaintext w , ek(w) is the corresponding cryptotext and

w ∈ dk(ek(w)) or w = dk(ek(w)).

Note: As encryption algorithms we can use also randomized algorithms.

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 133/616



100 – 42 B.C., CAESAR CRYPTOSYSTEM - SHIFT CIPHER I

CAESAR can be used to encrypt words in any alphabet.

In order to encrypt words in English alphabet we use:

Key-space: {0, 1, . . . , 25}

An encryption algorithm ek substitutes any letter by the letter occurring k positions
ahead (cyclically) in the alphabet.

A decryption algorithm dk substitutes any letter by the one occurring k positions
backward (cyclically) in the alphabet.
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backward (cyclically) in the alphabet.

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 134/616



100 – 42 B.C., CAESAR CRYPTOSYSTEM - SHIFT CIPHER I

CAESAR can be used to encrypt words in any alphabet.

In order to encrypt words in English alphabet we use:

Key-space: {0, 1, . . . , 25}

An encryption algorithm ek substitutes any letter by the letter occurring k positions
ahead (cyclically) in the alphabet.

A decryption algorithm dk substitutes any letter by the one occurring k positions
backward (cyclically) in the alphabet.

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 134/616



100 – 42 B.C., CAESAR CRYPTOSYSTEM - SHIFT CIPHER II

Example e2(EXAMPLE) = GZCOSNG,
e2(EXAMPLE) = HADPTOH,
e1(HAL) = IBM,
e3(COLD) = FROG

ABCDEFGHIJKLMNOPQRSTUVWXYZ

Example Find the plaintext to the following cryptotext obtained by the encryption with
CAESAR with k = ?.

Cryptotext: VHFUHW GH GHXA, VHFUHW GH GLHX,
VHFUHW GH WURLV, VHFUHW GH WRXV.

Numerical version of CAESAR is defined on the set {0, 1, 2, . . . , 25} by the encryption
algorithm:

ek(i) = (i + k)(mod 26)
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POLYBIOUS CRYPTOSYSTEM

for encryption of words of the English alphabet without J.

Key-space: Polybious checkerboards 5× 5 with 25 English letters and with rows +
columns labeled by symbols.

Encryption algorithm: Each symbol is substituted by the pair of symbols denoting the
row and the column of the checkerboard in which the symbol is placed.

Example:

F G H I J

A A B C D E
B F G H I K
C L M N O P
D Q R S T U
E V W X Y Z

KONIEC →
Decryption algorithm: ???
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KERCKHOFF’s PRINCIPLE

The philosophy of modern cryptanalysis is embodied in the following principle formulated
in 1883 by Jean Guillaume Hubert Victor Francois Alexandre Auguste Kerckhoffs von
Nieuwenhof (1835 - 1903).

The security of a cryptosystem must not depend on keeping secret the
encryption algorithm. The security should depend only on keeping secret
the key.
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REQUIREMENTS for GOOD CRYPTOSYSTEMS

(Sir Francis R. Bacon (1561 - 1626))

1 Given ek and a plaintext w , it should be easy to compute c = ek(w).

2 Given dk and a cryptotext c, it should be easy to compute w = dk(c).

3 A cryptotext ek(w) should not be much longer than the plaintext w .

4 It should be unfeasible to determine w from ek(w) without knowing dk .

5 The so called avalanche effect should hold: A small change in the plaintext, or in the
key, should lead to a big change in the cryptotext (i.e. a change of one bit of the
plaintext should result in a change of all bits of the cryptotext, each with the
probability close to 0.5).

6 The cryptosystem should not be closed under composition, i.e. not for every two
keys k1, k2 there is a key k such that

ek(w) = ek1 (ek2 (w)).

7 The set of keys should be very large.

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 138/616



REQUIREMENTS for GOOD CRYPTOSYSTEMS

(Sir Francis R. Bacon (1561 - 1626))

1 Given ek and a plaintext w , it should be easy to compute c = ek(w).

2 Given dk and a cryptotext c, it should be easy to compute w = dk(c).

3 A cryptotext ek(w) should not be much longer than the plaintext w .

4 It should be unfeasible to determine w from ek(w) without knowing dk .

5 The so called avalanche effect should hold: A small change in the plaintext, or in the
key, should lead to a big change in the cryptotext (i.e. a change of one bit of the
plaintext should result in a change of all bits of the cryptotext, each with the
probability close to 0.5).

6 The cryptosystem should not be closed under composition, i.e. not for every two
keys k1, k2 there is a key k such that

ek(w) = ek1 (ek2 (w)).

7 The set of keys should be very large.

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 138/616



REQUIREMENTS for GOOD CRYPTOSYSTEMS

(Sir Francis R. Bacon (1561 - 1626))

1 Given ek and a plaintext w , it should be easy to compute c = ek(w).

2 Given dk and a cryptotext c, it should be easy to compute w = dk(c).

3 A cryptotext ek(w) should not be much longer than the plaintext w .

4 It should be unfeasible to determine w from ek(w) without knowing dk .

5 The so called avalanche effect should hold: A small change in the plaintext, or in the
key, should lead to a big change in the cryptotext (i.e. a change of one bit of the
plaintext should result in a change of all bits of the cryptotext, each with the
probability close to 0.5).

6 The cryptosystem should not be closed under composition, i.e. not for every two
keys k1, k2 there is a key k such that

ek(w) = ek1 (ek2 (w)).

7 The set of keys should be very large.

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 138/616



REQUIREMENTS for GOOD CRYPTOSYSTEMS

(Sir Francis R. Bacon (1561 - 1626))

1 Given ek and a plaintext w , it should be easy to compute c = ek(w).

2 Given dk and a cryptotext c, it should be easy to compute w = dk(c).

3 A cryptotext ek(w) should not be much longer than the plaintext w .

4 It should be unfeasible to determine w from ek(w) without knowing dk .

5 The so called avalanche effect should hold: A small change in the plaintext, or in the
key, should lead to a big change in the cryptotext (i.e. a change of one bit of the
plaintext should result in a change of all bits of the cryptotext, each with the
probability close to 0.5).

6 The cryptosystem should not be closed under composition, i.e. not for every two
keys k1, k2 there is a key k such that

ek(w) = ek1 (ek2 (w)).

7 The set of keys should be very large.

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 138/616



REQUIREMENTS for GOOD CRYPTOSYSTEMS

(Sir Francis R. Bacon (1561 - 1626))

1 Given ek and a plaintext w , it should be easy to compute c = ek(w).

2 Given dk and a cryptotext c, it should be easy to compute w = dk(c).

3 A cryptotext ek(w) should not be much longer than the plaintext w .

4 It should be unfeasible to determine w from ek(w) without knowing dk .

5 The so called avalanche effect should hold: A small change in the plaintext, or in the
key, should lead to a big change in the cryptotext (i.e. a change of one bit of the
plaintext should result in a change of all bits of the cryptotext, each with the
probability close to 0.5).

6 The cryptosystem should not be closed under composition, i.e. not for every two
keys k1, k2 there is a key k such that

ek(w) = ek1 (ek2 (w)).

7 The set of keys should be very large.

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 138/616



REQUIREMENTS for GOOD CRYPTOSYSTEMS

(Sir Francis R. Bacon (1561 - 1626))

1 Given ek and a plaintext w , it should be easy to compute c = ek(w).

2 Given dk and a cryptotext c, it should be easy to compute w = dk(c).

3 A cryptotext ek(w) should not be much longer than the plaintext w .

4 It should be unfeasible to determine w from ek(w) without knowing dk .

5 The so called avalanche effect should hold: A small change in the plaintext, or in the
key, should lead to a big change in the cryptotext (i.e. a change of one bit of the
plaintext should result in a change of all bits of the cryptotext, each with the
probability close to 0.5).

6 The cryptosystem should not be closed under composition, i.e. not for every two
keys k1, k2 there is a key k such that

ek(w) = ek1 (ek2 (w)).

7 The set of keys should be very large.

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 138/616



REQUIREMENTS for GOOD CRYPTOSYSTEMS

(Sir Francis R. Bacon (1561 - 1626))

1 Given ek and a plaintext w , it should be easy to compute c = ek(w).

2 Given dk and a cryptotext c, it should be easy to compute w = dk(c).

3 A cryptotext ek(w) should not be much longer than the plaintext w .

4 It should be unfeasible to determine w from ek(w) without knowing dk .

5 The so called avalanche effect should hold: A small change in the plaintext, or in the
key, should lead to a big change in the cryptotext (i.e. a change of one bit of the
plaintext should result in a change of all bits of the cryptotext, each with the
probability close to 0.5).

6 The cryptosystem should not be closed under composition, i.e. not for every two
keys k1, k2 there is a key k such that

ek(w) = ek1 (ek2 (w)).

7 The set of keys should be very large.

prof. Jozef Gruska IV054 4. Secret-key cryptosystems 138/616



CRYPTANALYSIS ATTACKS I

The aim of cryptanalysis is to get as much information about the plaintext or the key as
possible.

Main types of cryptanalytic attacks

1 Cryptotexts-only attack. The cryptanalysts get cryptotexts
c1 = ek(w1), . . . , cn = ek(wn) and try to infer the key k or as many of the
plaintexts w1, . . . ,wn as possible.

2 Known-plaintexts attack (given are some pairs [plaintext, cryptotext])
The cryptanalysts know some pairs wi , ek(wi ), 1 ≤ i ≤ n, and try to infer k, or
at least wn+1 for a new cryptotext ek(wn+1).

3 Chosen-plaintexts attack (given are cryptotext for some chosen plaintexts)
The cryptanalysts choose plaintexts w1, . . . ,wn to get cryptotexts
ek(w1), . . . , ek(wn), and try to infer k or at least wn+1 for a new cryptotext
cn+1 = ek(wn+1). (For example, if they get temporary access to the
encryption machinery.)
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CRYPTANALYSIS ATTACKS II

4 Known-encryption-algorithm attack
The encryption algorithm ek is given and the cryptanalysts try to get the decryption
algorithm dk .

5 Chosen-cryptotext attack (given are plaintexts for some chosen cryptotexts)
The cryptanalysts know some pairs

[ci , dk(ci )], 1 ≤ i ≤ n,

where the cryptotexts ci have been chosen by the cryptanalysts. The aim is to
determine the key. (For example, if cryptanalysts get a temporary access to
decryption machinery.)
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WHAT CAN a BAD EVE DO?

Let us assume that a clever Alice sends an encrypted message to Bob.
What can a bad enemy, called usually Eve (eavesdropper), do?

Eve can read (and try to decrypt) the message.

Eve can try to get the key that was used and then decrypt all messages encrypted
with the same key.

Eve can change the message sent by Alice into another message, in such a way that
Bob will have the feeling, after he gets the changed message, that it was a message
from Alice.

Eve can pretend to be Alice and communicate with Bob, in such a way that Bob
thinks he is communicating with Alice.

An eavesdropper can therefore be passive - Eve or active - Mallot.
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BASIC GOALS of BROADLY UNDERSTOOD CRYPTOGRAPHY

Confidentiality: Eve should not be able to decrypt the message Alice sends to Bob.

Data integrity: Bob wants to be sure that Alice’s message has not been altered by Eve.

Authentication: Bob wants to be sure that only Alice could have sent the message he has
received.

Non-repudiation: Alice should not be able to claim that she did not send messages that
she has sent.

Anonymity: Alice does not want Bob to find out who sent the message
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HILL CRYPTOSYSTEM I

The cryptosystem presented in this slide was probably never used. In spite of that this
cryptosystem played an important role in the history of modern cryptography.

We describe Hill cryptosystem for a fixed n and the English alphabet.

Key-space: The set of all matrices M of degree n with elements from the set
{0, 1, . . . , 25} such that M−1mod 26 exist.

Plaintext + cryptotext space: English words of length n.

Encoding: For a word w let cw be the column vector of length n of the integer codes of
symbols of w . (A→ 0,B → 1,C → 2, . . .)

Encryption: cc = Mcw mod 26

Decryption: cw = M−1cc mod 26
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HILL CRYPTOSYSTEM - EXAMPLE

Example A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

M =

»
4 7
1 1

–
M−1 =

»
17 11
9 16

–
Plaintext: w = LONDON

CLO =

»
11
14

–
,CND =

»
13
3

–
,CON =

»
14
13

–

MCLO =

»
12
25

–
,MCND =

»
21
16

–
,MCON =

»
17
1

–
Cryptotext: MZVQRB

Theorem

If M =

»
a11 a12

a21 a22

–
, thenM−1 = 1

det M

»
a22 −a12

−a21 a11

–
Proof: Exercise
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SECRET-KEY (SYMMETRIC) CRYPTOSYSTEMS

A cryptosystem is called secret-key cryptosystem if some secret piece of information – the
key – has to be agreed first between any two parties that have, or want, to communicate
through the cryptosystem. Example: CAESAR, HILL. Another name is symmetric
cryptosystem (cryptography).

Two basic types of secret-key cryptosystems

substitution based cryptosystems

transposition based cryptosystems

Two basic types of substitution cryptosystems

monoalphabetic cryptosystems – they use a fixed substitution – CAESAR,
POLYBIOUS

polyalphabetic cryptosystems – substitution keeps changing during the encryption

A monoalphabetic cryptosystem with letter-by-letter substitution is uniquely specified by
a permutation of letters, (number of permutations (keys) is 26!)
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AFFINE CRYPTOSYSTEMS

Example: An AFFINE cryptosystem is given by two integers

0 ≤ a, b ≤ 25, gcd(a, 26) = 1.

Encryption: ea,b(x) = (ax + b) mod 26

Example

a = 3, b = 5, e3,5(x) = (3x + 5) mod 26,
e3,5(3) = 14, e3,5(15) = 24− e3,5(D) = O, e3,5(P) = Y

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Decryption: da,b(y) = a−1(y − b) mod 26
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CRYPTANALYSIS

The basic cryptanalytic attack against monoalphabetic substitution cryptosystems begins
with a frequency count: the number of each letter in the cryptotext is counted. The
distributions of letters in the cryptotext is then compared with some official distribution
of letters in the plaintext language.

The letter with the highest frequency in the cryptotext is likely to be substitute for the
letter with highest frequency in the plaintext language . . . . The likelihood grows with the
length of cryptotext.

Frequency counts in English:
%

E 12.31

T 9.59
A 8.05
O 7.94
N 7.19
I 7.18
S 6.59
R 6.03
H 5.14

70.02

%

L 4.03

D 3.65
C 3.20
U 3.10
P 2.29
F 2.28
M 2.25
W 2.03
Y 1.88

24.71

%

B 1.62

G 1.61
V 0.93
K 0.52
Q 0.20
X 0.20
J 0.10
Z 0.09

5.27

and for other languages:
English %

E 12.31
T 9.59
A 8.05
O 7.94
N 7.19
I 7.18
S 6.59
R 6.03
H 5.14

German %

E 18.46
N 11.42
I 8.02
R 7.14
S 7.04
A 5.38
T 5.22
U 5.01
D 4.94

Finnish %

A 12.06
I 10.59
T 9.76
N 8.64
E 8.11
S 7.83
L 5.86
O 5.54
K 5.20

French %

E 15.87
A 9.42
I 8.41
S 7.90
T 7.29
N 7.15
R 6.46
U 6.24
L 5.34

Italian %

E 11.79
A 11.74
I 11.28
O 9.83
N 6.88
L 6.51
R 6.37
T 5.62
S 4.98

Spanish %

E 13.15
A 12.69
O 9.49
S 7.60
N 6.95
R 6.25
I 6.25
L 5.94
D 5.58

The 20 most common digrams are (in decreasing order) TH, HE, IN, ER, AN, RE, ED,
ON, ES, ST, EN, AT, TO, NT, HA, ND, OU, EA, NG, AS. The six most common
trigrams: THE, ING, AND, HER, ERE, ENT.
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CRYPTANALYSIS of AFFINE CRYPTOSYSTEM - EXAMPLE

Cryptanalysis of a cryptotext encrypted using the AFFINE cryptosystem with an
encryption algorithm

ea,b(x) = (ax + b) mod 26 = (xa + b) mod 26

where 0 ≤ a, b ≤ 25, gcd(a, 26) = 1. (Number of keys: 12× 26 = 312.)

Example: Assume that an English plaintext is divided into blocks of 5 letters and
encrypted by an AFFINE cryptosystem (ignoring space and interpunctions) as follows:

How to find the
plaintext?

B H J U H N B U L S V U L R U S L Y X H
O N U U N B W N U A X U S N L U Y J S S
W X R L K G N B O N U U N B W S W X K X
H K X D H U Z D L K X B H J U H B N U O
N U M H U G S W H U X M B X R W X K X L
U X B H J U H C X K X A X K Z S W K X X
L K O L J K C X L C M X O N U U B V U L
R R W H S H B H J U H N B X M B X R W X
K X N O Z L J B X X H B N F U B H J U H
L U S W X G L L K Z L J P H U U L S Y X
B J K X S W H S S W X K X N B H B H J U
H Y X W N U G S W X G L L K
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CRYPTANALYSIS - CONTINUATION I

Frequency analysis of plainext and
frequency table for English:

X - 32 J - 11 D - 2
U - 30 O - 6 V - 2
H - 23 R - 6 F - 1
B - 19 G - 5 P - 1
L - 19 M - 4 E - 0
N - 16 Y - 4 I - 0
K - 15 Z - 4 Q - 0
S - 15 C - 3 T - 0
W - 14 A - 2

%

E 12.31

T 9.59
A 8.05
O 7.94
N 7.19
I 7.18
S 6.59
R 6.03
H 5.14

70.02

%

L 4.03

D 3.65
C 3.20
U 3.10
P 2.29
F 2.28
M 2.25
W 2.03
Y 1.88

24.71

%

B 1.62

G 1.61
V 0.93
K 0.52
Q 0.20
X 0.20
J 0.10
Z 0.09

5.27
First guess: E = X ,T = U

Encodings:
xa + b = y

4a + b = 23 (mod 26)

19a + b = 20 (mod 26)

Solutions: a = 5, b = 3→ a−1 =

Translation table crypto A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

plain P K F A V Q L G B W R M H C X S N I D Y T O J E Z U

B H J U H N B U L S V U L R U S L Y X H
O N U U N B W N U A X U S N L U Y J S S
W X R L K G N B O N U U N B W S W X K X
H K X D H U Z D L K X B H J U H B N U O
N U M H U G S W H U X M B X R W X K X L
U X B H J U H C X K X A X K Z S W K X X
L K O L J K C X L C M X O N U U B V U L
R R W H S H B H J U H N B X M B X R W X
K X N O Z L J B X X H B N F U B H J U H
L U S W X G L L K Z L J P H U U L S Y X
B J K X S W H S S W X K X N B H B H J U
H Y X W N U G S W X G L L K

provides from the above cryptotext the plaintext that starts with KGWTG CKTMO
OTMIT DMZEG, which does not make sense.
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CRYPTANALYSIS - CONTINUATION I

Frequency analysis of plainext and
frequency table for English:
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H - 23 R - 6 F - 1
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N - 16 Y - 4 I - 0
K - 15 Z - 4 Q - 0
S - 15 C - 3 T - 0
W - 14 A - 2

%
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70.02

%
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%
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First guess: E = X ,T = U

Encodings:
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O N U U N B W N U A X U S N L U Y J S S
W X R L K G N B O N U U N B W S W X K X
H K X D H U Z D L K X B H J U H B N U O
N U M H U G S W H U X M B X R W X K X L
U X B H J U H C X K X A X K Z S W K X X
L K O L J K C X L C M X O N U U B V U L
R R W H S H B H J U H N B X M B X R W X
K X N O Z L J B X X H B N F U B H J U H
L U S W X G L L K Z L J P H U U L S Y X
B J K X S W H S S W X K X N B H B H J U
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CRYPTANALYSIS - CONTINUATION II

Second guess: E = X ,A = H

Equations 4a + b = 23 (mod 26)

b = 7 (mod 26)
Solutions: a = 4 or a = 17 and therefore a = 17

This gives the translation table

crypto A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
plain V S P M J G D A X U R O L I F C Z W T Q N K H E B Y

and the following
plaintext from the
above cryptotext

S A U N A I S N O T K N O W N T O B E A
F I N N I S H I N V E N T I O N B U T T
H E W O R D I S F I N N I S H T H E R E
A R E M A N Y M O R E S A U N A S I N F
I N L A N D T H A N E L S E W H E R E O
N E S A U N A P E R E V E R Y T H R E E
O R F O U R P E O P L E F I N N S K N O
W W H A T A S A U N A I S E L S E W H E
R E I F Y O U S E E A S I G N S A U N A
O N T H E D O O R Y O U C A N N O T B E
S U R E T H A T T H E R E I S A S A U N
A B E H I N D T H E D O O R
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EXAMPLES of MONOALPHABETIC CRYPTOSYSTEMS

Symbols of the English alphabet will be replaced by squares with or without points and
with or without surrounding lines using the following rule:

A: B: C:
D: E: F:
G: H: I:

J· K· L·
M· N· O·
P· Q· R·

S T U
V W X
Y Z

For example the plaintext:

WE TALK ABOUT FINNISH SAUNA MANY TIMES LATER

results in the cryptotext:

: : : : : :

:::::

: : : : .

. ..

.

..

..

. .

Garbage in between method: the message (plaintext or cryptotext) is supplemented by
“garbage letters”.

Richelieu
cryptosystem used
sheets of card board
with holes.

I L O V E Y O U
I H A V E Y O U
D E E P U N D E R
M Y S K I N M Y
L O V E L A S T S
F O R E V E R I N
H Y P E R S P A C E

1 2 3 4 5 6 7 8 9 10
1
2
3
4
5
6
7
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS I

Playfair cryptosystem
Invented around 1854 by Ch. Wheatstone.

Key – a Playfair square is defined by a word w of length at most 25. In w repeated letters
are then removed, remaining letters of alphabets (except j) are then added and resulting
word is divided to form an 5 x 5 array (a Playfair square).

Encryption: of a pair of letters x , y

1 If x and y are in the same row (column), then they are replaced by the pair of
symbols to the right (bellow) them.

2 If x and y are in different rows and columns they are replaced by symbols in the
opposite corners of rectangle created by x and y . the rder is important.

Example: PLAYFAIR is encrypted as LCMNNFCS
Playfair was used in World War I by British army.

Playfair square:

S D Z I U
H A F N G
B M V Y W
R P L C X
T O E K Q
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS II

VIGENERE and AUTOCLAVE cryptosystems

Several of the following polyalphabetic cryptosystems are modification of the CAESAR
cryptosystem.

A 26×26 table is first designed with the first row containing a permutation of all symbols
of alphabet and all columns represent CAESAR shifts starting with the symbol of the first
row.

Secondly, for a plaintext w a key k is a word of the same length as w .

Encryption: the i -th letter of the plaintext - wi is replaced by the letter in the wi -row
and ki -column of the table.

VIGENERE cryptosystem: a short keyword p is chosen and

k = Prefix|w|p
oo

VIGENERE is actually a cyclic version of the CAESAR cryptosystem.

AUTOCLAVE cryptosystem: k = Prefix|w|pw
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POLYALPHABETIC SUBSTITUTION CRYPTOSYSTEMS III

VIGENERE and AUTOCLAVE cryptosystems

Example:

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
B C D E F G H I J K L M N O P Q R S T U V W X Y Z A
C D E F G H I J K L M N O P Q R S T U V W X Y Z A B
D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
E F G H I J K L M N O P Q R S T U V W X Y Z A B C D
F G H I J K L M N O P Q R S T U V W X Y Z A B C D E
G H I J K L M N O P Q R S T U V W X Y Z A B C D E F
H I J K L M N O P Q R S T U V W X Y Z A B C D E F G
I J K L M N O P Q R S T U V W X Y Z A B C D E F G H
J K L M N O P Q R S T U V W X Y Z A B C D E F G H I
K L M N O P Q R S T U V W X Y Z A B C D E F G H I J
L M N O P Q R S T U V W X Y Z A B C D E F G H I J K
M N O P Q R S T U V W X Y Z A B C D E F G H I J K L
N O P Q R S T U V W X Y Z A B C D E F G H I J K L M
O P Q R S T U V W X Y Z A B C D E F G H I J K L M N
P Q R S T U V W X Y Z A B C D E F G H I J K L M N O
Q R S T U V W X Y Z A B C D E F G H I J K L M N O P
R S T U V W X Y Z A B C D E F G H I J K L M N O P Q
S T U V W X Y Z A B C D E F G H I J K L M N O P Q R
T U V W X Y Z A B C D E F G H I J K L M N O P Q R S
U V W X Y Z A B C D E F G H I J K L M N O P Q R S T
V W X Y Z A B C D E F G H I J K L M N O P Q R S T U
W X Y Z A B C D E F G H I J K L M N O P Q R S T U V
X Y Z A B C D E F G H I J K L M N O P Q R S T U V W
Y Z A B C D E F G H I J K L M N O P Q R S T U V W X
Z A B C D E F G H I J K L M N O P Q R S T U V W X Y

Keyword:
Plaintext:
Vigenere-key:
Autoclave-key:
Vigenere-cryp.:
Autoclave-cryp.:

H A M B U R G
I N J E D E M M E N S C H E N G E S I C H T E S T E H T S E I N E G
H A M B U R G H A M B U R G H A M B U R G H A M B U R G H A M B U R
H A M B U R G I N J E D E M M E N S C H E N G E S I C H T E S T E H
P N V F X V S T E Z T W Y K U G Q T C T N A E E U Y Y Z Z E U O Y X
P N V F X V S U R W W F L Q Z K R K K J L G K W L M J A L I A G I N
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CRYPTANALYSIS of cryptotexts produced by VIGENERE cryptosystem

1 Task 1 – to find the length of the key

Kasiski method (1852) - invented also by Charles Babbage (1853).

Basic observation If a subword of a plaintext is repeated at a distance that is a multiple
of the length of the key, then the corresponding subwords of the cryptotext are the same.

Example, cryptotext:

CHRGQPWOEIRULYANDOSHCHRIZKEBUSNOFKYWROPDCHRKGAXBNRHROAKERBKSCHRIWK

Substring “CHR” occurs in positions 1, 21, 41, 66: expected keyword length is therefore
5.

Method. Determine the greatest common divisor of the distances between identical
subwords (of length 3 or more) of the cryptotext.
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CRYPTANALYSIS of cryptotexts produced by VIGENERE cryptosystem

Friedman method Let ni be the number of occurrences of the i-th letter in
the cryptotext.

Let l be the length of the keyword.

Let n be the length of the cryptotext.

Then it holds l = 0.027n
(n−1)I−0.038n+0.065

, I =
∑26

i=1
ni (ni−1)
n(n−1)

Once the length of the keyword is found it is easy to determine the
key using the statistical (frequency analysis) method of analyzing
monoalphabetic cryptosystems.
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DERIVATION of the FRIEDMAN METHOD I

1 Let ni be the number of occurrences of i-th alphabet symbol in a text of length n.
The probability that if one selects a pair of symbols from the text, then they are the
same is

I =
P26

i=1 ni (ni−1)

n(n−1)
=
P26

i=1

(ni
2 )

(n
2)

and it is called the index of coincidence.

2 Let pi be the probability that a randomly chosen symbol is the i-th symbol of the
alphabet. The probability that two randomly chosen symbols are the same isP26

i=1 p2
i

For English text one has P26
i=1 p2

i = 0.065

For randomly chosen text: P26
i=1 p2

i =
P26

i=1
1

262 = 0.038

Approximately

I =
P26

i=1 p2
i
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DERIVATION of the FRIEDMAN METHOD Ii

Assume that a cryptotext is organized into l columns headed by the letters of the keyword

letters Sl S1 S2 S3 . . . Sl

x1 x2 x3 . . . Xl

xl+1 xl+2 xl+3 X2l

x2l+1 x2l+2 x2l+3 . . . x3l

. . . .

First observation Each column is obtained using the CAESAR cryptosystem.
Probability that two randomly chosen letters are the same in

the same column is 0.065.

different columns is 0.038.

The number of pairs of letters in the same column: l
2
· n

l
( n

l
− 1) = n(n−l)

2l

The number of pairs of letters in different columns: l(l−1)
2
· n2

l2
= n2(l−1)

2l

The expected number A of pairs of equals letters is A = n(n−l)
2l
· 0.065 + n2(l−1)

2l
· 0.038

Since I = A
n(n−1)

2

= 1
l(n−1)

[0.027n + l(0.038n − 0.065)]

one gets the formula for l from the previous slide.
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ONE-TIME PAD CRYPTOSYSTEM – Vernam’s cipher

Binary case:
plaintext w
key k
cryptotext c

9=; are binary words of the same length

Encryption: c = w ⊕ k
Decryption: w = c ⊕ k

Example:

w = 101101011

k = 011011010

c = 110110001

What happens if the same key is used twice or 3 times for encryption?

c1 = w1 ⊕ k, c2 = w2 ⊕ k, c3 = w3 ⊕ k

c1 ⊕ c2 = w1 ⊕ w2

c1 ⊕ c3 = w1 ⊕ w3

c2 ⊕ c3 = w2 ⊕ w3
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PERFECT SECRET-KEY CRYPTOSYSTEMS

By Shannon, a cryptosystem is perfect if the knowledge of the cryptotext provides no
information whatsoever about its plaintext (with the exception of its length).

It follows from Shannon’s results that perfect secrecy is possible if the key-space is as
large as the plaintext-space. In addition, a key has to be as long as plaintext and the
same key should not be used twice.

An example of a perfect cryptosystem ONE-TIME PAD cryptosystem (Gilbert S.
Vernam (1917) - AT&T + Major Joseph Mauborgne).

If used with the English alphabet, it is simply a polyalphabetic substitution cryptosystem
of VIGENERE with the key being a randomly chosen English word of the same length as
the plaintext.

Proof of perfect secrecy: by the proper choice of the key any plaintext of the same
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Did we gain something? The problem of secure communication of the plaintext got
transformed to the problem of secure communication of the key of the same length.

Yes:
1 ONE-TIME PAD cryptosystem is used in critical applications

2 It suggests an idea how to construct practically secure cryptosystems.
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TRANSPOSITION CRYPTOSYSTEMS

The basic idea is very simple: permute the plaintext to get the cryptotext. Less clear it is
how to specify and perform efficiently permutations.

One idea: choose n, write plaintext into rows, with n symbols in each row and then read
it by columns to get cryptotext.

Example

I N J E D E M M E N
S C H E N G E S I C
H T E S T E H T S E
I N E G E S C H I C
H T E T O J E O N O

Cryptotexts obtained by transpositions, called anagrams, were popular among scientists
of 17th century. They were used also to encrypt scientific findings.

Newton wrote to Leibniz

a7c2d2e14f 2i7l3m1n8o4q3r 2s4t8v 12x1

what stands for: “data aequatione quodcumque fluentes quantitates involvente, fluxiones
invenire et vice versa”

Example

Solution:

a2cdef 3g 2i2jkmn3o5prs2t2u3z
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KEYWORD CAESAR CRYPTOSYSTEM

Choose an integer 0 < k < 25 and a string, called keyword, of length at most 25
with all letters different.

The keyword is then written bellow the English alphabet letters, beginning with
the k-symbol, and the remaining letters are written in the alphabetic order and
cyclically after the keyword.

Example: keyword: HOW MANY ELKS, k = 8

0 8
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
P Q R T U V X Z H O W M A N Y E L K S B C D F G I J
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KEYWORD CAESAR - Example I

Example Decrypt the following cryptotext encrypted using the KEYWORD CAESAR and
determine the keyword and k

T I V D Z C R T I C F Q N I Q T U T F
Q X A V F C Z F E Q X C P C Q U C Z W K
Q F U V B C F N R R T X T C I U A K W T Y
D T U P M C F E C X U U V U P C B V A N H C
V R U P C F E Q X C U P C F U V B C
X V I U Q T I F F U V I C F N F N Q A A K
V I U P C U V E U V U Q G C Q F Q N I Q
W Q U P T U T F Q A F V I C X C F F Q M K
U P Q U U P C F U V B C T F E M V E C M A K
P C Q U C Z Q I Z U P Q U K V N P Q B C
U P C R Q X T A T U K V R U P M V D T I Y
D Q U C M V I U P C F U V I C F
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KEYWORD CAESAR - Example II

Step 1. Make the
frequency counts:

Number

U 32
C 31
Q 23
F 22
V 20
P 15
T 15
I 14
A 8

180=74.69%

Number

X 8
K 7
N 7
E 6
M 6
R 6
B 5
Z 5
D 4

54=22.41%

Number

W 3
Y 2
G 1
H 1
J 0
L 0
O 0
S 0

7=2.90%

Step 2. Cryptotext contains two one-letter words T and Q. They must be A and I. Since
T occurs once and Q three times it is likely that T is I and Q is A.

The three letter word UPC occurs 7 times and all other 3-letter words occur only once.
Hence

UPC is likely to be THE.

Let us now decrypt the remaining letters in the high frequency group: F,V,I

From the words TU, TF ⇒ F=S
From UV ⇒ V=O
From VI ⇒ I=N

The result after the remaining guesses

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
L V E W P S K M N ? Y ? R U ? H E F ? I T O B C G D
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UNICITY DISTANCE of CRYPTOSYSTEMS

Redundancy of natural languages is of the key importance for cryptanalysis.

Would all letters of a 26-symbol alphabet have the same probability, a character would
carry lg 26 = 4.7 bits of Information.

The estimated average amount of information carried per letter in a meaningful English
text is 1.5 bits.

The unicity distance of a cryptosystem is the minimum number of cryptotext (number of
letters) required to a computationally unlimited adversary to recover the unique
encryption key.

Empirical evidence indicates that if any simple cryptosystem is applied to a meaningful
English message, then about 25 cryptotext characters is enough for an experienced
cryptanalyst to recover the plaintext.
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ANAGRAMS – EXAMPLES

German:

IRI BRÄTER, GENF Briefträgerin
FRANK PEKL, REGEN . . .
PEER ASSSTIL, MELK . . .
INGO DILMR, PEINE . . .
EMIL REST, GERA . . .
KARL SORDORT, PEINE . . .

English:

algorithms logarithms
antagonist stagnation
compressed decompress
coordinate decoration
creativity reactivity
deductions discounted
descriptor predictors
impression permission
introduces reductions
procedures reproduces
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APPENDIX
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STREAM CRYPTOSYSTEMS

Two basic types of cryptosystems are:

Block cryptosystems (Hill cryptosystem,. . . ) – they are used to encrypt
simultaneously blocks of plaintext.

Stream cryptosystems (CAESAR, ONE-TIME PAD,. . . ) – they encrypt plaintext
letter by letter, or block by block, using an encryption that may vary during the
encryption process.

Stream cryptosystems are more appropriate in some applications (telecommunication),
usually are simpler to implement (also in hardware), usually are faster and usually have no
error propagation (what is of importance when transmission errors are highly probable).

Two basic types of stream cryptosystems: secret key cryptosystems (ONE-TIME PAD)
and public-key cryptosystems (Blum-Goldwasser)
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Block versus stream cryptosystems

In block cryptosystems the same key is used to encrypt arbitrarily long plaintext – block
by block - (after dividing each long plaintext w into a sequence of subplaintexts (blocks)
w1w2w3 ).

In stream cryptosystems each block is encrypted using a different key

The fixed key k is used to encrypt all blocks. In such a case the
resulting cryptotext has the form

c = c1c2c3 . . . = ek(w1)ek(w2)ek(w3) . . .

A stream of keys is used to encrypt subplaintexts. The basic idea is to
generate a key-stream K = k1, k2, k3, . . . and then to compute the
cryptotext as follows

c = c1c2c3 . . . = ek1(w1)ek2(w2)ek3(w3).
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CRYPTOSYSTEMS WITH STREAMS OF KEYS

Various techniques are used to compute a sequence of keys. For example, given a key k

ki = fi (k, k1, k2, . . . , ki−1)

In such a case encryption and decryption processes generate the following sequences:

Encryption: To encrypt the plaintext w1w2w3 . . . the sequence

k1, c1, k2, c2, k3, c3, . . .

of keys and sub-cryptotexts is computed.

Decryption: To decrypt the cryptotext c1c2c3 . . . the sequence

k1,w1, k2,w2, k3,w3, . . .

of keys and subplaintexts is computed.
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EXAMPLES

A keystream is called synchronous if it is independent of the plaintext.

KEYWORD VIGENERE cryptosystem can be seen as an example of a synchronous
keystream cryptosystem.

Another type of the binary keystream cryptosystem is specified by an initial sequence of
keys k1, k2, k3 . . . km

and an initial sequence of binary constants b1, b2, b3 . . . bm−1

and the remaining keys are computed using the rule

ki+m =
Pm−1

j=0 bjki+j mod 2

A keystream is called periodic with period p if ki+p = ki for all i .

Example Let the keystream be generated by the rule

ki+4 = ki ⊕ ki+1

If the initial sequence of keys is (1,0,0,0), then we get the following keystream:

1,0,0,0,1,0,0,1,1,0,1,0 1,1,1, . . .

of period 15.
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PERFECT SECRECY - BASIC CONCEPTS

Let P, K and C be sets of plaintexts, keys and cryptotexts.
Let pK (k) be the probability that the key k is chosen from K and let a priory probability
that plaintext w is chosen be pp(w).
If for a key k ∈ K ,C(k) = {ek(w)|w ∈ P}, then for the probability PC (y) that c is the
cryptotext that is transmitted it holds

pc(c) =
P
{k|c∈C(k)} pK (k)pP(dk(c)).

For the conditional probability pc(c|w) that c is the cryptotext if w is the plaintext it
holds

pc(c|w) =
P
{k|w=dk (c)} pK (k).

Using Bayes’ conditional probability formula p(y)p(x |y) = p(x)p(y |x) we get for
probability pP(w |c) that w is the plaintext if c is the cryptotext the expression

pP =
PP (w)

P
{k|w=dk (c)} pK (k)P

{k|c∈C(K)} pK (k)pP (dK (c))
.
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PERFECT SECRECY - BASIC RESULTS

Definition A cryptosystem has perfect secrecy if

pP(w |c) = pP(w) for all w ∈ P and c ∈ C .

(That is, the a posteriori probability that the plaintext is w ,given that the cryptotext is c
is obtained, is the same as a priori probability that the plaintext is w .)

Example CAESAR cryptosystem has perfect secrecy if any of the 26 keys is used with the
same probability to encode any symbol of the plaintext.

Proof Exercise.

An analysis of perfect secrecy: The condition pP(w |c) = pP(w) is for all w ∈ P and
c ∈ C equivalent to the condition pC (c|w) = pC (c).

Let us now assume that pC (c) > 0 for all c ∈ C .

Fix w ∈ P. For each c ∈ C we have pC (c|w) = pC (c) > 0. Hence, for each c ∈ C there
must exist at least one key k such that ek(w) = c. Consequently, |K | ≥ |C | ≥ |P|.
In a special case |K | = |C | = |P|, the following nice characterization of the perfect
secrecy can be obtained:

Theorem A cryptosystem in which |P| = |K | = |C | provides perfect secrecy if and only if
every key is used with the same probability and for every w ∈ P and every c ∈ C there is
a unique key k such that ek(w) = c.

Proof Exercise.
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PRODUCT CRYPTOSYSTEMS

A cryptosystem S = (P,K ,C , e, d) with the sets of plaintexts P, keys K and cryptotexts
C and encryption (decryption) algorithms e(d) is called endomorphic if P = C .

If S1 = (P,K1,P, e
(1), d (1))andS2 = (P,K2,P, e

(2), d (2)) are endomorphic cryptosystems,
then the product cryptosystem is

S1 ⊗ S2 = (P,K1 ⊗ K2,P, e, d),

where encryption is performed by the procedure

e(k1,k2)(w) = ek2(ek1(w))

and decryption by the procedure

d(k1,k2)(c) = dk1(dk2(c)).

Example (Multiplicative cryptosystem):

Encryption: ea(w) = aw mod p; decryption: da(c) = a−1c mod 26.

If M denote the multiplicative cryptosystem, then clearly CAESAR × M is actually the
AFFINE cryptosystem.

Exercise Show that also M ⊗ CAESAR is actually the AFFINE cryptosystem.

Two cryptosystems S1 and S2 are called commutative if S1 ⊗ S2 = S2 ⊗ S1.

A cryptosystem S is called idempotent if S ⊗ S = S .
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Part V

Public-key cryptosystems, I. Key exchange, knapsack, RSA



CHAPTER 5: PUBLIC-KEY CRYPTOGRAPHY I. RSA

Rapidly increasing needs for flexible and secure transmission of information require
to use new cryptographic methods.

The main disadvantage of the classical (symmetric) cryptography is the need to
send a (long) key through a super secure channel before sending the message itself.

In the classical or secret-key (symmetric) cryptography both sender and receiver
share the same secret key.

In the public-key (asymmetric) cryptography there are two different keys:

a public encryption key (at the sender side)

and

a private (secret) decryption key (at the receiver side).
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share the same secret key.

In the public-key (asymmetric) cryptography there are two different keys:

a public encryption key (at the sender side)

and

a private (secret) decryption key (at the receiver side).
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BASIC IDEA - EXAMPLE

Basic idea: If it is infeasible from the knowledge of an encryption algorithm ek to
construct the corresponding description algorithm dk , then ek can be made public.

Toy example: (Telephone directory encryption)

Start: Each user U makes public a unique telephone directory tdU to encrypt messages
for U and U is the only user to have an inverse telephone directory itdU .

Encryption: Each letter X of a plaintext w is replaced, using the telephone directory tdU

of the intended receiver U, by the telephone number of a person whose name starts with
letter X.

Decryption: easy for Uk , with the inverse telephone directory, infeasible for others.

Analogy between secret and public-key cryptography:

Secret-key cryptography 1. Put the message into a box, lock it with a padlock and send
the box. 2. Send the key by a secure channel.

Public-key cryptography Open padlocks, for each user different ones, are freely available.
Only legitimate user has key from his padlocks. Transmission: Put the message into the
box of the intended receiver, close the padlock and send the box.
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PUBLIC ESTABLISHMENT of SECRET KEYS

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 178/616



PUBLIC ESTABLISHMENT of SECRET KEYS

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 178/616



PUBLIC ESTABLISHMENT of SECRET KEYS

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 178/616



PUBLIC ESTABLISHMENT of SECRET KEYS

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 178/616



PUBLIC ESTABLISHMENT of SECRET KEYS

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 178/616



PUBLIC ESTABLISHMENT of SECRET KEYS

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 178/616



PUBLIC ESTABLISHMENT of SECRET KEYS

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 178/616



KEY DISTRIBUTION / AGREEMENT

One should distinguish between key distribution and key agreement.

Key distribution is a mechanism whereby one party chooses a secret key and
then transmits it to another party or parties.

Key agreement is a protocol whereby two (or more) parties jointly establish a
secret key by communication over a public channel.

The objective of key distribution or key agreement protocols is that, at the end of
the protocols, the two parties involved both have possession of the same key k ,
and the value of k is not known (at all) to any other party.
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MAN-IN-THE-MIDDLE ATTACKS

The following attack, by a man-in-the-middle, is possible against the Diffie-Hellman key
establishment protocol.

1 Eve chooses an exponent z.

2 Eve intercepts qx and qy .

3 Eve sends qz to both Alice and Bob. (After that Alice believes she has received qy

and Bob believes he has received qx .)

4 Eve computes KA = qxz (mod p) and KB = qyz (mod p).
Alice, not realizing that Eve is in the middle, also computes KA and
Bob, not realizing that Eve is in the middle, also computes KB .

5 When Alice sends a message to Bob, encrypted with KA, Eve intercepts it, decrypts
it, then encrypts it with KB and sends it to Bob.

6 Bob decrypts the message with KB and obtains the message. At this point he has no
reason to think that communication was insecure.

7 Meanwhile, Eve enjoys reading Alice’s message.
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BLOOM’s KEY PRE-DISTRIBUTION PROTOCOL

allows a trusted authority (Trent - TA) to distribute secret keys to n(n−1)
2

pairs of n users.

Let a large prime p > n be publicly known. Steps of the protocol:

1 Each user U in the network is assigned, by Trent, a unique public number rU < p.

2 Trent chooses three random numbers a, b and c, smaller than p.

3 For each user U, Trent calculates two numbers

aU = (a + brU) mod p, bU = (b + crU) mod p

and sends them via his secure channel to U.

4 Each user U creates the polynomial

gU(x) = aU + bU(x).

5 If Alice (A) wants to send a message to Bob (B), then Alice computes her key
KAB = gA(rB) and Bob computes his key KBA = gB(rA).

6 It is easy to see that KAB = KBA and therefore Alice and Bob can now use their
(identical) keys to communicate using some secret-key cryptosystem.
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SECURE COMMUNICATION with SECRET-KEY CRYPTOSYSTEMS

and without any need for secret key distribution

(Shamir’s “no-key algorithm”)

Basic assumption: Each user X has its own

secret encryption function eX

secret decryption function dX

and all these functions commute (to form a commutative cryptosystem).

Communication protocol

with which Alice can send a message w to Bob.

1 Alice sends eA(w) to Bob

2 Bob sends eB(eA(w)) to Alice

3 Alice sends dA(eB(eA(w))) = eB(w) to Bob

4 Bob performs the decryption to get dB(eB(w)) = w .

Disadvantage: 3 communications are needed (in such a context 3 is a much too large
number).

Advantage: A perfect protocol for distribution of secret keys.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 182/616



SECURE COMMUNICATION with SECRET-KEY CRYPTOSYSTEMS

and without any need for secret key distribution

(Shamir’s “no-key algorithm”)

Basic assumption: Each user X has its own

secret encryption function eX

secret decryption function dX

and all these functions commute (to form a commutative cryptosystem).

Communication protocol

with which Alice can send a message w to Bob.

1 Alice sends eA(w) to Bob

2 Bob sends eB(eA(w)) to Alice

3 Alice sends dA(eB(eA(w))) = eB(w) to Bob

4 Bob performs the decryption to get dB(eB(w)) = w .

Disadvantage: 3 communications are needed (in such a context 3 is a much too large
number).

Advantage: A perfect protocol for distribution of secret keys.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 182/616



SECURE COMMUNICATION with SECRET-KEY CRYPTOSYSTEMS

and without any need for secret key distribution

(Shamir’s “no-key algorithm”)

Basic assumption: Each user X has its own

secret encryption function eX

secret decryption function dX

and all these functions commute (to form a commutative cryptosystem).

Communication protocol

with which Alice can send a message w to Bob.

1 Alice sends eA(w) to Bob

2 Bob sends eB(eA(w)) to Alice

3 Alice sends dA(eB(eA(w))) = eB(w) to Bob

4 Bob performs the decryption to get dB(eB(w)) = w .

Disadvantage: 3 communications are needed (in such a context 3 is a much too large
number).

Advantage: A perfect protocol for distribution of secret keys.
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CRYPTOGRAPHY and COMPUTATIONAL COMPLEXITY

Modern cryptography uses such encryption methods that no “enemy” can have enough
computational power and time to do decryption (even those capable to use thousands of
supercomputers during tens of years for encryption).

Modern cryptography is based on negative and positive results of complexity theory – on
the fact that for some algorithm problems no efficient algorithm seem to exists,
surprisingly, and for some “small” modifications of these problems, surprisingly, simple,
fast and good (randomized) algorithms do exist. Examples:

Integer factorization: Given n(= pq), it is, in general, unfeasible, to find p, q.

There is a list of “most wanted to factor integers”. Top recent successes, using
thousands of computers for months.

(*) Factorization of 229

+ 1 with 155 digits (1996)

(**) Factorization of a “typical” 155-digits integer (1999)

Primes recognition: Is a given n a prime? – fast randomized algorithms exist (1977).
The existence of polynomial deterministic algorithms has been shown only in 2002
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COMPUTATIONALLY INFEASIBLE PROBLEMS

Discrete logarithm problem: Given x , y , n, determine integer a such that
y ≡ xa(mod n) – infeasible in general.

Discrete square root problem: Given integers y , n, compute an integer x such that
y ≡ x2(mod n) – infeasible in general, easy if factorization of n is known

Knapsack problem: Given a ( knapsack - integer) vector X = (x1, . . . , xn) and a
(integer capacity) c , find a binary vector (b1, . . . , bn) such that∑n

i=1 bixi = c .

Problem is NP-hard in general, but easy if xi >
∑i−1

j=1 xj , 1 < i ≤ n.
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ONE-WAY FUNCTIONS

Informally, a function F : N → N is said to be one-way function if it is easily computable
- in polynomial time - but any computation of its inverse is infeasible.

A one-way permutation is a 1-1 one-way function.
easy

computationaly infeasible

x f(x)

A more formal approach
Definition A function f : {0, 1}∗ → {0, 1}∗ is called a strongly one-way function if the
following conditions are satisfied:

1 f can be computed in polynomial time;

2 there are c, ε > 0 such that |x |ε ≤ |f (x)| ≤ |x |c ;

3 for every randomized polynomial time algorithm A, and any constant c > 0, there
exists an nc such that for n > nc

Pr (A(f (x)) ∈ f −1(f (x))) < 1
nc .

Candidates: Modular exponentiation: f (x) = ax mod n
Modular squaring f (x) = x2 mod n, n − a Blum integer
Prime number multiplication f (p, q) = pq.
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TRAPDOOR ONE-WAY FUNCTIONS

The key concept for design of public-key cryptosystems is that of trapdoor one-way
functions.

A function f : X → Y is trapdoor one-way function

if f and its inverse can be computed efficiently,

yet even the complete knowledge of the algorithm to compute f does not make it
feasible to determine a polynomial time algorithm to compute the inverse of f .

A candidate: modular squaring with a fixed modulus.

computation of discrete square roots is unfeasible in general, but quite easy if the
decomposition of the modulus into primes is known.

A way to design a trapdoor one-way function is to transform an easy case of a hard
(one-way) function to a hard-looking case of such a function, that can be, however,
solved easily by those knowing how the above transformation was performed.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 186/616



TRAPDOOR ONE-WAY FUNCTIONS

The key concept for design of public-key cryptosystems is that of trapdoor one-way
functions.

A function f : X → Y is trapdoor one-way function

if f and its inverse can be computed efficiently,

yet even the complete knowledge of the algorithm to compute f does not make it
feasible to determine a polynomial time algorithm to compute the inverse of f .

A candidate: modular squaring with a fixed modulus.

computation of discrete square roots is unfeasible in general, but quite easy if the
decomposition of the modulus into primes is known.

A way to design a trapdoor one-way function is to transform an easy case of a hard
(one-way) function to a hard-looking case of such a function, that can be, however,
solved easily by those knowing how the above transformation was performed.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 186/616



EXAMPLE - COMPUTER PASSWORDS

A naive solution is to keep in computer a file with entries as

login CLINTON password BUSH,

that is with logins and their passwords. This is not sufficiently safe.

A more safe method is to keep in the computer a file with entries as

login CLINTON password BUSH one-way function fc

The idea is that BUSH is a “public” password and CLINTON is the only one that
knows a “secret” password, say MADONNA, such that

fc(MADONNA) = BUSH
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LAMPORT’s ONE-TIME PASSWORDS

One-way functions can be used to create a sequence of passwords:

1 Alice chooses a random w and computes, using a one-way function h, a sequence of
passwords

w , h(w), h(h(w)), . . . , hn(w)

2 Alice then transfers securely “the initial secret” w0 = hn(w) to Bob.

3 The i-th authentication, 0 < i < n + 1, is performed as follows:

- - - - - - - Alice sends wi = hn−i (w) to Bob for I = 1, 2,. . . ,n-1

- - - - - - - Bob checks whether wi−1 = h(wi ).

When the number of identifications reaches n, a new w has to be chosen.
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GENERAL KNAPSACK PROBLEM – UNFEASIBLE

KNAPSACK PROBLEM: Given an integer-vector X = (x1, . . . , xn) and an integer c.
Determine a binary vector B = (b1, . . . , bn) (if it exists) such that XBT = c.

Knapsack problem with superincreasing vector – easy

Problem Given a superincreasing integer-vector X = (x1, . . . , xn) (i.e.
xi >

Pi−1
j=1 xj , i > 1) and an integer c,

determine a binary vector B = (b1, . . . , bn) (if it exists) such that XBT = c.

Algorithm – to solve knapsack problems with superincreasing vectors:

for i ← downto 2 do
if c ≥ 2xi then terminate {no solution}

else if c > xi then bi ← 1; c ← c − xi ;
else bi = 0;

if c = x1 then b1 ← 1
else if c = 0 then b1 ← 0;

else terminate {no solution}

Example X = (1,2,4,8,16,32,64,128,256,512) c = 999
X = (1,3,5,10,20,41,94,199) c = 242
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KNAPSACK ENCODING – BASIC IDEAS

Let a (knapsack) vector

A = (a1, . . . , an)

be given.

Encoding of a (binary) message B = (b1, b2, . . . , bn) by A is done by the vector/vector
multiplication:

ABT = c

and results in the cryptotext c.

Decoding of c requires to solve the knapsack problem for the instant given by the
knapsack vector A and the cryptotext c.

The problem is that decoding seems to be infeasible.

Example
If A = (74, 82, 94, 83, 39, 99, 56, 49, 73, 99) and B = (1100110101) then

ABT =
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DESIGN of KNAPSACK CRYPTOSYSTEMS

1 Choose a superincreasing vector X = (x1, . . . , xn).

2 Choose m, u such that m > 2xn, gcd(m, u) = 1.

3 Compute u−1 mod m,X ′ = (x ′1, . . . , x
′
n), x ′i = uxi|{z}

diffusion

mod m.

| {z }
confusion

Cryptosystem: X ′ – public key
X , u,m – trapdoor information

Encryption: of a binary vector w of length n: c = X ′w
Decryption: compute c ′ = u−1c mod m

and solve the knapsack problem with X and c ′.

Lemma Let X ,m, u,X ′, c, c ′ be as defined above. Then the knapsack problem instances
(X , c ′) and (X ′, c) have at most one solution, and if one of them has a solution, then the
second one has the same solution.

Proof Let X ′w = c. Then

c ′ ≡ u−1c ≡ u−1X ′w ≡ u−1uXw ≡ Xw(mod m).

Since X is superincreasing and m > 2xn we have

(Xw) mod m = Xw
c ′ = Xw .and therefore

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 191/616



DESIGN of KNAPSACK CRYPTOSYSTEMS

1 Choose a superincreasing vector X = (x1, . . . , xn).

2 Choose m, u such that m > 2xn, gcd(m, u) = 1.

3 Compute u−1 mod m,X ′ = (x ′1, . . . , x
′
n), x ′i = uxi|{z}

diffusion

mod m.

| {z }
confusion

Cryptosystem: X ′ – public key
X , u,m – trapdoor information

Encryption: of a binary vector w of length n: c = X ′w
Decryption: compute c ′ = u−1c mod m

and solve the knapsack problem with X and c ′.

Lemma Let X ,m, u,X ′, c, c ′ be as defined above. Then the knapsack problem instances
(X , c ′) and (X ′, c) have at most one solution, and if one of them has a solution, then the
second one has the same solution.

Proof Let X ′w = c. Then

c ′ ≡ u−1c ≡ u−1X ′w ≡ u−1uXw ≡ Xw(mod m).

Since X is superincreasing and m > 2xn we have

(Xw) mod m = Xw
c ′ = Xw .and therefore

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 191/616



DESIGN of KNAPSACK CRYPTOSYSTEMS

1 Choose a superincreasing vector X = (x1, . . . , xn).

2 Choose m, u such that m > 2xn, gcd(m, u) = 1.

3 Compute u−1 mod m,X ′ = (x ′1, . . . , x
′
n), x ′i = uxi|{z}

diffusion

mod m.

| {z }
confusion

Cryptosystem: X ′ – public key
X , u,m – trapdoor information

Encryption: of a binary vector w of length n: c = X ′w
Decryption: compute c ′ = u−1c mod m

and solve the knapsack problem with X and c ′.

Lemma Let X ,m, u,X ′, c, c ′ be as defined above. Then the knapsack problem instances
(X , c ′) and (X ′, c) have at most one solution, and if one of them has a solution, then the
second one has the same solution.

Proof Let X ′w = c. Then

c ′ ≡ u−1c ≡ u−1X ′w ≡ u−1uXw ≡ Xw(mod m).

Since X is superincreasing and m > 2xn we have

(Xw) mod m = Xw
c ′ = Xw .and therefore

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 191/616



DESIGN of KNAPSACK CRYPTOSYSTEMS

1 Choose a superincreasing vector X = (x1, . . . , xn).

2 Choose m, u such that m > 2xn, gcd(m, u) = 1.

3 Compute u−1 mod m,X ′ = (x ′1, . . . , x
′
n), x ′i = uxi|{z}

diffusion

mod m.

| {z }
confusion

Cryptosystem: X ′ – public key
X , u,m – trapdoor information

Encryption: of a binary vector w of length n: c = X ′w
Decryption: compute c ′ = u−1c mod m

and solve the knapsack problem with X and c ′.

Lemma Let X ,m, u,X ′, c, c ′ be as defined above. Then the knapsack problem instances
(X , c ′) and (X ′, c) have at most one solution, and if one of them has a solution, then the
second one has the same solution.

Proof Let X ′w = c. Then

c ′ ≡ u−1c ≡ u−1X ′w ≡ u−1uXw ≡ Xw(mod m).

Since X is superincreasing and m > 2xn we have

(Xw) mod m = Xw
c ′ = Xw .and therefore

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 191/616



DESIGN of KNAPSACK CRYPTOSYSTEMS – EXAMPLE

Example X = (1,2,4,9,18,35,75,151,302,606)
m = 1250, u = 41
X’ = (41,82,164,369,738,185,575,1191,1132,1096)

In order to encrypt an English plaintext, we first encode its letters by 5-bit numbers -
00000, A - 00001, B - 00010,. . . and then divide the resulting binary strings into blocks of
length 10.

Plaintext: Encoding of AFRICA results in vectors

w1 = (0000100110) w2 = (1001001001) w3 = (0001100001)

Encryption: c1′ = X ′w1 = 3061 c2′ = X ′w2 = 2081 c3′ = X ′w3 = 2203

Cryptotext: (3061,2081,2203)

Decryption of cryptotexts: (2163, 2116, 1870, 3599)

By multiplying with u–1 = 61 (mod 1250) we get new cryptotexts (several new c ′)

(693, 326, 320, 789)

And, in the binary form, solutions B of equations XBT = c ′ have the form

(1101001001, 0110100010, 0000100010, 1011100101)

Therefore, the resulting plaintext is:

ZIMBABWE
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STORY of KNAPSACK

Invented: 1978 - Ralph C. Merkle, Martin Hellman
Patented: in 10 countries
Broken: 1982: Adi Shamir

New idea: iterated knapsack cryptosystem using hyper-reachable vectors.

Definition A knapsack vector X ′ = (x1′ , . . . , xn′) is obtained from a knapsack vector
X = (x1, . . . , xn) by strong modular multiplication if

X ′i = uxi mod m, i = 1, . . . , n,
m > 2

Pn
i=1 xiwhere

and gcd(u,m) = 1. A knapsack vector X ′ is called hyper-reachable, if there is a sequence
of knapsack vectors X = x0, x1, . . . , xk = X ′,

where x0 is a super-increasing vector and for i = 1, . . . , k xi is obtained from xi−1 by a
strong modular multiplication.

Iterated knapsack cryptosystem was broken in 1985 - E. Brickell

New ideas: dense knapsack cryptosystems. Density of a knapsack vector X = (x1, . . . , xn)
is defined by d(x) = n

log(max{xi |1≤i≤n})

Remark. Density of super-increasing vectors is ≤ n
n−1
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KNAPSACK CRYPTOSYSTEM – COMMENTS

The term “knapsack” in the name of the cryptosystem is quite misleading.

By the Knapsack problem one usually understands the following problem:

Given n items with weights w1,w2, . . . ,wn and values v1, v2, . . . , vn and a
knapsack limit c , the task is to find a bit vector (b1, b2, . . . , bn) such that∑n

i=1 biwi ≤ c and
∑n

i=1 bivi is as large as possible.

The term subset problem is usually used for the problem used in our construction
of the knapsack cryptosystem. It is well-known that the decision version of this
problem is NP-complete.

Sometimes, for our main version of the knapsack problem the term
Merkle-Hellman (Knapsack) Cryptosystem is used.
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McELIECE CRYPTOSYSTEM

McEliece cryptosystem is based on a similar design principle as the Knapsack
cryptosystem. McEliece cryptosystem is formed by transforming an easy to break
cryptosystem into a cryptosystem that is hard to break because it seems to be
based on a problem that is, in general, NP-hard.

The underlying fact is that the decision version of the decryption problem for
linear codes is in general NP-complete. However, for special types of linear codes
polynomial-time decryption algorithms exist. One such a class of linear codes, the
so-called Goppa codes, are used to design McEliece cryptosystem.

Goppa codes are [2m, n −mt, 2t + 1]-codes, where n = 2m.
(McEliece suggested to use m = 10, t = 50.)
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McELIECE CRYPTOSYSTEM – DESIGN

Goppa codes are [2m, n −mt, 2t + 1]-codes, where n = 2m.

Design of McEliece cryptosystems. Let

G be a generating matrix for an [n, k, d ] Goppa code C ;

S be a k × k binary matrix invertible over Z2;

P be an n × n permutation matrix;

G ′ = SGP.

Plaintexts: P = (Z2)k ; cryptotexts: C = (Z2)n, key: K = (G , S ,P,G ′), message: w
G ′ is made public, G , S ,P are kept secret.

Encryption: eK (w , e) = wG ′ + e, where e is any binary vector of length n & weight t.

Decryption of a cryptotext c = wG ′ + e ∈ (Z2)n.

1 Compute c1 = cP−1 = wSGPP−1 + eP−1 = wSG + eP−1

2 Decode c1 to get w1 = wS ,

3 Compute w = w1S−1
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COMMENTS on McELIECE CRYPTOSYSTEM

1 Each irreducible polynomial over Zm
2 of degree t generates a Goppa code with

distance at least 2t + 1.

2 In the design of McEliece cryptosystem the goal of matrices S and C is to modify a
generator matrix G for an easy-to-decode Goppa code to get a matrix that looks as a
general random matrix for a linear code for which decoding problem is NP-complete.

3 An important novel and unique trick is an introduction, in the encoding process, of a
random vector e that represents an introduction of up to t errors – such a number
of errors that are correctable using the given Goppa code and this is the basic trick
of the decoding process.

4 Since P is a permutation matrix eP−1 has the same weight as e.

5 As already mentioned, McEliece suggested to use a Goppa code with m = 10 and
t = 50. This provides a [1024, 524, 101]-code. Each plaintext is then a 524-bit
string, each cryptotext is a 1024-bit string. The public key is an 524 × 1024 matrix.

6 Observe that the number of potential matrices S and P is so large that probability
of guessing these matrices is smaller that probability of guessing correct plaintext!!!

7 It can be shown that it is not safe to encrypt twice the same plaintext with the same
public key (and different error vectors).
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FINAL COMMENTS

1 Public-key cryptosystems can never provide unconditional security. This is because
an eavesdropper, on observing a cryptotext c can encrypt each possible plaintext by
the encryption algorithm eA until he finds c such that eA(w) = c.

2 One-way functions exist if and only if P = UP, where UP is the class of languages
accepted by unambiguous polynomial time bounded nondeterministic Turing
machine.

3 There are actually two types of keys in practical use: A session key is used for
sending a particular message (or few of them). A master key is usually used to
generate several session keys.

4 Session keys are usually generated when actually required and discarded after their
use. Session keys are usually keys of a secret-key cryptosystem.

5 Master keys are usually used for longer time and need therefore be carefully stored.
Master keys are usually keys of a public-key cryptosystem.
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SATELLITE VERSION of ONE-TIME PAD

Suppose a satellite produces and broadcasts several random sequences of bits at a rate
fast enough that no computer can store more than a small fraction of the output.

If Alice wants to send a message to Bob they first agree, using a public key cryptography,
on a method of sampling bits from the satellite outputs.

Alice and Bob use this method to generate a random key and they use it with
ONE-TIME PAD for encryption.

By the time Eve decrypted their public key communications, random streams produced
by the satellite and used by Alice and Bob to get the secret key have disappeared, and
therefore there is no way for Eve to make decryption.

The point is that satellites produce so large amount of date that Eve cannot store all of
them
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RSA CRYPTOSYSTEM

The most important public-key cryptosystem is the RSA cryptosystem on which one can
also illustrate a variety of important ideas of modern public-key cryptography.

For example, we will discuss various possible attacks on the RSA cryptosystem and
problems related to security of RSA.

A special attention will be given in Chapter 7 to the problem of factorization of integers
that play such an important role for security of RSA.

In doing that we will illustrate modern distributed techniques to factorize very large
integers.
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DESIGN and USE of RSA CRYPTOSYSTEM

Invented in 1978 by Rivest, Shamir, Adleman
Basic idea: prime multiplication is very easy, integer factorization seems to be unfeasible.

Design of RSA cryptosystems

1 Choose two large s-bit primes p,q, s in [512,1024], and denote

n = pq, φ(n) = (p − 1)(q − 1)

2 Choose a large d such that
gcd(d , φ(n)) = 1

and compute
e = d−1(mod φ(n))

Public key: n (modulus), e (encryption exponent)
Trapdoor information: p, q, d (decryption exponent)

Plaintext w
Encryption: cryptotext c = w e mod n
Decryption: plaintext w = cd mod n

Details: A plaintext is first encoded as a word over the alphabet {0, 1, . . . , 9}, then
divided into blocks of length i − 1, where 10i−1 < n < 10i . Each block is taken as an
integer and decrypted using modular exponentiation.
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divided into blocks of length i − 1, where 10i−1 < n < 10i . Each block is taken as an
integer and decrypted using modular exponentiation.
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CORRECTNESS of RSA

Let c = w emod n be the cryptotext for a plaintext w , in the cryptosystem with

n = pq, ed ≡ 1 (mod φ(n)), gcd(d , φ(n)) = 1

In such a case
w ≡ cd mod n

and, if the decryption is unique, w = cdmod n.

Proof Since ed ≡ 1 (mod φ(n)), there exist a j ∈ N such that ed = jφ(n) + 1.

Case 1. Neither p nor q divides w .
In such a case gcd(n,w) = 1 and by the Euler’s Totient Theorem we get that

cd = w ed = w jφ(n)+1 ≡ w (mod n)

Case 2. Exactly one of p, q divides w – say p.
In such a case w ed ≡ w (mod p) and by Fermat’s Little theorem wq−1 ≡ 1 (mod q)

⇒ wq−1 ≡ 1 (mod q)⇒ wφ(n) ≡ 1 (mod q)

⇒ w jφ(n) ≡ 1 (mod q)

⇒ w ed ≡ w (mod q)

Therefore: w ≡ w ed ≡ cd (mod n)

Case 3. Both p, q divide w .
This cannot happen because, by our assumption, w < n.
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DESIGN and USE of RSA CRYPTOSYSTEM

Example of the design and of the use of RSA cryptosystems.

By choosing p = 41, q = 61 we get n = 2501, φ(n) = 2400
By choosing d = 2087 we get e = 23
By choosing d = 2069 we get e = 29
By choosing other values of d we would get other values of e.

Let us choose the first pair of encryption/decryption exponents (e = 23 and d = 2087).

Plaintext: KARLSRUHE Encoding: 100017111817200704

Since 103 < n < 104, the numerical plaintext is divided into blocks of 3 digits ⇒ 6
plaintext integers are obtained

100, 017, 111, 817, 200, 704

Encryption:

10023 mod 2501, 1723 mod 2501, 11123 mod 2501
81723 mod 2501, 20023 mod 2501, 70423 mod 2501

provides cryptotexts:
2306, 1893, 621, 1380, 490, 313

Decryption:

23062087 mod 2501 = 100, 18932087 mod 2501 = 17
6212087 mod 2501 = 111, 13802087 mod 2501 = 817
4902087 mod 2501 = 200, 3132087 mod 2501 = 704
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RSA CHALLENGE

One of the first descriptions of RSA was in the paper.

Martin Gardner: Mathematical games, Scientific American, 1977

and in this paper RSA inventors presented the following challenge.

Decrypt the cryptotext:

9686 9613 7546 2206 1477 1409 2225 4355 8829 0575 9991 1245 7431 9874 6951 2093
0816 2982 2514 5708 3569 3147 6622 8839 8962 8013 3919 9055 1829 9451 5781 5154

encrypted using the RSA cryptosystem with 129 digit number, called also RSA129

n: 114 381 625 757 888 867 669 235 779 976 146 612 010 218 296 721 242 362 562 561
842 935 706 935 245 733 897 830 597 123 513 958 705 058 989 075 147 599 290 026
879 543 541.

and with e = 9007.

The problem was solved in 1994 by first factorizing n into one 64-bit prime and one
65-bit prime, and then computing the plaintext

THE MAGIC WORDS ARE SQUEMISH OSSIFRAGE
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HOW to DESIGN REALLY GOOD RSA CRYPTOSYSTEMS?

1 How to choose large primes p, q?
Choose randomly a large integer p, and verify, using a randomized algorithm,
whether p is prime. If not, check p + 2, p + 4, . . . From the Prime Number Theorem
it follows that there are approximately

2d

log 2d
− 2d−1

log 2d−1

d bit primes. (A probability that a 512-bit number is prime is 0.00562.)

2 What kind of relations should be between p and q?
2.1 Difference |p − q| should be neither too small nor too large.
2.2 gcd(p − 1, q − 1) should not be large.
2.3 Both p − 1 and q − 1 should contain large prime factors.
2.4 Quite ideal case: q, p should be safe primes - such that also (p–1)/2 and (q − 1)/2 are

primes. (83, 107, 10100 − 166517 are examples of safe primes).

3 How to choose e and d?
3.1 Neither d nor e should be small.
3.2 d should not be smaller than n

1
4 . (For d < n

1
4 a polynomial time algorithm is known

to determine d).
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PRIME RECOGNITION and FACTORIZATION

The key problems for the development of RSA cryptosystem are that of prime recognition
and integer factorization.

On August 2002, the first polynomial time algorithm was discovered that allows to
determine whether a given m bit integer is a prime. Algorithm works in time O(m12).

Fast randomized algorithms for prime recognition has been known since 1977. One of the
simplest one is due to Rabin and will be presented later.

For integer factorization situation is somehow different.

No polynomial time classical algorithm is known.

Simple, but not efficient factorization algorithms are known.

Several sophisticated distributed factorization algorithms are known that allowed to
factorize, using enormous computation power, surprisingly large integers.

Progress in integer factorization, due to progress in algorithms and technology, has
been recently enormous.

Polynomial time quantum algorithms for integer factorization are known since 1994
(P. Shor).

Several simple and some sophisticated factorization algorithms will be presented and
illustrated in the following.
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RABIN-MILLER’s PRIME RECOGNITION

Rabin-Miller’s Monte Carlo prime recognition algorithm is based on the following result
from the number theory.

Lemma Let n ∈ N. Denote, for 1 ≤ x ≤ n, by C(x) the condition:

Either xn−1 6= 1 (mod n), or there is an m = n−1
2i for some i, such that gcd(n, xm− 1) 6= 1

If C(x) holds for some 1 ≤ x ≤ n, then n is not a prime. If n is not a prime, then C(x)
holds for at least half of x between 1 and n.

Algorithm:

Choose randomly integers x1, x2, . . . , xm such that 1 ≤ xi ≤ n.
For each xi determine whether C(xi ) holds.

Claim: If C(xi ) holds for some i , then n is not a prime for sure. Otherwise n is declared
to be prime. Probability that this is not the case is 2−m.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 207/616



RABIN-MILLER’s PRIME RECOGNITION

Rabin-Miller’s Monte Carlo prime recognition algorithm is based on the following result
from the number theory.

Lemma Let n ∈ N. Denote, for 1 ≤ x ≤ n, by C(x) the condition:

Either xn−1 6= 1 (mod n), or there is an m = n−1
2i for some i, such that gcd(n, xm− 1) 6= 1

If C(x) holds for some 1 ≤ x ≤ n, then n is not a prime. If n is not a prime, then C(x)
holds for at least half of x between 1 and n.

Algorithm:

Choose randomly integers x1, x2, . . . , xm such that 1 ≤ xi ≤ n.
For each xi determine whether C(xi ) holds.

Claim: If C(xi ) holds for some i , then n is not a prime for sure. Otherwise n is declared
to be prime. Probability that this is not the case is 2−m.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 207/616



RABIN-MILLER’s PRIME RECOGNITION

Rabin-Miller’s Monte Carlo prime recognition algorithm is based on the following result
from the number theory.

Lemma Let n ∈ N. Denote, for 1 ≤ x ≤ n, by C(x) the condition:

Either xn−1 6= 1 (mod n), or there is an m = n−1
2i for some i, such that gcd(n, xm− 1) 6= 1

If C(x) holds for some 1 ≤ x ≤ n, then n is not a prime. If n is not a prime, then C(x)
holds for at least half of x between 1 and n.

Algorithm:

Choose randomly integers x1, x2, . . . , xm such that 1 ≤ xi ≤ n.
For each xi determine whether C(xi ) holds.

Claim: If C(xi ) holds for some i , then n is not a prime for sure. Otherwise n is declared
to be prime. Probability that this is not the case is 2−m.

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 207/616



FACTORIZATION of 512-BITS and 663-BITS NUMBERS

On August 22, 1999, a team of scientists from 6 countries found, after 7 months of
computing, using 300 very fast SGI and SUN workstations and Pentium II, factors of the
so-called RSA-155 number with 512 bits (about 155 digits).

RSA-155 was a number from a Challenge list issue by the US company RSA Data
Security and “represented” 95% of 512-bit numbers used as the key to protect electronic
commerce and financial transmissions on Internet.

Factorization of RSA-155 would require in total 37 years of computing time on a single
computer.

When in 1977 Rivest and his colleagues challenged the world to factor RSA-129, they
estimated that, using knowledge of that time, factorization of RSA-129 would require
1016 years.

In 2005 RSA-200, a 663-bits number, was factorized by a team of German Federal
Agency for Information Technology Security, using CPU of 80 AMD Opterons.
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LARGE NUMBERS

Hindus named many large numbers - one having 153 digits.

Romans initially had no terms for numbers larger than 104.

Greeks had a popular belief that no number is larger than the total count of sand grains
needed to fill the universe.

Large numbers with special names:

duotrigintillion=googol−10100 googolplex−1010100

FACTORIZATION of very large NUMBERS

W. Keller factorized F23471 which has 107000 digits.

J. Harley factorized: 10101000

+ 1.

One factor: 316, 912, 650, 057, 350, 374, 175, 801, 344, 000, 001

1992 E. Crandal, Doenias proved, using a computer that F22, which has more than
million of digits, is composite (but no factor of F22 is known).

Number 10101034

was used to develop a theory of the distribution of prime numbers.
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DESIGN OF GOOD RSA CRYPTOSYSTEMS

Claim 1. Difference |p − q| should not be small.

Indeed, if |p − q| is small, and p > q, then (p+q)
2

is only slightly larger than
√

n because

(p + q)2

4
− n =

(p − q)2

4

In addition (p+q)2

4
− n is a square, say y 2.

In order to factor n, it is then enough to test x >
√

n until x is found such that x2 − n is
a square, say y 2. In such a case

p + q = 2x , p − q = 2y and therefore p = x + y , q = x − y .

Claim 2. gcd(p − 1, q − 1) should not be large.

Indeed, in the opposite case s = lcm(p − 1, q − 1) is much smaller than φ(n) If

d ′e ≡ 1 mod s,

then, for some integer k,

cd ≡ w ed ≡ w ks+1 ≡ w mod n

since p − 1|s, q − 1|s and therefore w ks ≡ 1 mod p and w ks+1 ≡ w mod q. Hence, d ′

can serve as a decryption exponent.
Moreover, in such a case s can be obtained by testing.
Question Is there enough primes (to choose again and again new ones)?
No problem, the number of primes of length 512 bit or less exceeds 10150.
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HOW IMPORTANT is FACTORIZATION for BREAKING RSA?

1 If integer factorization is feasible, then RSA is breakable.

2 There is no proof that factorization is indeed needed to break RSA.

3 If a method of breaking RSA would provide an effective way to get a trapdoor
information, then factorization could be done effectively.

Theorem Any algorithm to compute φ(n) can be used to factor integers with the
same complexity.

Theorem Any algorithm for computing d can be converted into a break randomized
algorithm for factoring integers with the same complexity.

4 There are setups in which RSA can be broken without factoring modulus n.

Example An agency chooses p, q and computes a modulus n = pq that is publicized
and common to all users U1,U2, . . . and also encryption exponents e1, e2, . . . are
publicized. Each user Ui gets his decryption exponent di .

In such a setting any user is able to find in deterministic quadratic time another
user’s decryption exponent.
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SECURITY of RSA in PRACTICE

None of the numerous attempts to develop attacks on RSA has turned out to be
successful.

There are various results showing that it is impossible to obtain even only partial
information about the plaintext from the cryptotext produced by the RSA cryptosystem.

We will show that were the following two functions, that are computationally
polynomially equivalent, be efficiently computable, then the RSA cryptosystem with the
encryption (decryption) exponents ek(dk) would be breakable.

parity ek(c) =the least significant bit of such an w that ek(w) = c;
halfek(c) = 0 if 0 ≤ w < n

2
and halfek(c) = 1 if n

2
≤ w ≤ n − 1

We show two important properties of the functions half and parity .

1 Polynomial time computational equivalence of the functions half and parity follows
from the following identities

halfek(c) = parityek((c × ek(2)) mod n

parityek(c) = halfek((c × ek(
1

2
)) mod n

and the multiplicative rule ek(w1)ek(w2) = ek(w1w2).

2 There is an efficient algorithm to determine plaintexts w from the cryptotexts c
obtained by RSA-decryption provided efficiently computable function half can be
used as the oracle:
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SECURITY of RSA in PRACTICE I

BREAKING RSA USING AN ORACLE

Algorithm:

for i = 0 to dlgne do
ci ← half (c); c ← (c × ek (2)) mod n

l ← 0; u ← n
for i = 0 to dlgne do

m← (i + u)/2;
if ci = 1 then i ← m else u ← m;

output ← [u]

Indeed, in the first cycle

ci = half (c × (ek(2))i ) = half (ek(2i w)),

is computed for 0 ≤ i ≤ lgn.

In the second part of the algorithm binary search is used to determine interval in which w
lies. For example, we have that

half (ek(w)) = 0 ≡ w ∈ [0,
n

2
)

half (ek(2w)) = 0 ≡ w ∈ [0,
n

4
) ∪ [

n

2
,

3n

4
)

half (ek(4w)) = 0 ≡ w ∈
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SECURITY of RSA in PRACTICE II

There are many results for RSA showing that certain parts are as hard as whole. For
example any feasible algorithm to determine the last bit of the plaintext can be converted
into a feasible algorithm to determine the whole plaintext.

Example Assume that we have an algorithm H to determine whether a plaintext x
designed in RSA with public key e, n is smaller than n

2
if the cryptotext y is given.

We construct an algorithm A to determine in which of the intervals ( jn
8
, (j+1)n

8
), 0 ≤ j ≤ 7

the plaintext lies.

Basic idea H can be used to decide whether the plaintexts for cryptotexts
xe mod n, 2exe mod n, 4exe mod n are smaller than n

2
.

Answers

yes, yes, yes 0 <x <
n

8

yes, yes, no
n

8
<x <

n

4

yes, no, yes
n

4
<x <

3n

8

yes, no, no
3n

8
<x <

n

2

no, yes, yes
n

2
<x <

5n

8

no, yes, no
5n

8
<x <

3n

4

no, no, yes
3n

4
<x <

7n

8

no, no, no
7n

8
<x < n

prof. Jozef Gruska IV054 5. Public-key cryptosystems, I. Key exchange, knapsack, RSA 214/616



TWO USERS SHOULD not USE THE SAME MODULUS

Otherwise, users, say A and B, would be able to decrypt messages of each other using the
following method.

Decryption: B computes

f = gcd(eBdB − 1, eA),m =
eBdB − 1

f

eBdB − 1 = kφ(n) for some k

It holds:
gcd(eA, φ(n)) = 1⇒ gcd(f , φ(n)) = 1

and therefore
m is a multiple of φ(n).

m and eA have no common divisor and therefore there exist integers u, v such that

um + veA = 1

Since m is a multiple of φ(n), we have

veA = 1− um ≡ 1 mod φ(n)

and since eAdA ≡ 1 mod φ(n), we have

(v − dA)eA ≡ 0 mod φ(n)

and therefore
v ≡ dA mod φ(n)

is a decryption exponent of A. Indeed, for a cryptotext c:

cv ≡ w eAv ≡ w eAdA+cφ(n) ≡ w mod (n)
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COMMON MODULUS ATTACK

Let a message w be encoded with a
modulus n and two encryption exponents e1

and e2 such that gcd(e1, e2) = 1. Therefore

c1 = w e1 mod n, c2 = w e2 mod n;

Then

w = ca
1cb

2 ,

where, a, b are such that

a · e1 + b · e2 = 1
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PRIVATE-KEY versus PUBLIC-KEY CRYPTOGRAPHY

The prime advantage of public-key cryptography is increased security – the private
keys do not ever need to be transmitted or revealed to anyone.

Public key cryptography is not meant to replace secret-key cryptography, but rather
to supplement it, to make it more secure.

Example RSA and DES (AES) are usually combined as follows
1 The message is encrypted with a random DES key
2 DES-key is encrypted with RSA
3 DES-encrypted message and RSA-encrypted DES-key are sent.

This protocol is called RSA digital envelope.

In software (hardware) DES is generally about 100 (1000) times faster than RSA.

If n users communicate with secrete-key cryptography, they need n (n - 1) / 2 keys.

If n users communicate with public-key cryptography 2n keys are sufficient.

Public-key cryptography allows spontaneous communication.
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KERBEROS

We describe a very popular key distribution protocol with trusted authority TA with
which each user A shares a secret key KA.

To communicate with user B the user A asks TA for a session key (K)

TA chooses a random session key K , a time-stamp T , and a lifetime limit L.

TA computes

m1 = eKA (K , ID(B),T , L); m2 = eKB (K , ID(B),T , L);

and sends m1,m2 to A.

A decrypts m1, recovers K ,T , L, ID(B), computes m3 = eK (ID(B),T ) and sends m2

and m3 to B.

B decrypts m2 and m3, checks whether two values of T and of ID(B) are the same.
If so, B computes m4 = eK (T + 1) and sends it to A.

A decrypts m4 and verifies that she got T + 1.
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Part VI

Public-key cryptosystems, II. Other cryptosystems, security, PRG, hash
functions



CHAPTER 6: OTHER CRYPTOSYSTEMS, PSEUDO-RANDOM
NUMBER GENERATORS and HASH FUNCTIONS

A large number of interesting and important cryptosystems have already been designed.
In this chapter we present several other of them in order to illustrate principles and
techniques that can be used to design cryptosystems.

At first, we present several cryptosystems security of which is based on the fact that
computation of square roots and discrete logarithms is in genral infeasible in some groups.

Secondly, we discuss pseudo-random number generators and hash functions
– other very important concepts of modern cryptography

Finally, we discuss one of the fundamental questions of modern cryptography:
when can a cryptosystem be considered as (computationally) perfectly secure?

In order to do that we will:

discuss the role randomness play in the cryptography;

introduce the very fundamental definitions of perfect security of cryptosystem

present some examples of perfectly secure cryptosystems.
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RABIN CRYPTOSYSTEM

Primes p, q of the form 4k + 3, so called Blum primes, are kept secret, n = pq is the
public key.
Encryption: of a plaintext w < n

c = w 2 mod n

Decryption: It is easy to verify, using Euler’s criterion which says that if c is a quadratic
residue modulo p, then c (p−1)/2 ≡ 1 (mod p), that

±c (p+1)/4 mod p and ±c (q+1)/4 mod q

are two square roots of c modulo p and q. One can now obtain four square roots of c
modulo n using the method shown in Appendix.
In case the plaintext w is a meaningful English text, it should be easy to determine w
from w1, w2, w3, w4.

However, if w is a random string (say, for a key exchange) it is impossible to determine
w from w1, w2, w3, w4.
Rabin did not propose this system as a practical cryptosystem.
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from w1, w2, w3, w4.

However, if w is a random string (say, for a key exchange) it is impossible to determine
w from w1, w2, w3, w4.
Rabin did not propose this system as a practical cryptosystem.
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GENERALIZED RABIN CRYPTOSYSTEM

Public key: n,B (0 ≤ B ≤ n − 1)

Trapdoor: Blum primes p, q (n = pq)

Encryption: e(x) = x(x + B) mod n

Decryption: d(y) =

„q
B2

4
+ y − B

2

«
mod n

It is easy to verify that if ω is a nontrivial square root of 1 modulo n, then there are four
decryptions of e(x):

x , −x , ω
`
x + B

2

´
− B

2
, −ω

`
x + B

2

´
− B

2

Example

e
`
ω
`
x + B

2

´
− B

2

´
=
`
ω
`
x + B

2

´
− B

2

´ `
ω
`
x + B

2

´
+ B

2

´
= ω2

`
x + B

2

´2 −
`

B
2

´2
=

x2 + Bx = e(x)

Decryption of the generalized Rabin cryptosystem can be reduced to the decryption of
the original Rabin cryptosystem.

Indeed, the equation x2 + Bx ≡ y (mod n)
can be transformed, by the substitution x = x1 − B/2 , into
x1

2 ≡ B2/4 + y (mod n) and, by defining c = B2/4 + y , into x1
2 ≡ c (mod n)

Decryption can be done by factoring n and solving congruences

x1
2 ≡ c (mod p) x1

2 ≡ c (mod q)
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SECURITY of RABIN CRYPTOSYSTEM

We show that any hypothetical decryption algorithm A for Rabin cryptosystem, can be
used, as an oracle, in the following Las Vegas algorithm, to factor an integer n.

Algorithm:

1 Choose a random r , 1 ≤ r ≤ n − 1;

2 Compute y = (r 2 − B2/4) mod n; {y = ek(r − B/2)}.

3 Call A(y), to obtain a decryption x =

„q
B2

4
+ y − B

2

«
mod n;

4 Compute x1 = x + B/2; {x1
2 ≡ r 2 mod n}

5 if x1 = ±r then quit (failure)
else gcd(x1 + r , n) = p or q

Indeed, after Step 4, either x1 = ±r mod n or x1 = ±ωr mod n.
In the second case we have

n | (x1 − r)(x1 + r),

but n does not divide either factor x1 − r or x1 + r .
Therefore computation of gcd(x1 + r , n) or gcd(x1 − r , n) must yield factors of n.
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ElGamal CRYPTOSYSTEM

Design: choose a large prime p – (with at least 150 digits).
choose two random integers 1 ≤ q, x < p – where q is a primitive element of Z∗p
calculate y = qx mod p.

Public key: p, q, y ; trapdoor: x
Encryption of a plaintext w : choose a random r and compute

a = qr mod p, b = y r w mod p

Cryptotext: c = (a, b)
(Cryptotext contains indirectly r and the plaintext is ”masked” by multiplying with y r

(and taking modulo p))

Decryption: w = b
ax mod p = ba−xmod p.

Proof of correctness: ax ≡ qrxmod p

b

ax
≡ y r w

ax
≡ qrxw

qrx
≡ w(mod p)

Note: Security of the ElGamal cryptosystem is based on infeasibility of the discrete
logarithm computation.
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SHANKS’ ALGORITHM for DISCRETE ALGORITHM

Let m = d
p

(p − 1)e. The following algorithm computes lgqy in Z∗p.

1 Compute qmjmod p, 0 ≤ j ≤ m − 1.

2 Create list L1 of m pairs (j , qmj mod p), sorted by the second item.

3 Compute yq−i mod p, 0 ≤ i ≤ m − 1.

4 Create list L2 of pairs (i , yq−i mod p) sorted by the second item.

5 Find two pairs, one (j , z) ∈ L1 and second (i , z) ∈ L2

If such a search is successful, then

qmjmod p = z = yq−i mod p

and as the result
lgqy ≡ (mj + i) mod (p − 1).

Therefore
qmj+i ≡ y (mod p)

On the other hand, for any y we can write
lgqy = mj + i ,

For some 0 ≤ i , j ≤ m − 1. Hence the search in the Step 5 of the algorithm has to be
successful.
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BIT SECURITY of DISCRETE LOGARITHM

Let us consider problem to compute Li (y) = i-th least significant bit of lgqy in Z∗p.

Result 1 L1(y) can be computed efficiently.
To show that we use the fact that the set QR(p) has (p − 1)/2 elements.
Let q be a primitive element of Z∗p. Clearly, qa ∈ QR(p) if a is even. Since the elements

q0mod p, q2mod p, . . . , qp−3mod p

are all distinct, we have that

QR(p) = {q2i mod p | 0 ≤ i ≤ (p − 3)/2}

Consequence: y is a quadratic residue iff lgqy is even, that is iff L1(y) = 0.

By Euler’s criterion y is a quadratic residue if y (p−1)/2 ≡ 1 mod p
L1(y) can therefore be computed as follows:

L1(y) = 0 if y (p−1)/2 ≡ 1 mod p;
L1(y) = 1 otherwise

Result 2 Efficient computability of Li (y), i > 1 in Z∗p would imply efficient computability
of the discrete logarithm in Z∗p.
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GROUP VERSION of ElGamal CRYPTOSYSTEM

A group version of discrete logarithm probem

Given a group (G , ◦), α ∈ G , β ∈ {αi | i ≥ 0}. Find

logα β = k such that αk = β

GROUP VERSION of ElGamal CRYPTOSYSTEM

ElGamal cryptosystem can be implemented in any group in which discrete logarithm
problem is infeasible.

Cryptosystem for (G , ◦)
Public key: α, β
Trapdoor: k such that αk = β

Encryption: of a plaintext w and a random integer k

e(w , k) = (y1, y2) where y1 = αk , y2 = w ◦ βk

Decryption: of cryptotext (y1, y2):

d(y1, y2) = y2 ◦ y−k
1

An important special case is that of computation of discrete logarithm in a group of
points of an eliptic curve defined over a finite field.
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WILLIAMS CRYPTOSYSTEM – BASICS

This cryptosystem is similar to RSA, but with number operations performed in a
quadratic field. Complexity of the cryptanalysis of the Williams cryptosystem is
equivalent to factoring.

Consider numbers of the form

α = a + b
√

c

where a, b, c are integers.
If c is fixed, α can be viewed as a pair (a, b).

α1 + α2 = (a1, b1) + (a2, b2) = (a1 + a2, b1 + b2)

α1α2 = (a1, b1) · (a2, b2) = (a1a2+c b1b2, a1b2 + b1a2)

The conjugate α of α of a is defined by

α = a− b
√

c

Auxiliary functions: Xi (α) =
αi + α−i

2

Yi (α) =
b(αi − α−i )

(α− α)

„
=
α− αi

2
√

c

«
Hence

αi = Xi (α) + Yi (α)
√

c
αi = Xi (α)− Yi (α)

√
c
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WILLIAMS CRYPTOSYSTEM – EFFICIENT EXPONENTIATION

Assume now
a2 − cb2 = 1

Then αα = 1 and consequently
XI

2 − cYI
2 = 1

Moreover, for j ≥ i
XI+J = 2XI XJ + XJ−1

YI+J = 2YI XJ + YJ−1

From these and following equations:
XI+J = 2XI XJ+cYI YJ

YI+J = 2YI XJ + XI YJ

we get the recursive formulas:
X2i = Xi

2 + cYi
2 = 2Xi

2 − 1
Y2i = 2Xi Yi

X2i+1 = 2Xi Yi+1 − X1

Y2i+1 = 2Xi Yi+1 − Y1

Consequences: 1. Xi and Yi can be, given i , computed fast.
Remark Since X0 = 1,X1 = a,Xi does not depend on b.
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WHEN is a CRYPTOSYSTEM (perfectly) SECURE?

First question: Is it enough for perfect security of a cryptosystem that one cannot get a
plaintext from a cryptotext?

NO, NO, NO
WHY

For many applications it is crucial that no information about the plaintext could be
obtained.

Intuitively, a cryptosystem is (perfectly) secure if one cannot get any (new)
information about the corresponding plaintext from any cryptotext.

It is very nontrivial to define fully precisely when a cryptosystem is (computationally)
perfectly secure.

It has been shown that perfectly secure cryptosystems have to use randomized
encryptions.
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CRYPTOGRAPHY and RANDOMNESS

Randomness and cryptography are deeply related.

1 Prime goal of any good encryption method is to transform even a highly nonrandom
plaintext into a highly random cryptotext. (Avalanche effect.)

Example Let ek be an encryption algorithm, x0 be a plaintext. And

xi = ek(xi−1), i ≥ 1.

It is intuitively clear that if encryption ek is “cryptographically secure”, then it is
very, very likely that the sequence x0 x1 x2 x3 is (quite) random.

Perfect encryption should therefore produce (quite) perfect (pseudo)randomness.

2 The other side of the relation is more complex. It is clear that perfect randomness
together with ONE-TIME PAD cryptosystem produces perfect secrecy. The price to
pay: a key as long as plaintext is needed.

The way out seems to be to use an encryption algorithm with a pseudo-random
generator to generate a long pseudo-random sequence from a short seed and to use
the resulting sequence with ONE-TIME PAD.

Basic question: When is a pseudo-random generator good enough for
cryptographical purposes?
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SECURE ENCRYPTIONS – BASIC CONCEPTS I

We now start to discuss a very nontrivial question: when is an encryption scheme
computationally perfectly SECURE?

At first, we introduce two very basic technical concepts:

Definition A function f:N → R is a negligible function if for any polynomial p(n) and for
almost all n:

f (n) ≤ 1
p(n)

Definition – computational distinguishibility Let X = {Xn}n∈N and Y = {Yn}n∈N be
probability ensembles such that each Xn and Yn ranges over strings of length n. We say
that X and Y are computationally indistinguishable if for every feasible algorithm A the
difference

dA(n) =| Pr [A(Xn) = 1]− Pr [A(Yn) = 1] |

is a negligible function in n.
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SECURE ENCRYPTIONS – PSEUDORANDOM GENERATORS

In cryptography random sequences can be usually be well enough replaced by
pseudorandom sequences generated by (cryptographically perfect) pseudorandom
generators.

Definition - pseudorandom generator. Let l(n) : N → N be such that l(n) > n for all
n. A (computationally indistinguishable) pseudorandom generator with a stretch function
l , is an efficient deterministic algorithm which on the input of a random n-bit seed
outputs a l(n)-bit sequence which is computationally indistinguishable from any random
l(n)-bit sequence.

Theorem Let f be a one-way function which is length preserving and efficiently
computable, and b be a hard core predicate of f, then

G(s) = b(s) · b(f (s)) · · · b
“

f l(|s|)−1(s)
”

is a (computationally indistinguishable) pseudorandom generator with stretch function
l(n).

Definition A predicate b is a hard core predicate of the function f if b is easy to evaluate,
but b(x) is hard to predict from f(x). (That is, it is unfeasible, given f(x) where x is
uniformly chosen, to predict b(x) substantially better than with the probability 1/2.)

It is conjectured that the least significant bit of the modular squaring function x2 mod n
is a hard-core predicate.

Theorem A (good) pseudorandom generator exists if a one-way function exists.
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CRYPTOGRAPHICALLY STRONG PSEUDO-RANDOM GENERATORS

Fundamental question: when is a pseudo-random generator good enough for
cryptographical purposes?

Basic concept: A pseudo-random generator is called cryptographically strong if the
sequence of bits it produces, from a short random seed, is so good for using with
ONE-TIME PAD cryptosystem, that no polynomial time algorithm allows a cryptanalyst
to learn any information about the plaintext from the cryptotext.

A cryptographically strong pseudo-random generator would therefore provide sufficient
security in a secret-key cryptosystem if both parties agree on some short seed and never
use it twice.
As discussed later: Cryptographically strong pseudo-random generators could provide
perfect secrecy also for public-key cryptography.

Problem: Do cryptographically strong pseudo-random generators exist?

Remark: The concept of a cryptographically strong pseudo-random generator is one of
the key concepts of the foundations of computing.

Indeed, a cryptographically strong pseudo-random generator exists if and only if a
one-way function exists what is equivalent with P 6= UP and what implies P 6= NP.
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CANDIDATES for CRYPTOGRAPHICALLY STRONG
PSEUDO-RANDOM GENERATORS

So far there are only candidates for cryptographically strong pseudo-random generators.

For example, cryptographically strong are all pseudo-random generators that are
unpredictable to the left in the sense that a cryptanalyst that knows the generator and
sees the whole generated sequence except its first bit has no better way to find out this
first bit than to toss the coin.

It has been shown that if integer factoring is intractable, then the so-called BBS
pseudo-random generator, discussed below, is unpredictable to the left.

(We make use of the fact that if factoring is unfeasible, then for almost all quadratic
residues x mod n, coin-tossing is the best possible way to estimate the least significant
bit of x after seeing x2 mod n.)

Let n be a Blum integer. Choose a random quadratic residue x0 (modulo n).

For i ≥ 0 let
xi+1 = xi

2mod n, bi = the least significant bit of xI

For each integer i , let
BBS n,i (x0) = b0 . . . bi−1

be the first i bits of the pseudo-random sequence generated from the seed x0 by the BBS
pseudo-random generator.
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BBS PSEUDO-RANDOM GENERATOR – ANALYSIS

Choose random x , relatively prime to n, compute x0 = x2 mod n
Let xi+1 = xi

2 mod n, and bi be the least significant bit of xi

BBSn,i (x0) = b0 . . . bi−1

Assume that the pseudo-random generator BBS with a Blum integer is not unpredictable
to the left.

Let y be a quadratic residue from Zn
∗.

Compute BBSn,i−1(y) for some i > 1.

Let us pretend that last (i − 1) bits of BBSn,i (x) are actually the first (i − 1) bits of
BBSn,i−1(y), where x is the principal square root of y .

Hence, if the BBS pseudo-random generator is not unpredictable to the left, then there
exists a better method than coin-tossing to determine the least significant bit of x , what
is, as mentioned above, impossible.
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RANDOMIZED ENCRYPTIONS

From security point of view, public-key cryptography with deterministic encryptions has
the following serious drawback:

A cryptoanalyst who knows the public encryption function e k and a cryptotext c can try
to guess a plaintext w , compute e k(w) and compare it with c.

The purpose of randomized encryptions is to encrypt messages, using randomized
algorithms, in such a way that one can prove that no feasible computation on the
cryptotext can provide any information whatsoever about the corresponding plaintext
(except with a negligible probability).

Formal setting: Given: plaintext-space P
cryptotext C
key-space K
random-space R

encryption: e k : P x R → C
decryption: d k : C → P or C → 2Psuch that for any p, r :

d k(e k(p, r)) = p.

d k , e k should be easy to compute.
Given e k , it should be unfeasible to determine d k .
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SECURE ENCRYPTION – FIRST DEFINITION

Definition – semantic security of encryption A cryptographic system is semantically
secure if for every feasible algorithm A, there exists a feasible algorithm B so that for
every two functions

f , h : {0, 1}∗ → {0, 1}n

and all probability ensembles {X n}n∈N , where X n ranges over {0, 1}n

Pr [A(E(Xn), h(Xn)) = f (Xn)] < Pr [B(h(Xn)) = f (Xn)] + µ(n),

where µ is a negligible function.

It can be shown that any semantically secure public-key cryptosystem must use a
randomized encryption algorithm.

RSA cryptosystem is not secure in the above sense. However, randomized versions of
RSA are semantically secure.
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SECURE ENCRYPTIONS – SECOND DEFINITION

Definition A randomized-encryption cryptosystem is polynomial time secure if, for any c
∈ N and sufficiently large s ∈ N (security parameter), any randomized polynomial time
algorithms that takes as input s (in unary) and the public key, cannot distinguish between
randomized encryptions, by that key, of two given messages of length c, with the
probability larger than 1

2
+ 1

sc .

Both definitions are equivalent.

Example of a polynomial-time secure randomized (Bloom-Goldwasser) encryption:

p, q - large Blum primes n = p × q - key
Plaintext-space - all binary strings

Random-space – QRn

Crypto-space - QRn × {0, 1}∗

Encryption: Let w be a t-bit plaintext and x0 a random quadratic residue modulo n.
Compute xt and BBSn,t(x0) using the recurrence

xi+1 = x2
i mod n

Cryptotext: (xt ,w ⊕ BBSn,t(x0))

Decryption: Legal user, knowing p, q, can compute x0 from xt , then BBSn,t(x0), and
finally w.
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HASH FUNCTIONS

Another very simple, fundamental and important cryptographic concept is that of hash
functions.

Hash functions

h : {0, 1}∗ → {0, 1}m; h : {0, 1}n → {0, 1}m, n >> m

map (very) long messages w into short ones, called usually messages digests or hashes or
fingerprints of w, in a way that has important cryptographic properties.

Digital signatures are one of important applications of hash functions.

In most of the digital signature schemes, to be discussed in the next chapter, the length
of a signature is at least as long as of the message being signed. This is clearly a big
disadvantage.

To remedy this situation, signing procedure is applied to a hash of the message, rather
than to the message itself. This is OK provided the hash function has good
cryptographic properties, discussed next.
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PROPERTIES GOOD HASH FUNCTIONS SHOULD HAVE I.

We now derive basic properties cryptographically good hash functions
should have – by analysing several possible attacks on their use.

Attack 1 If Eve gets a valid signature (w,y), where y = sigk(h(w)) and she
would be able to find w’ such that h(w’)=h(w), then also (w’,y), a forgery,
would be a valid signature.

Cryptographically good hash function should therefore have the following
weak collision-free property

Definition 1. Let w be a message. A hash function h is weakly
collision-free for w, if it is computationally infeasible to find a w’ such that
h(w)=h(w’).

prof. Jozef Gruska IV054 6. Public-key cryptosystems, II. Other cryptosystems, security, PRG, hash functions 241/616



PROPERTIES GOOD HASH FUNCTIONS SHOULD HAVE II.

Attack 2 If Eve finds two w and w’ such that h(w’)=h(w), she can ask
Alice to sign h(w) to get signature s and then Eve can create a forgery
(w’,s).

Cryptographically good hash function should therefore have the following
strong collision-free property

Definition 2. A hash function h is strongly collision-free if it is
computationally infeasible to find two elements w 6= w ′ such that
h(w)=h(w’).
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PROPERTIES HASH FUNCTIONS SHOULD HAVE III.

Attack 3 If Eve can compute signature s of a random z, and then she can
find w such that z=h(w), then Eve can create forgery (w,s).

To exclude such an attack, hash functions should have the following
one-wayness property.

Definition 3. A hash function h is one-way if it is computationally
infeasible to find, given z, an w such that h(w)=z.

One can show that if a hash function has strongly collision-free property,
then it has one-wayness property.
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HASH FUNCTIONS and INTEGRITY of DATA

An important use of hash functions is to protect integrity of data in the
following way:

The problem of protecting data of arbitrary length is reduced, using hash
functions, to the problem to protect integrity of the data of fixed (and
small) length – of their fingerprints.

In addition, to send reliably a message w through an unreliable (and cheap)
channel, one sends also its (small) hash h(w) through a very secure (and
therefore expensive) channel.

The receiver, familiar also with the hash function h that is being used, can
then verify the integrity of the message w’ he receives by computing h(w’)
and comparing

h(w) and h(w’) .
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EXAMPLES

Example 1 For a vector a = (a1, . . . , ak) of integers let

H(a) =
kX

i=0

ai mod n

where n is a product of two large integers.

This hash functions does not meet any of the three properties mentioned on the last slide.

Example 2 For a vector a = (a1, . . . , ak) of integers let

H(a) = (
kX

i=0

ai )
2 mod n

This fuction is one-way, but it is not weakly collision-free.
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FINDING COLLISIONS with INVERSION ALGORITHM

Theorem Let h : X → Z be a hash function where X and Z are finite and |X | ≥ 2|Z |. If
there is an inversion algorithm A for h, then there exists randomized algorithm to find
collisions.

Sketch of the proof. One can easily show that the following algorithm

1 Choose a random x ∈ X and compute z=h(x); Compute x1 = A(z);

2 if x1 6= x , then x1 and x collide (under h – success) else failure

has probability of success

p(success) =
1

|X |
X
x∈X

|[x ]| − 1

|[x ]| ≥ 1

2

where, for x ∈ X , [x] is the set of elements having the same hash as x.
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VARIATIONS on BIRTHDAY PARADOX

It is well known that if there are 23 (29) [40] {57} < 100 > people in one
room, then the probability that two of them have the same birthday is
more than 50% (70%)[89%] {99%} < 99.99997% > — this is called a
Birthday paradox.

More generally, if we have n objects and r people, each choosing one object
(so that several people can choose the same object), then if
r ≈ 1.177

√
n(r ≈

√
2nλ), then probability that two people choose the same

object is 50% ((1− e−λ)%).

Another version of the birthday paradox: Let us have n objects and two
groups of r people. If r ≈

√
λn, then probability that someone from one

group chooses the same object as someone from the other group is
(1− e−λ).
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BASIC DERIVATIONS related to BIRTHDAY PARADOX

For probability p̄(n) that all n people in a room have birthday in different days, it holds

p̄(n) =
n−1Y
i=1

„
1− i

365

«
=

Qn−1
i=0 (365− i)

365n
=

365!

365n(365− n)!

This equation expresses the fact for no person to share a birthday, the second person
cannot have the same birthday as the first one, third person cannot have the same
birthday as first two,.....

Probability p(n) that at least two person have the same birthday is therefore

p(n) = 1− p̄(n)

This probability is larger than 0.5 first time for n = 23.
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HASH FUNCTION DOMAIN LOWER BOUND

Birthday paradox imposes a lower bound on the sizes of message digests
(fingerprints)

For example a 40-bit message would be insecure because a collision could
be found with probability 0.5 with just over 2020 random hashes.

Minimum acceptable size of message digest seems to be 128 and therefore
160 are used in such important systems as DSS – Digital Signature
Schemes (standard).
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AN ALMOST GOOD HASH FUNCTION

We show an example of the hash function (so called Discrete Log Hash Function) that
seems to have as the only drawback that it is too slow to be used in practice:

Let p be a large prime such that q = (p−1)
2

is also prime and let α, β be two primitive
roots modulo p. Denote a = logα β (that is β = αa).

h will map two integers smaller than q to an integer smaller than p, for
m = x0 + x1q, 0 ≤ x0, x1 ≤ q − 1 as follows,

h(x0, x1) = h(m) = αx0βx1 (mod p).

To show that h is one-way and collision-free the following fact can be used:

FACT: If we know different messages m1 and m2 such that h(m1) = h(m2), then we can
compute logα β.
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EXTENDING HASH FUNCTIONS

Let h : {0, 1}m → {0, 1}t be a strongly collision-free hash function, where m > t + 1.

We design now a strongly collision-free hash function

h∗ :
∞X

i=m

{0, 1}i → {0, 1}t .

Let a bit string x, |x | = n > m, have decomposition

x = x1‖x2 . . . ‖xk ,

where |xi | = m − t − 1 if i < k and |xk | = m − t − 1− d for some d. (Hence

k =
l n

(m − t − 1)

m
.)

h∗ will be computed as follows:

1 for i=1 to k-1 do yi := xi ;

2 yk := xk‖0d ; yk+1 := binary representation of d ;

3 g1 := h(0t+1‖y1) ;

4 for i=1 to k do gi+1 := h(gi‖1‖yi+1) ;

5 h∗(x) := gk+1.
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HASH FUNCTIONS from CRYPTOSYSTEMS

Let us have computationally secure cryptosystem with plaintexts, keys and cryptotexts
being binary strings of a fixed length n and with encryption function ek .

If

x = x1‖x2‖ . . . ‖xk

is decomposition of x into substrings of length n, g0 is a random string, and

gi = f (xi , gi−1)

for i = 1, . . . , k, where f is a function that “incorporates” encryption function ek of the
cryptosystem, then

h(x) = gk .

For example such good properties have these two functions:

f (xi , gi−1) = egi−1 (xi )⊕ xi

f (xi , gi−1) = egi−1 (xi )⊕ xi ⊕ gi−1
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PRACTICALLY USED HASH FUNCTIONS

A variety of hash functions has been constructed. Very often used hash
functions are MD4, MD5 (created by Rivest in 1990 and 1991 and
producing 128 bit message digest).

NIST even published, as a standard, in 1993, SHA (Secure Hash
Algorithm) – producing 160 bit message digest – based on similar ideas as
MD4 and MD5.

A hash function is called secure if it is strongly collision-free.

One of the most important cryptographic results of the last years was due
to the Chinese Wang who has shown that MD4 is not cryptographically
secure.
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RANDOMIZED VERSION of RSA-LIKE CRYPTOSYSTEM

The scheme works for any trapdoor function (as in case of RSA),

f : D → D,D ⊂ {0, 1}n,

for any pseudorandom generator

G : {0, 1}k → {0, 1}l , k << l

and any hash function

h : {0, 1}l → {0, 1}k ,

where n = l + k. Given a random seed s ∈ {0, 1}k as input, G generates a pseudorandom
bit-sequence of length l.

Encryption of a message m ∈ {0, 1}l is done as follows:

1 A random string r ∈ {0, 1}k is chosen.

2 Set x = (m ⊕ G(r))‖(r ⊕ h(m ⊕ G(r))). (If x /∈ D go to step 1.)

3 Compute encryption c = f(x) – length of x and of c is n.

Decryption of a cryptotext c.

Compute f −1(c) = a‖b, |a| = l and |b| = k.

Set r = h(a)⊕ b and get m = a⊕ G(r).

Comment Operation ”‖” stands for a concatenation of strings.
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BLOOM-GOLDWASSER CRYPTOSYSTEM ONCE MORE

Private key: Blum primes p and q.

Public key: n = pq.

Encryption of x ∈ {0, 1}m.

1 Randomly choose s0 ∈ {0, 1, . . . , n}.
2 For I = 1, 2, . . . , m + 1 compute

si ← s2
i−1 mod n

and σi = lsb(si ).

The cryptotext is (sm+1, y), where y = x ⊕ σ1σ2 . . . σm.

Decryption: of the cryptotext (r, y):

Let d = 2−m modφ(n)).

Let s1 = rd mod n.

For i = 1, . . . , m, compute σi = lsb(si ) and si+1 ← s2
i mod n

The plaintext x can then be computed as y ⊕ σ1σ2 . . . σm.
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Decryption: of the cryptotext (r, y):

Let d = 2−m modφ(n)).

Let s1 = rd mod n.

For i = 1, . . . , m, compute σi = lsb(si ) and si+1 ← s2
i mod n

The plaintext x can then be computed as y ⊕ σ1σ2 . . . σm.
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GLOBAL GOALS of CRYPTOGRAPHY

Cryptosystems and encryption/decryption techniques are only one part of modern
cryptography.

General goal of modern cryptography is construction of schemes which are robust against
malicious attempts to make these schemes to deviate from their prescribed functionality.

The fact that an adversary can design its attacks after the cryptographic scheme has
been specified, makes design of such cryptographic schemes very difficult – schemes
should be secure under all possible attacks.

In the next chapters several of such most important basic functionalities and design of
secure systems for them will be considered. For example: digital signatures, user and
message authentication,. . .

Moreover, also such basic primitives as zero-knowledge proofs, needed to deal with
general cryptography problems will be presented and discussed.

We will also discuss cryptographic protocols for a variety of important applications. For
example for voting, digital cash,. . .
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BLUM INTEGERS

An integer n is a Blum integer if n = pq, where p, q are
primes congruent 3 modulo 4, that is primes of the
form 4k + 3 for some integer k .

If n is a Blum integer, then each x ∈ QR(n) has 4
square roots and exactly one of them is in QR(n) – so
called principal square root of x modulo n.

Function f : QR(n)→ QR(n) defined by
f (x) = x2 mod n is a permutation.
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Part VII

Digital signatures



CHAPTER 7: DIGITAL SIGNATURES

Digital signatures are one of the most important inventions/applications of modern
cryptography.

The problem is how can a user sign a message such that everybody (or the intended
addressee only) can verify the digital signature and the signature is good enough also for
legal purposes.

Example: Assume that each user A uses a public-key cryptosystem (eA,dA).

A way to sign a message w by a user A, so that any user can verify the signature:

dA(w)

A way to sign a message w by a user A so that only user B can verify the signature:

eB(dA(w))

Example Assume Alice succeeds to factor the integer Bob used, as modulus, to sign his
will, using RSA, 20 years ago. Even if the key has already expired, Alice can rewrite
Bob’s will, leaving fortune to her, and date it 20 years ago.

Moral: It may pay off to factor a single integers using many years of many computers
power.
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DIGITAL SIGNATURES - BASIC GOALS

Digital signatures should be such that each user should be able to verify signatures of
other users, but that should give him/her no information how to sign a message on
behalf of other users.

An important difference from a handwritten signature is that digital signature of a
message is always intimately connected with the message, and for different messages is
different, whereas the handwritten signature is adjoined to the message and always looks
the same.

Technically, a digital signature signing is performed by a signing algorithm and a digital
signature is verified by a verification algorithm.

A copy of a digital (classical) signature is identical (usually distinguishable) to (from) the
origin. A care has therefore to be taken that digital signatures are not misused.

This chapter contains some of the main techniques for design and verification of digital
signatures (as well as some possible attacks on them).
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DIGITAL SIGNATURES - OBSERVATION

Can we make digital signatures by digitalizing our usual
signature and attaching them to the messages
(documents) that need to be signed?

No, because such signatures could be easily removed and
attached to some other documents or messages.

Key observation: Digital signatures have to depend not
only on the signer, but also on the message that is being
signed.
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A SCHEME of DIGITAL SIGNATURE SYSTEMS – SIMPLIFIED
VERSION

A digital signature system (DSS) consists of:

P - the space of possible plaintexts (messages).

S - the space of possible signatures.

K - the space of possible keys.

For each k ∈ K there is a signing algorithm sigk and a corresponding verification
algorithm verk such that

sigk : P → S .

verk : P ⊗ S → {true, false}
and

verk(w , s) =

(
true if s = sigk(w); ,

false otherwise.

Algorithms sigk and verk should be computable in polynomial time.

Verification algorithm can be publicly known; signing algorithm (actually only its key)
should be kept secret
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DIGITAL SIGNATURE SCHEMES I

Digital signature schemes are basic tools for authentication and non-repudiation of
messages. A digital signature scheme allows anyone to verify signature of any sender S
without providing any information how to generate signatures of S.

A Digital Signature Scheme (M, S, Ks , Kv ) is given by:

M - a set of messages to be signed

S - a set of possible signatures

Ks - a set of private keys for signing

Kv - a set of public keys for verification

Moreover, it is required that:

For each k from Ks , there exists a single and easy to compute signing mapping

sigk : {0, 1}∗ ×M → S

For each k from Kv there exists a single and easy to compute verification mapping

verk : M × S → {true, false}
such that the following two conditions are satisfied:
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DIGITAL SIGNATURES SCHEMES II

Correctness:

For each message m from M and public key k in Kv , it holds

verk(m, s) = true

if there is an r from {0, 1}∗ such that

s = sigl(r, m)

for a private key l from Ks corresponding to the public key k.

Security:

For any w from M and k in Kv , it is computationally infeasible, without the knowledge
of the private key corresponding to k, to find a signature s from S such that

verk(w, s) = true.
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A COMMENT ON DIGITAL SIGNATURE SCHEMES

Sometimes it is said that a digital signature scheme
contains also a key generation algorithm that selects
uniformly and randomly a secret key (from a set of
potential secret keys) and outputs this secret key and the
corresponding private key.
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ATTACK MODELS on DIGITAL SIGNATURES

Basic attack models

KEY-ONLY ATTACK : The attacker is only given the
public verification key.

KNOWN SIGNATURES ATTACK : The attacker is given
valid signatures for several messages known but
not chosen by the attacker.

CHOSEN SIGNATURES ATTACK : The attacker is given
valid signatures for sever al messages chosen by
the attacker.
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BASIC ATTACKS on DIGITAL SIGNATURES

Total break of a signature scheme: The adversary manages
to recover the secret key from the public key.

Universal forgery: The adversary can derive from the
public key an algorithm which allows to forge the signature
of any message.

Selective forgery: The adversary can derive from the public
key a method to forge signatures of selected messages
(where selection was made prior the knowledge of the
public key).

Existential forgery: The adversary is able to create from
the public key a valid signature of a message m (but has
no control for which m).
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A DIGITAL SIGNATURE of one BIT

Let us start with a very simple but much illustrating (though non-practical) example how
to sign a single bit.

Design of the signature scheme:

A one-way function f(x) is chosen.

Two integers k0 and k1 are chosen and kept secret by the signer, and three items

f, (0, s0), (1, s1)

are made public, where

s0 = f (k0), s1 = f (k1)

Signature of a bit b:

(b, kb).

Verification of such a signature

sb = f (kb)

SECURITY?
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RSA SIGNATURES and ATTACKS on them

Let us have an RSA cryptosystem with encryption and decryption exponents e and d and
modulus n.

Signing of a message w :

s = (w , σ), where σ = wd mod n

Verification of a signature s = (w , σ):

w = σe mod n?

Attacks

It might happen that Bob accepts a signature not produced by Alice. Indeed, let
Eve, using Alice’s public key, compute w e and say that (w e , w) is a message signed
by Alice.

Everybody verifying Alice’s signature gets w e = w e .

Some new signatures can be produced without knowing the secret key.

Indeed, is σ1 and σ2 are signatures for w1 and w2, then σ1σ2 and σ−1
1 are signatures

for w1w2 and w−1
1 .
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ENCRYPTIONS versus SIGNATURES

Let each user U use a cryptosystem with encryption and decryption algorithms: eU , dU

Let w be a message

PUBLIC-KEY ENCRYPTIONS

Encryption:
Decryption:

eU(w)
dU (eU(w))

PUBLIC-KEY SIGNATURES

Signing:
Verification of the signature:

dU(w)
eU (dU(w))
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FROM PKC to DSS - again

Any public-key cryptosystem in which the plaintext and cryptotext space are the same,
can be used for digital signature.

Signing of a message w by a user A so that any user can verify the signature:

dA(w).

Signing of a message w by a user A so that only user B can verify the signature:

eB(dA(w)).

Sending a message w and a signed message digest of w obtained by using a (standard)
hash function h:

(w , dA(h(w))).

If only signature (but not the encryption of the message) are of importance, then it
suffices that Alice sends to Bob

(w , dA(w)).
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Signing of a message w by a user A so that only user B can verify the signature:

eB(dA(w)).

Sending a message w and a signed message digest of w obtained by using a (standard)
hash function h:

(w , dA(h(w))).

If only signature (but not the encryption of the message) are of importance, then it
suffices that Alice sends to Bob

(w , dA(w)).
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ElGamal SIGNATURES

Design of the ElGamal digital signature system: choose: prime p, integers
1 ≤ q ≤ x ≤ p, where q is a primitive element of Z∗p ;

Compute: y = qx mod p

key K = (p, q, x, y)

public key (p, q, y) - trapdoor: x

Signature of a message w: Let r ∈ Z∗p−1 be randomly chosen and kept secret.

sig(w, r) = (a, b),

where a = qr mod p

and b = (w − xa)r−1 (mod (p − 1)).

Verification: accept a signature (a,b) of w as valid if

y aab ≡ qw (mod p)

(Indeed: y aab ≡ qaxqrb ≡ qax+w−ax+k(p−1) ≡ qw (mod p))
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ElGamal SIGNATURE - EXAMPLE

Example

choose: p = 11, q = 2, x = 8

compute: y = 28 mod 11 = 3

w = 5 is signed as (a,b), where a = qr mod p,w = xa + rb mod (p − 1)

choose r = 9 – (this choice is O.K. because gcd(9, 10) = 1)

compute a = 29 mod 11 = 6

solve equation: 5 ≡ 8 · 6 + 9b (mod 10)

that is 7 ≡ 9b (mod 10) ⇒ b=3

signature: (6, 3)
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SECURITY of ElGamal SIGNATURES

Let us analyze several ways an eavesdropper Eve can try to forge ElGamal signature
(with x - secret; p, q and y = qx mod p - public):

sig(w, r) = (a, b);

where r is random and a = qr mod p; b = (w − xa)r−1 (mod p − 1).

1 First suppose Eve tries to forge signature for a new message w, without knowing x.
If Eve first chooses a value a and tries to find the corresponding b, it has to compute
the discrete logarithm

lgaqwy−a,

(because ab ≡ qr(w−xa)r−1 ≡ qw−xa ≡ qwy−a) what is infeasible.
If Eve first chooses b and then tries to find a, she has to solve the equation

yaab ≡ qxaqrb ≡ qw (mod p).

It is not known whether this equation can be solved for any given b efficiently.

2 If Eve chooses a and b and tries to determine such w that (a,b) is signature of w,
then she has to compute discrete logarithm

lgqy aab.

Hence, Eve can not sign a “random” message this way.
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FORGING and MISUSING of ElGamal SIGNATURES

There are ways to produce, using ElGamal signature scheme, some valid forged
signatures, but they do not allow an opponent to forge signatures on messages of his/her
choice.

For example, if 0 ≤ i , j ≤ p − 2 and gcd(j, p - 1) = 1, then for

a = qi y j mod p; b = −aj−1 mod (p − 1); w = −aij−1 mod (p − 1)

the pair

(a, b) is a valid signature of the message w.

This can be easily shown by checking the verification condition.

There are several ways ElGamal signatures can be broken if they are not used carefully
enough.

For example, the random r used in the signature should be kept secret. Otherwise the
system can be broken and signatures forged. Indeed, if r is known, then x can be
computed by

x = (w − rb)a−1 mod (p − 1)

and once x is known Eve can forge signatures at will.

Another misuse of the ElGamal signature system is to use the same r to sign two
messages. In such a case x can be computed and the system can be broken.
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From ElGamal to DSA (DIGITAL SIGNATURE STANDARD)

DSA, accepted in 1994, is a modification of ElGamal digital signature scheme. It was
proposed in August 1991 and adopted in December 1994.

Any proposal for digital signature standard has to go through a very careful scrutiny.
Why?

Encryption of a message is usually done only once and therefore it usually suffices to use
a cryptosystem that is secure at the time of the encryption.

On the other hand, a signed message could be a contract or a will and it can happen that
it will be needed to verify a signature many years after the message is signed.

Since ElGamal signature is no more secure than discrete logarithm, it is necessary to use
large p, with at least 512 bits.

However, with ElGamal this would lead to signatures with at least 1024 bits what is too
much for such applications as smart cards.
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DIGITAL SIGNATURE STANDARD I

In December 1994, on the proposal of the National Institute of Standards and
Technology, the following Digital Signature Algorithm (DSA) was accepted as a standard.

Design of DSA

1 The following global public key components are chosen:
p - a random l-bit prime, 512 ≤ l ≤ 1024, l = 64k.
q - a random 160-bit prime dividing p -1.
r = h(p−1)/q mod p, where h is a random primitive element of Zp , such that r > 1,
r 6= 1 (observe that r is a q-th root of 1 mod p).

2 The following user’s private key component is chosen:
x - a random integer (once), 0 < x < q,

3 The following value is also made public
y = rx mod p.

4 Key is K = (p, q, r, x, y)
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DIGITAL SIGNATURE STANDARD II

Signing and Verification

Signing of a 160-bit plaintext w

choose random 0 < k < q

compute a = (r k mod p) mod q

compute b = k−1(w + xa) mod q where kk−1 ≡ 1 (mod q)

signature: sig(w, k) = (a, b)

Verification of signature (a, b)

compute z = b−1 mod q

compute u1 = wz mod q, u2 = az mod q

verification:

verK (w , a, b) = true ⇔ (ru1 yu2 mod p) mod q = a
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From ElGamal to DSA - II

DSA is a modification of ElGamal digital signature scheme. It was proposed in August
1991 and adopted in December 1994.

Since ElGamal signature is no more secure than discrete logarithm, it is necessary to use
large p, with at least 512 bits.

However, with ElGamal this would lead to signatures with at least 1024 bits what is too
much for such applications as smart cards.

In DSA a 160 bit message is signed using 320-bit signature, but computation is done
modulo with 512-1024 bits.

Observe that y and a are also q-roots of 1. Hence any exponents of r,y and a can be
reduced modulo q without affecting the verification condition.
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Fiat-Shamir SIGNATURE SCHEME

Choose primes p, q, compute n = pq and choose: as a public key integers v1, . . . , vk and

compute, as a secret key, s1, . . . , sk , si =
q

v−1
i mod n.

Protocol for Alice to sign a message w:

1 Alice chooses (as a security parameter) an integer t, t random integers
1 ≤ r1, . . . , rt < n, and computes xi = r 2

i mod n, 1 ≤ i ≤ t.
2 Alice uses a publicly known hash function h to compute H = h(wx1x2 . . . xt) and

then uses the first kt bits of H, denoted as bij , 1 ≤ i ≤ t, 1 ≤ j ≤ k as follows.
3 Alice computes y1, . . . , yt

yi = ri

kY
j=1

s
bij

j mod n

4 Alice sends to Bob w, all bij , all yi and also h {Bob already knows Alice’s public key
v1, . . . , vk}

5 Bob computes z1, . . . , zk

Zi = y 2
i

kY
j=1

v
bij

j mod n = r 2
i

kY
j=1

(v−1
j )bij

kY
j=1

v
bij

j = r 2
i = xi

and verifies that the first k × t bits of h(wx1x2 . . . xt) are the bij values that Alice
has sent to him.

Security of this signature scheme is 2−kt .

Advantage over the RSA-based signature scheme: only about 5% of modular
multiplications are needed.
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SAD STORY

Alice and Bob got to jail - and, unfortunately, to

different jails.

Walter, the warden, allows them to communicate

by network, but he will not allow their messages to

be encrypted.

Problem: Can Alice and Bob set up a subliminal
channel, a covert communication channel between
them, in full view of Walter, even though the
messages themselves that they exchange contain
no secret information?
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Ong-Schnorr-Shamir SUBLUMINAL CHANNEL SCHEME

Story Alice and Bob are in different jails. Walter, the warden, allows them to
communicate by network, but he will not allow messages to be encrypted. Can they set
up a subliminal channel, a covert communication channel between them, in full view of
Walter, even though the messages themselves contain no secret information?

Yes. Alice and Bob create first the following communication scheme:

They choose a large n and an integer k such that gcd(n, k) = 1.

They calculate h = k−2 mod n = (k−1)2 mod n.

Public key: h, n

Trapdoor information: k

Let secret message Alice wants to send be w (it has to be such that gcd(w, n) =1)
Denote a harmless message she uses by w’ (it has to be such that gcd(w ’,n) = 1)

Signing by Alice:

S1 = 1
2
· ( w′

w
+ w) mod n

S2 = k
2
· ( w′

w
− w) mod n

Signature: (S1, S2). Alice then sends to Bob (w’, S1, S2)

Signature verification method for Walter: w’ = S2
1 − hS2

2 ( mod n)

Decryption by Bob: w =
w ′

(S1 + k−1S2)
mod n
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ONE-TIME SIGNATURES

Lamport signature scheme shows how to construct a signature scheme for one use only -
from any one-way function.

Let k be a positive integer and let P = {0, 1}k be the set of messages.

Let f: Y → Z be a one-way function where Y is a set of ”signatures”.

For 1 ≤ i ≤ k, j = 0,1 let yij ∈ Y be chosen randomly and zij = f (yij).

The key K consists of 2k y’s and z’s. y’s are secret, z’s are public.

Signing of a message x = x1 . . . xk ∈ {0, 1}k

sig(x1 . . . xk) = (y1,x1, . . . , yk,xk) = (a1, . . . , ak) - notation

and

verK (x1 . . . xk , a1, . . . , ak) = true ⇔ f (ai ) = zi,xi , 1 ≤ i ≤ k

Eve cannot forge a signature because she is unable to invert one-way functions.

Important note: Lamport signature scheme can be used to sign only one message.
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SIGNING of FINGERPRINTS

Signature schemes presented so far allow to sign only ”short” messages. For example,
DSS is used to sign 160 bit messages (with 320-bit signatures).

A naive solution is to break long message into a sequence of short ones and to sign each
block separately.

Disadvantages: signing is slow and for long signatures integrity is not protected.

The solution is to use a fast public hash function h which maps a message of any length
to a fixed length hash. The hash is then signed.

Example:
message
message digest
El Gamal signature

w
z = h (w)
y = sig(z)

arbitrary length
160bits
320bits

If Bob wants to send a signed message w he sends (w, sig(h(w)).
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TIMESTAMPING

There are various ways that a digital signature can be compromised.

For example: if Eve determines the secret key of Bob, then she can forge signatures of
any Bob’s message she likes. If this happens, authenticity of all messages signed by Bob
before Eve got the secret key is to be questioned.

The key problem is that there is no way to determine when a message was signed.

A timestamping protocol should provide a proof that a message was signed at a certain
time.

In the following pub denotes some publicly known information that could not be
predicted before the day of the signature (for example, stock-market data).

Timestamping by Bob of a signature on a message w, using a hash function h.

Bob computes z = h(w);

Bob computes z’ = h(z ‖ pub); – { ‖} denotes concatenation

Bob computes y = sig(z’);

Bob publishes (z, pub, y) in the next days’s newspaper.

It is now clear that signature could not be done after the triple (z, pub, y) was published,
but also not before the date pub was known.
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BLIND SIGNATURES

The basic idea is that Sender makes Signer to sign a message m without Signer knowing
m, therefore blindly – this is needed in e-commerce.

Blind signing can be realized by a two party protocol, between the Sender and the Signer,
that has the following properties.

In order to sign (by a Signer) a message m, the Sender creates, using a blinding
procedure, from the message m a new message m∗ from which m can not be
obtained without knowing a secret, and sends m∗ to the Signer.

The Signer signs the message m∗ to get a signature sm∗ (of m∗) and sends sm∗ to
the Sender. The signing is to be done in such a way that the Sender can afterwards
compute, using an unblinding procedure, from Signer’s signature sm∗ of m∗ – the
signer signature sm of m.
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Chaum’s BLIND SIGNATURE SCHEME

This blind signature protocol combines RSA with blinding/unblinding features.

Bob’s RSA public key is (n, e) and his private key is d .

Let m be a message, 0 < m < n,

PROTOCOL:

Alice chooses a random 0 < k < n with gcd(n, k) = 1.

Alice computes m∗ = mke (mod n) and sends it to Bob (this way Alice blinds the
message m).

Bob computed s∗ = (m∗)d (mod n) and sends s* to Alice (this way Bob signs the
blinded message m*).

Alice computes s = k−1s∗(mod n) to obtain Bob’s signature md of m (Alice
performs unblinding of m∗).

Verification is equivalent to that of the RSA signature scheme.
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FAIL-THEN-STOP SIGNATURES

They are signatures schemes that use a trusted authority and provide ways to prove, if it
is the case, that a powerful enough adversary is around who could break the signature
scheme and therefore its use should be stopped.

The scheme is maintained by a trusted authority that chooses a secret key for each
signer, keeps them secret, even from the signers themselves, and announces only the
related public keys.

An important idea is that signing and verification algorithms are enhanced by a so-called
proof-of-forgery algorithm. When the signer sees a forged signature he is able to compute
his secret key and by submitting it to the trusted authority to prove the existence of a
forgery and this way to achieve that any further use of the signature scheme is stopped.

So called Heyst-Pedersen Scheme is an example of a Fail-Then-Stop signature Scheme.
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DIGITAL SIGNATURES with ENCRYPTION and RESENDING

1 Alice signs the message: sA(w).

2 Alice encrypts the signed message: eB(sA(w)).

3 Bob decrypts the signed message: dB(eB(sA(w))) = sA(w).

4 Bob verifies the signature and recovers the message vA(sA(w)) = w .

Resending the message as a receipt

5 Bob signs and encrypts the message and sends to Alice eA(sB(w)).

6 Alice decrypts the message and verifies the signature.

Assume now: vx = ex , sx = dx for all users x.
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A SURPRISING ATTACK to PREVIOUS SCHEME

1 Mallot intercepts eB(sA(w)).

2 Later Mallot sends eB(sA(w)) to Bob pretending it is
from him (from Mallot).

3 Bob decrypts and “verifies” the message by computing

eM(dB(eB(dA(w)))) = eM(dA(w)) – a garbage.

4 Bob goes on with the protocol and returns to Mallot
the receipt:

eM(dB(eM(dA(w))))

5 Mallot can then get w.

Indeed, Mallot can compute
eA(dM(eB(dM(eM(dB(eM(dA(w)))))))) = w.
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A MAN-IN-THE-MIDDLE ATTACK

Consider the following protocol:

1 Alice sends Bob the pair (eB(eB(w)||A),B) to B.

2 Bob uses dB to get A and w, and acknowledges by sending the pair
(eA(eA(w)||B),A) to Alice.

(Here the function e and d are assumed to operate on strings and identificators A,B, . . .
are strings.

What can an active eavesdropper C do?

C can learn (eA(eA(w)||B),A) and therefore eA(w ′),w ′ = eA(w)||B.

C can now send to Alice the pair (eA(eA||w ′)||C),A).

Alice, thinking that this is the step 1 of the protocol, acknowledges by sending the
pair (eC (eC (w ′)||A),C) to C.

C is now able to learn w’ and therefore also eA(w).

C now sends to Alice the pair (eA(eA(w)||C),A).

Alice acknowledges by sending the pair (eC (eC (w)||A),C).

C is now able to learn w.
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PROBABILISTIC SIGNATURES SCHEMES - PSS

Let us have integers k, l, n such that k + l < n, a permutation

f : D → D,D ⊂ {0, 1}n,

a pseudorandom bit generator

G : {0, 1}l → {0, 1}k × {0, 1}n−(l+k),w → (G1(w),G2(w))

and a hash function

h : {0, 1}∗ → {0, 1}l .

The following PSS scheme is applicable to messages of arbitrary length.

Signing: of a message w ∈ {0, 1}∗.
1 Choose random r ∈ {0, 1}k and compute m = h(w‖r).

2 Compute G(m) = (G1(m),G2(m)) and y = m‖(G1(m)⊕ r)‖G2(m).

3 Signature of w is σ = f −1(y).

Verification of a signed message (w , σ).

Compute f (σ) and decompose f (σ) = m‖t‖u, where |m| = l , |t| = k and
|u| = n − (k + l).

Compute r = t ⊕ G1(m).

Accept signature σ if h(w‖r) = m and G2(m) = u; otherwise reject it.
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Diffie-Hellman PUBLIC ESTABLISHMENT of SECRET KEYS - rpetition

Main problem of the secret-key cryptography: a need to make a secure distribution
(establishment) of secret keys ahead of transmissions.

Diffie+Hellman solved this problem in 1976 by designing a protocol for secure key
establishment (distribution) over public channels.

Diffie-Hellman Protocol: If two parties, Alice and Bob, want to create a common secret
key, then they first agree, somehow, on a large prime p and a q<p of large order in Z∗p
and then they perform, through a public channel, the following activities.

Alice chooses, randomly, a large 1 ≤ x < p − 1 and computes

X = qx mod p.

Bob also chooses, again randomly, a large 1 ≤ y < p − 1 and computes

Y = qy mod p.

Alice and Bob exchange X and Y, through a public channel, but keep x, y secret.

Alice computes Y x mod p and Bob computes X y mod p and then each of them has
the key

K = qxy mod p.

An eavesdropper seems to need, in order to determine x from X, q, p and y from Y, q,
p, a capability to compute discrete logarithms, or to compute qxy from qx and qy , what
is believed to be infeasible.
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AUTHENTICATED Diffie-Hellman KEY EXCHANGE

Let each user U has a signature algorithm sU and a verification algorithm vU .

The following protocol allows Alice and Bob to establish a key K to use with an
encryption function eK and to avoid the man-in-the-middle attack.

1 Alice and Bob choose large prime p and a generator q ∈ Z∗p .

2 Alice chooses a random x and Bob chooses a random y.

3 Alice computes qx mod p, and Bob computes qy mod p.

4 Alice sends qx to Bob.

5 Bob computes K = qxy mod p.

6 Bob sends qy and eK (sB(qy , qx)) to Alice.

7 Alice computes K = qxy mod p.

8 Alice decrypts eK (sB(qy , qx)) to obtain sB(qy , qx).

9 Alice verifies, using an authority, that vB is Bob’s verification algorithm.

10 Alice uses vB to verify Bob’s signature.

11 Alice sends eK (sA(qx , qy )) to Bob.

12 Bob decrypts, verifies vA, and verifies Alice’s signature.

An enhanced version of the above protocol is known as Station-to-Station protocol.
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THRESHOLD DIGITAL SIGNATURES

The idea of a (t+1, n) threshold signature scheme is to
distribute the power of the signing operation to (t+1)
parties out of n.

A (t+1) threshold signature scheme should satisfy two
conditions.

Unforgeability means that even if an adversary corrupts t
parties, he still cannot generate a valid signature.

Robustness means that corrupted parties cannot prevent
uncorrupted parties to generate signatures.

Shoup (2000) presented an efficient, non-interactive,
robust and unforgeable threshold RSA signature schemes.

There is no proof yet whether Shoup’s scheme is provably
secure.
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HISTORY of DIGITAL SIGNATURES

In 1976 Diffie and Hellman were first to describe the
idea of a digital signature scheme. However, they only
conjectured that such schemes may exist.
In 1977 RSA was invented that could be used to
produce a primitive (not secure enough) digital
signatures.
The first widely marketed software package to offer
digital signature was Lotus Notes 1.0, based on RSA
and released in 1989
ElGamal diital signatures were invented in 1984.
In 1988 Goldwasser, Micali and Rivest were first to
rigorously define (perfect0 security of digital signature
schemes.
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APPENDIX to CHAPTER 7
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SPECIAL TYPES of DIGITAL SIGNATURES

Append-Only Signatures (AOS) have the property that any party given an AOS
signature sig [M1] on message M1 can compute sig [M1‖M2] for any message M2.
(Such signatures are of importance in network applications, where users need to
delegate their shares of resources to other users).

Identity-Based signatures (IBS) at which the identity of the signer (i.e. her email
address) plays the role of her public key. (Such schemes assume the existence of a
TA holding a master public-private key pair used to assign secret keys to users based
on their identity.)

Hierarchically Identity-Based Signatures are such IBS in which users are arranged in
a hierarchy and a user at any level at the hierarchy can delegate secret keys to her
descendants based on their identities and her own secret keys.
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GROUP SIGNATURES

At Group Signatures (GS) a group member can compute a signature that reveals
nothing about the signer’s identity, except that he is a member of the group. On the
other hand, the group manager can always reveal the identity of the signer.

Hierarchical Group Signatures (HGS) are a generalization of GS that allow multiple
group managers to be organized in a tree with the signers as leaves. When verifying
a signature, a group manager only learns to which of its subtrees, if any, the signer
belongs.
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UNCONDITIONALLY SECURE DIGITAL SIGNATURES

Any of the digital signature schemes introduced so far can be forged by anyone having
enough computer power.

Chaum and Roijakkers (2001) developed, for any fixed set of users, an unconditionally
secure signature scheme with the following properties:

Any participant can convince (except with exponentially small probability) any other
participant that his signature is valid.

A convinced participant can convince any other participant of the signature’s
validity, without interaction with the original signer.
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BIRTHDAY PARADOX ATTACK on DIGITAL SIGNATURE

Assume Alice uses a hash function that produces 50 bits.

Fred, who wants Alice to sign a fraudulent contract, find 30 places in a
good document, where he can make change in the document (adding a
coma, space, . . . ) such that Alice would not notice that. By choosing at
each place whether to make or not a change, he can produce 230

documents essentially identical with the original good document.

Similarly, Fred makes 230 changes of the fraudulent document.

Considering birthday problem with n = 250, r = 230 we get that r =
√
λn,

with λ = 210 and therefore with probability 1− e−1024 ≈ 1 there is a
version of the good document that has the same hash as a version of the
fraudulent document.

Finding a match, Fred can ask Alice to sign a good version and then
append the signature to the fraudulent contract.
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BREAKING CRYPTOSYSTEMs and DIGITAL SIGNATURES

We say that an encryption system has
been broken if one can determine a
plaintext from a cryptotext (often).

A digital signature system is considered
as broken if one can (often) forge
signatures.

In both cases, a more ambitious goal is
to find the private key.
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RSA BASED SIGNATURES - CHOICE of PUBLIC EXPONENT

The common choice of a public exponent e is

3

or

216 + 1

When the value 216 + 1 is used, signature verification requires 17 multiplications, as
opposed to roughly 1000 when a random e ≤ O(n) is used.
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UNDENIABLE SIGNATURES I

Undeniable signatures are signatures that have two properties:

A signature can be verified only in the cooperation with the signer – by means of a
challenge-and-response protocol.

The signer cannot deny a correct signature. To achieve that, steps are a part of the
protocol that force the signer to cooperate – by means of a disavowal protocol – this
protocol makes possible to prove the invalidity of a signature and to show that it is a
forgery. (If the signer refuses to take part in the disavowal protocol, then the
signature is considered to be genuine.)

Undeniable signature protocol of Chaum and van Antwerpen (1989), discussed next, is
again based on infeasibility of the computation of the discrete logarithm.
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UNDENIABLE SIGNATURES II

Undeniable signatures consist of:

Signing algorithm

Verification protocol, that is a challenge-and-response protocol.

In this case it is required that a signature cannot be verified without a cooperation
of the signer (Bob).

This protects Bob against the possibility that documents signed by him are
duplicated and distributed without his approval.

Disavowal protocol, by which Bob can prove that a signature is a forgery.

This is to prevent Bob from disavowing a signature he made at an earlier time.

Chaum-van Antwerpen undeniable signature schemes (CAUSS)

p, r are primes p = 2r + 1

q ∈ Z∗p is of order r;

1 ≤ x ≤ r − 1, y = qx mod p;

G is a multiplicative subgroup of Z∗p of order q (G consists of quadratic residues
modulo p).

Key space: K = {p, q, x , y}; p, q, y are public, x ∈ G is secret.

Signature: s = sigK (w) = w x mod p.
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FOOLING and DISALLOWED PROTOCOL I

Since it holds:

Theorem If s 6= w x mod p, then Alice will accept s as a valid signature for w with
probability 1/r.

Bob cannot fool Alice except with very small probability and security is unconditional
(that is, it does not depend on any computational assumption).

Disallowed protocol

Basic idea: After receiving a signature s Alice initiates two independent and unsuccessful
runs of the verification protocol. Finally, she performs a “consistency check” to
determine whether Bob has formed his responses according to the protocol.

Alice chooses e1, e2 ∈ Z∗r .

Alice computes c = se1y e2 mod p and sends it to Bob.

Bob computes d = cx(−1) mod r mod p and sends it to Alice.

Alice verifies that d 6= w e1qe2 (mod p).

Alice chooses f1, f2 ∈ Z∗r .

Alice computes C = s f 1y f 2 mod p and sends it to Bob.

Bob computes D = C x(−1) mod r mod p and sends it to Alice.
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FOOLING and DISALLOWED PROTOCOL II

Alice verifies that D 6= w f 1qf 2 (mod p).

Alice concludes that s is a forgery iff

(dq−e2)f 1 ≡ (Dq−f 2)e1 (mod p).

CONCLUSIONS

It can be shown:

Bob can convince Alice that an invalid signature is a forgery. In order to do that it is
sufficient to show that if s 6= w x , then

(dq−e2)f 1 ≡ (Dq−f 2)e1 (mod p)

what can be done using congruency relation from the design of the signature system and
from the disallowed protocol.

Bob cannot make Alice believe that a valid signature is a forgery, except with a very
small probability.
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Part VIII

Elliptic curves cryptography and factorization



ELLIPTIC CURVE CRYPTOGRAPHY and FACTORIZATION

Cryptography based on manipulation of points of so called elliptic curves is currently
getting momentum and has a tendency to replace public key cryptography based on the
infeasibility of factorization of integers, or on infeasibility of the computation of discrete
logarithms.

For example, the US-government has recommended to its governmental institutions to
use mainly elliptic curve cryptography - ECC.

The main advantage of elliptic curves cryptography is that to achieve a certain level of
security shorter keys are sufficient than in case of “usual cryptography”. Using shorter
keys can result in a considerable savings in hardware implementations.

The second advantage of the elliptic curves cryptography is that quite a few of attacks
developed for cryptography based on factorization and discrete logarithm do not work for
the elliptic curves cryptography.

It is amazing how practical is the elliptic curve cryptography that is based on very
strangely looking theoretical concepts.
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ELLIPTIC CURVES

An elliptic curve E is the graph of the relation defined by the equation

E : y 2 = x3 + ax + b

(where a, b are either rational numbers or integers (and computation is done modulo
some integer n)) extended by a “point at infinity”, denoted usually as ∞ (or 0) that can
be regarded as being, at the same time, at the very top and very bottom of the y -axis.

We will consider mainly only those elliptic curves that have no multiple roots - which is
equivalent to the condition 4a3 + 27b2 6= 0.

In case coefficients and x, y can be any rational numbers, a graph of an elliptic curve has
one of the forms shown in the following figure. The graph depends on whether the
polynomial x3 + ax + b has three or only one real root.

y 2 = x(x + 1)(x − 1) y 2 = x3 + 73
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HISTORICAL REMARKS on ELLIPTIC CURVES

Elliptic curves are not ellipses and therefore it seems strange that they have such a name.

Elliptic curves actually received their names from their relation to so called elliptic
integrals Z x2

x1

dx√
x3 + ax + b

Z x2

x1

xdx√
x3 + ax + b

that arise in the computation of the arc-length of ellipses.

It may also seem puzzling why not to consider curves given by more general equations

y 2 + cxy + dy = x3 + ex2 + ax + b

The reason is that if we are working with rational coefficients or mod p, where p > 3 is a
prime, then such a general equation can be transformed to our special case of equation.
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ADDITION of POINTS on ELLIPTIC CURVES - GEOMETRY (1)

Geometry

On any elliptic curve we can define addition of points in such a way that points of the
corresponding curve with such an operation of addition form an Abelian group. in which
∞ point is the identity element

If the line through two different points P1 and P2 of an elliptic curve E intersects E in a
point Q = (x , y), then we define P1 + P2 = P3 = (x ,−y). (This also implies that for any
point P on E it holds P +∞ = P + 0P.) ∞ therefore play a role of null element

If the line through two different points P1 and P2 is parallel with y-axis, then we define
P1 + P2 =∞.

In case P1 = P2, and the tangent to E in P1 intersects E in a point Q = (x , y), then we
define P1 + P1 = (x ,−y).

It should now be obvious how to define subtraction of two points of an elliptic curve.

It is now easy to verify that the above addition of points forms Abelian group with ∞ as
the identity (null) element.
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ELLIPTIC CURVES - GENERALITY

A general elliptic curve over Zpm where p is a prime is the set of points (x , y) satisfying
so-called Weierstrass equation

y 2 + uxy + vy = x3 + ax2 + bx + c

for some constants u, v , a, b, c together with a single element 0, called the point of
infinity.

If p 6= 2 Weierstrass equation can be simplified by transformation

y → y − (ux + v)

2

to get the equation

y 2 = x3 + dx2 + ex + f

for some constants d , e, f and if p 6= 3 by transformation

x → x − d

3

to get equation

y 2 = x3 + fx + g

prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 314/616



ELLIPTIC CURVES - GENERALITY

A general elliptic curve over Zpm where p is a prime is the set of points (x , y) satisfying
so-called Weierstrass equation

y 2 + uxy + vy = x3 + ax2 + bx + c

for some constants u, v , a, b, c together with a single element 0, called the point of
infinity.

If p 6= 2 Weierstrass equation can be simplified by transformation

y → y − (ux + v)

2

to get the equation

y 2 = x3 + dx2 + ex + f

for some constants d , e, f and if p 6= 3 by transformation

x → x − d

3

to get equation

y 2 = x3 + fx + g

prof. Jozef Gruska IV054 8. Elliptic curves cryptography and factorization 314/616



ADDITION of POINTS on ELLIPTIC CURVES (2)

Formulas

Addition of points P1 = (x1, y1) and P2 = (x2, y2) of an elliptic curve
E : y 2 = x3 + ax + b can be easily computed using the following formulas:

P1 + P2 = P3 = (x3, y3)

where

x3 = λ2 − x1 − x2

y3 = λ(x1 − x3)− y1

and

λ =

8>><>>:
(y2 − y1)

(x2 − x1)
if P1 6= P2,

(3x2
1 + a)

(2y1)
if P1 = P2.

All that holds for the case that λ 6=∞; otherwise P3 =∞.

Example For curve y 2 = x3 + 73 and P1 = (2, 9), P2 = (3, 10) we have λ = 1,
P1 + P2 = P3 = (−4,−3) and P3 + P3 = (72, 611).
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ELLIPTIC CURVES mod n

The points on an elliptic curve

E : y 2 = x3 + ax + b (mod n)

are such pairs (x,y) mod n that satisfy the above equation, along with the point ∞ at
infinity.

Example Elliptic curve E : y 2 = x3 + 2x + 3 (mod 5) has points

(1, 1), (1, 4), (2, 0), (3, 1), (3, 4), (4, 0),∞.

Example For elliptic curve E : y 2 = x3 + x + 6 ( mod 11) and its point P = (2, 7) it
holds 2P = (5, 2); 3P = (8, 3). Number of points on an elliptic curve (mod p) can be
easily estimated.

Hasse’s theorem If an elliptic curve E(modp) has |E | points then |p − 1| < 2
√

p

The addition of points on an elliptic curve mod n is done by the same formulas as given
previously, except that instead of rational numbers c/d we deal with cd−1

Example For the curve E : y 2 = x3 + 2x + 3 it holds
(1, 4) + (3, 1) = (2, 0); (1, 4) + (2, 0) = (?, ?).
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ELLIPTIC CURVES DISCRETE LOGARITHM

Let E be an elliptic curve and A,B be its points such that B = kA = (A + A + . . .A + A)
– k times – for some k. The task to find such a k is called the discrete logarithm
problem for elliptic curves.

No efficient algorithm to compute discrete logarithm problem for elliptic curves is known
and also no good general attacks. Elliptic curves based cryptography is based on these
facts.

There is the following general procedure for changing a discrete logarithm based
cryptographic protocols to a cryptographic protocols based on elliptic curves:

Assign to the message (plaintext) a point on an elliptic curve.

Change, in the cryptographic protocol, modular multiplication to addition of points
on an elliptic curve.

Change, in the cryptographic protocol, exponentiation to multiplication of a point
on the elliptic curve by an integer.

To the point of an elliptic curve that results from such a protocol one assigns a
message (cryptotext).
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MAPPING MESSAGES into POINTS of ELLIPTIC CURVES (I)

Problem and basic idea

The problem of assigning messages to points on elliptic curves is difficult because there
are no polynomial-time algorithms to write down points of an arbitrary elliptic curve.

Fortunately, there is a fast randomized algorithm, to assign points of any elliptic curve to
messages, that can fail with probability that can be made arbitrarily small.

Basic idea: Given an elliptic curve E(modp), the problem is that not to every x there is
an y such that (x , y) is a point of E .

Given a message (number) m we therefore adjoin to m few bits at the end of m and
adjust them until we get a number x such that x3 + ax + b is a square modp.
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MAPPING MESSAGES into POINTS of ELLIPTIC CURVES (II)

Technicalities

Let K be a large integer such that a failure rate of
1

2K
is acceptable when trying to

encode a message by a point.

For j ∈ {0, . . . ,K − 1} verify whether for x = mK + j , x3 + ax + b (mod p) is a square
(mod p) of an integer y.

If such an j is found, encoding is done; if not the algorithm fails (with probability
1

2K

because x3 + ax + b is a square approximately half of the time).

In order to recover the message m from the point (x , y), we compute:$
x

K

%
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ELLIPTIC CURVES KEY EXCHANGE

Elliptic curve version of the Diffie-Hellman key generation protocol goes as follows:

Let Alice and Bob agree on a prime p, on an elliptic curve E (mod p) and on a point P
on E.

Alice chooses an integer na, computes naP and sends it to Bob.

Bob chooses an integer nb, computes nbP and sends it to Alice.

Alice computes na(nbP) and Bob computes nb(naP). This way they have the same
key.
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ELLIPTIC CURVES VERSION of ElGamal CRYPTOSYSTEM

Standard version of ElGamal: Bob chooses a prime p, a generator q < p, an integer x,
computes y = qx (mod p), makes public p, q, y and keeps x secret.

To send a message m Alice chooses a random r, computes:

a = qr ; b = my r

and sends it to Bob who decrypts by calculating m = ba−x (bmod p)

Elliptic curve version of ElGamal: Bob chooses a prime p, an elliptic curve E (mod p), a
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ELLIPTIC CURVES DIGITAL SIGNATURES

Elliptic curves version of ElGamal digital signatures has the following form for signing (a
message) m, an integer, by Alice and to have the signature verified by Bob:

Alice chooses p and an elliptic curve E (mod p), a point P on E and calculates the
number of points n on E (mod p) – what can be done, and we assume that 0 < m < n.

Alice then chooses a random integer a and computes Q = aP. She makes public p, E, P,
Q and keeps secret a.

To sign m Alice does the following:

Alice chooses a random integer r , 1 ≤ r < n such that gcd(r,n) = 1 and computes R
= rP = (x,y).

Alice computes s = r−1(m − ax) (mod n)

Alice sends the signed message (m,R,s) to Bob.

Bob verifies the signature as follows:

Bob declares the signature as valid if xQ + sR = mP

The verification procedure works because

xQ + sR = xaP + r−1(m − ax)(rP) = xaP + (m − ax)P = mP

Warning Observe that actually rr−1 = 1 + tn for some t. For the above verification
procedure to work we then have to use the fact that nP =∞ and therefore P + t ·∞ = P
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COMMENT

Federal (USA) elliptic curve digital signature standard (ECDSA) was introduced in 20??.
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DOMAIN PARAMETERS for ELLIPTIC CURVES

To use ECC all parties involved have to agree on all basic elements concerning the elliptic
curve E being used:

A prime p.

Constants a and b in the equation y 2 = x3 + ax + b.

Generator G of the underlying cyclic subgroup such that its order is prime.

The order n of G , that is such an n that nG = 0

Co-factor h = |E |
n

that should be small (h ≤ 4) and, preferably h = 1.

To determine domain parameters (especially n and h) may be much time consuming task.
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FACTORING with ELLIPTIC CURVES

Basis idea: To factorize an integer n choose an elliptic curve E, a point P on E and
compute, modulo n, either iP for i = 2, 3, 4, . . . or 2jP for j = 1, 2, . . . . The point is that
in doing that one needs to compute gcd(k,n) for various k. If one of these values is
between 1 and n we have a factor of n.

Factoring of large integers: The above idea can be easily parallelised and converted to
using an enormous number of computers to factor a single very large n. Each computer
gets some number of elliptic curves and some points on them and multiplies these points
by some integers according to the rule for addition of points. If one of computers
encounters, during such a computation, a need to compute 1 < gcd(k, n) < n,
factorization is finished.

Example: If curve E : y 2 = x3 + 4x + 4 (mod 2773) and its point P = (1, 3) are used,
then 2P = (1771, 705) and in order to compute 3P one has to compute
gcd(1770, 2773) = 59 – factorization is done.

Example: For elliptic curve E : y 2 = x3 + x − 1 (mod 35) and its point P = (1, 1) we
have 2P = (2, 32); 4P = (25, 12); 8P = (6, 9) and at the attempt to compute 9P one
needs to compute gcd(15, 35) = 5 and factorization is done.

The only things that remain to be explored is how efficient this method is and when it is
more efficient than other methods.
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IMPORTANT OBSERVATIONS (1)

If n = pq for primes p, q, then an elliptic curve E (mod n) can be seen as a pair of
elliptic curves E (mod p) and E (mod q).

It follows from the Lagrange theorem that for any elliptic curve E (mod n) and its
point P there is an k < n such that kP =∞.

In case of an elliptic curve E (mod p) for some prime p, the smallest positive integer
m such that mP =∞ for some point P divides the number N of points on the curve
E (mod p). Hence NP =∞.

If N is a product of small primes, then b! will be a multiple of N for a reasonable
small b. Therefore, b!P =∞.

The number with only small factors is called smooth and if all factors are smaller
than an b, then it is called b-smooth.

It can be shown that the density of smooth integers is so large that if we choose a
random elliptic curve E (mod n) then it is a reasonable chance that n is smooth.
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PRACTICALITY of FACTORING USING ECC (1)

Let us continue to discuss the following key problem for factorization using elliptic curves:

Problem: How to choose integer k such that for a given point P we should try to
compute points iP or 2i P for all multiples of P smaller than kP?

Idea: If one searches for m-digits factors, one chooses k in such a way that k is a multiple
of as many as possible of those m-digit numbers which do not have too large prime
factors. In such a case one has a good chance that k is a multiple of the number of
elements of the group of points of the elliptic curve modulo n.

Method 1: One chooses an integer B and takes as k the product of all maximal powers of
primes smaller than B.

Example: In order to find a 6-digit factor one chooses B=147 and
k = 27 · 34 · 53 · 72 · 112 · 13 · . . . · 139. The following table shows B and the number of
elliptic curves one has to test:
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PRACTICALITY of FACTORING USING ECC (2)

Digits of to-be-factors 6 9 12 18 24 30
B 147 682 2462 23462 162730 945922

Number of curves 10 24 55 231 833 2594

Computation time by the elliptic curves method depends on the size of factors.
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ELLIPTIC CURVES FACTORIZATION - DETAILS

Given an n such that gcd(n, 6) = 1 and let the smallest factor of n be expected to be
smaller than an F. One should then proceed as follows:

Choose an integer parameter r and:

1 Select, randomly, an elliptic curve

E : y 2 = x3 + ax + b

such that gcd(n, 4a2 + 27b2) = 1 and a random point P on E.

2 Choose integer bounds A,B,M such that

M =
lY

j=1

p
apj

j

for some primes p1 < p2 < . . . < pl ≤ B and apj , being the largest exponent such

that p
aj

j ≤ A.

Set j = k = 1

3 Calculate pjP.

4 Computing gcd.
If pjP 6= O (mod n), then set P = pjP and reset k ← k + 1

1 If k ≤ apj
, then go to step (3).
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ELLIPTIC CURVES FACTORIZATION - DETAILS II

2 If k > apj , then reset j ← j + 1, k ← 1.

If j ≤ l , then go to step (3); otherwise go to step (5)

If pjP ≡ O( mod n) and no factor of n was found at the computation of inverse
elements, then go to step (5)

5 Reset r ← r − 1. If r > 0 go to step (1); otherwise terminate with ”failure”.

The ”smoothness bound” B is recommended to be chosen as

B = e

vuut lnF (lnlnF )

2

and in such a case running time is

O(e

p
2 + o(1lnF (lnlnF ))ln2n)
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ELLIPTIC CURVES: FAQ

How to choose (randomly) an elliptic curve E and point P on E?

An easy way is
first choose a point P(x , y) and an a and then compute b = y 2 − x3 − ax to get the
curve E : y 2 = x3 + ax + b.

What happens at the factorization using elliptic curve method, if for a chosen curve
E (mod n) the corresponding cubic polynomial x3 + ax + b has multiple roots (that
is if 4a3 + 27b2 = 0) ? No problem, method still works.

What kind of elliptic curves are really used in cryptography? Elliptic curves over
fields GF (2n) for n > 150. Dealing with such elliptic curves requires, however,
slightly different rules.
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FACTORIZATION

Factorization of integers is a very important problem.

A variety of techniques has been developed to deal with this problem.

So far the fastest classical factorization algorithms work in time

eO((log n)
1
3 (log log n)

2
3 )

The fastest quantum algorithm for factorization works in (both quantum and classical)
polynomial time.

In the rest of chapter several factorization methods will be presented and discussed.
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FACTORIZATION on QUANTUM COMPUTERS

In the following we present the basic idea behind a
polynomial time algorithm for quantum computers to
factorize integers.

Quantum computers works with superpositions of basic
quantum states on which very special (unitary) operations
are applied and and very special quantum features
(non-locality) are used.

Quantum computers work not with bits, that can take on
any of two values 0 and 1, but with qubits (quantum bits)
that can take on any of infinitely many states α|0〉+ β|1〉,
where α and β are complex numbers such that
|α|2 + |β|2 = 1.
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REDUCTIONS

Shor’s polynomial time quantum factorization algorithm is
based on an understanding that factorization problem can
be reduced

1 first on the problem of solving a simple modular
quadratic equation;

2 second on the problem of finding period of functions
f (x) = ax mod n.
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FIRST REDUCTION

Lemma If there is a polynomial time deterministic (randomized) [quantum] algorithm to
find a nontrivial solution of the modular quadratic equations

a2 ≡ 1 (mod n),

then there is a polynomial time deterministic (randomized) [quantum] algorithm to
factorize integers.

Proof. Let a 6= ±1 be such that a2 ≡ 1 (mod n). Since

a2 − 1 = (a + 1)(a− 1),

if n is not prime, then a prime factor of n has to be a prime factor of either a + 1 or
a− 1. By using Euclid’s algorithm to compute

gcd(a + 1, n) and gcd(a− 1, n)

we can find, in O(lg n) steps, a prime factor of n.
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SECOND REDUCTION

The second key concept is that of the period of functions

fn,x(k) = xk mod n.

Period is the smallest integer r such that

fn,x(k + r) = fn,x(k)

for any k, i.e. the smallest r such that

x r ≡ 1 (mod n).

AN ALGORITHM TO SOLVE EQUATION x2 ≡ 1 (mod n).

1 Choose randomly 1 < a < n.
2 Compute gcd(a, n). If gcd(a, n) 6= 1 we have a factor.
3 Find period r of function ak mod n.
4 If r is odd or ar/2 ≡ ±1 (mod n),then go to step 1; otherwise stop.

If this algorithm stops, then ar/2 is a non-trivial solution of the equation

x2 ≡ 1 (mod n).
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EXAMPLE

Let n = 15. Select a < 15 such that gcd(a, 15) = 1.
{The set of such a is {2, 4, 7, 8, 11, 13, 14}}

Choose a = 11. Values of 11x mod 15 are then

11, 1, 11, 1, 11, 1

whiach gives r = 2.

Hence ar/2 = 11 (mod 15). Therefore

gcd(15, 12) = 3, gcd(15, 10) = 5

For a = 14 we get again r = 2, but in this case

142/2 ≡ −1 (mod 15)

and the following algorithm fails.

1 Choose randomly 1 < a < n.
2 Compute gcd(a, n). If gcd(a, n) 6= 1 we have a factor.
3 Find period r of function ak mod n.
4 If r is odd or ar/2 ≡ ±1 (mod n),then go to step 1; otherwise stop.
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EFFICIENCY of REDUCTION

Lemma If 1 < a < n satisfying gcd(n, a) = 1 is selected in the above algorithm randomly
and n is not a power of prime, then

Pr{r is even and ar/2 6≡ ±1} ≥ 9

16
.

1 Choose randomly 1 < a < n.
2 Compute gcd(a, n). If gcd(a, n) 6= 1 we have a factor.
3 Find period r of function ak mod n.
4 If r is odd or ar/2 ≡ ±1 (mod n),then go to step 1; otherwise stop.

Corollary If there is a polynomial time randomized [quantum] algorithm to compute the
period of the function

fn,a(k) = ak mod n,

then there is a polynomial time randomized [quantum] algorithm to find non-trivial
solution of the equation a2 ≡ 1 (mod n) (and therefore also to factorize integers).
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A GENERAL SCHEME for Shor’s ALGORITHM

The following flow diagram shows the general scheme of Shor’s quantum factorization
algorithm

quantum
x

find period r
subroutine

r  is
even?

r/2 r/2

z=1 ?

output  z

no

yes

no

compute
z = gcd(a, n)

z = 1?

yes

no

z = max{gcd(n, a   -1), gcd(n, a    +1)}

yes

of function   a   mod n

choose randomly
a {2, ... ,n-1}

The algorithm works in polynomial time in case period finding is done in polynomial time
which can be done on quantum computer as Peter Shor showed in 1994.
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Fermat FACTORIZATION METHOD

Factorization of so-called Fermat numbers 22i

+ 1 is a good example to illustrate progress
that has been made in the area of factorization.

Pierre de Fermat (1601-65) expected that all numbers

Fi = 22i

+ 1 i ≥ 1

are primes.

This is true for i = 1, . . . , 4. F1 = 5, F2 = 17, F3 = 257, F4 = 65537.

1732 L. Euler found that F5 = 4294967297 = 641 · 6700417

1880 Landry+LeLasser found that

F6 = 18446744073709551617 = 274177 · 67280421310721

1970 Morrison+Brillhart found factorization for F7 = (39digits)

F7 = 340282366920938463463374607431768211457 =

= 5704689200685129054721 · 59649589127497217

1980 Brent+Pollard found factorization for F8

1990 A. K. Lenstra+ . . . found factorization for F9 (155 digits)
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Fermat TEST

It follows from the Little Fermat Theorem that if p is a prime, then for all 0 < b < p, we
have

bp−1 ≡ l (mod p)

Can we say that n is prime if and only if for all 0 < b < n, we have

bn−1 ≡ l (mod n)?

No, there are composed numbers n, so-called Carmichael numbers, such that for all
0 < b < n that are co-prime with n it holds

bn−1 ≡ l (mod n)

Such number is, for example, n=561.
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POLLARD ρ-METHOD

A variety of factorization algorithms, of complexity around O(
√

p) where p is the smallest
prime factor of n, is based on the following idea:

A function f is taken that ”behaves like a randomizing function” and
f (x) ≡ f (x mod p) (mod p) for any factor p of n – usually f (x) = x2 + 1

A random x0 is taken and iteration

xi+1 = f (xi ) mod n

is performed (this modulo n computation actually ”hides” modulo p computation in
the following sense: if x ′0 = x0, x ′i+1 = f (x ′i ) mod n, then x ′i = xi mod p)

Since Zp is finite, the shape of the sequence x ′i will remind the letter ρ, with a tail
and a loop. Since f is ”random”, the loop modulo n rarely synchronizes with the
loop modulo p

The loop is easy to detect by GCD-computations and it can be shown that the total
length of tail and loop is O(

√
p).
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LOOP DETECTION

In order to detect the loop it is enough to perform the following computation:

a← x0; b ← x0;

repeat

a← f (a);

b ← f (f (b));

until a = b

Iteration ends if at = b2t for some t greater than the tail length and a multiple of the
loop length.
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FIRST Pollard ρ-ALGORITHM

Input: an integer n with a factor smaller than B

Complexity: O(
√

B) of arithmetic operations

x0 ← random; a← x0; b ← x0;

do

a← f (a) mod n;

b ← f (f (b) mod n) mod n;

until gcd(a - b, n) 6= 1

output gcd(a - b, n)

The proof that complexity of the first Pollard factorization ρ-algorithm is given by

O(N
1
4 ) arithmetic operations is based on the following result:

Lemma Let x0 be random and f be “random” in Zp, xi+1 = f (xi ). The probability that
all elements of the sequence

x0, x1, . . . , xt

are pairwise different when t = 1 + b(2λp)
1
2 c is less than e−λ.
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SECOND Pollard ρ-ALGORITHM

Basic idea

1 Choose an easy to compute f : Zn → Zn and x0 ∈ Zn.

Example f (x) = x2 + 1

2 Keep computing xi+1 = f (xj), j = 0, 1, 2, . . . and gcd(xj − xk , n), k ≤ j . (Observe
that if xj ≡ xk mod p for a prime factor p of n, then gcd(xj − xk , n) ≤ p.)

Example n = 91, f (x) = x2 + 1, x0 = 1, x1 = 2, x2 = 5, x3 = 26

gcd(x3 − x2, n) = gcd(26− 5, 91) = 7

Remark: In the ρ-method, it is important to choose a function f in such a way that f
maps Zn into Zn in a ”random” way.

Basic question: How good is the ρ-method?

(How long we expect to have to wait before we get two values xj , xk such that
gcd(xj − xk , n) 6= 1, if n is not a prime?)
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ρ-ALGORITHM

A simplification of the basic idea: For each k compute gcd(xk − xj , n) for just one j < k.

Choose f : Zn → Zn, x0, compute xk = f (xk−1), k > 0.

If k is an (h +1)-bit integer, i.e. 2h ≤ k ≤ 2h+1, then compute gcd(xk , x2h−1).

Example n = 4087, f (x) = x2 + x + 1, x0 = 2

x1 = f(2) = 7,
x2 = f(7) = 57,
x3 = f(57) = 3307,
x4 = f(3307) = 2745,
x5 = f(2746) = 1343,
x6 = f(1343) = 2626,
x7 = f(2626) = 3734,

gcd(x1 − x0, n) = 1
gcd(x2 − x1, n) = gcd(57 – 7, n) = 1
gcd(x3 − x1, n) = gcd(3307 - 7, n) = 1
gcd(x4 − x3, n) = gcd(2745 - 3307, n) = 1
gcd(x5 − x3, n) = gcd(1343 - 3307, n) = 1
gcd(x6 − x3, n) = gcd(2626 - 3307, n) = 1
gcd(x7 − x3, n) = gcd(3734 - 3307, n) = 61

Disadvantage We likely will not detect the first case such that for some k0 there is a
j0 < k0 such that gcd(xk0 − xj0, n) > 1.

This is no real problem! Let k0 have h + 1 bits. Set j = 2h+1 − 1, k = j + k0 − j0. k has
(h+2) bits, gcd(xk − xj , n) > 1

k < 2h+2 = 4 · 2h ≤ 4k0.
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ρ-ALGORITHM

Theorem Let n be odd and composite and 1 < r <
√

n its factor. If f , x0 are chosen
randomly, then ρ algorithm reveals r in O( 4

√
nlog 3n) bit operations with high probability.

More precisely, there is a constant C > 0 such that for any λ > 0, the probability that
the ρ algorithm fails to find a nontrivial factor of n in C

√
λ 4
√

nlog 3n bit operations is less
than e−λ.

Proof Let C1 be a constant such that gcd(y - z, n) can be computed in C1log 3n bit
operations whenever y , z < n.

Let C2 be a constant such that f(x) mod n can be computed in C2log 2n bit operations if
x < n.

If k0 is the first index for which there exists j0 < k0 with xk0 ≡ xj0 mod r , then the
ρ-algorithm finds r in k ≤ 4k0 steps.

The total number of bit operations is bounded by → 4k0(C1log 3n + C2log 2n)

By Lemma the probability that k0 is greater than 1 +
√

2λr is less than e−λ.

If k0 ≤ 1 +
√

2λr , then the number of bit operations needed to find r is bounded by

4(1 +
√

2λr)(C1log 3n − C2log 2n) < 4(1 +
√

2λ 4
√

n)(C1log 3n + C2log 2n)

If we choose C > 4
√

2(C1 + C2), then we have that r will be found in C
√
λ 4
√

nlog 3n bit
operations – unless we made uniform choice of (f , x0) the probability of which a is at
most e−λ.
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Let C2 be a constant such that f(x) mod n can be computed in C2log 2n bit operations if
x < n.

If k0 is the first index for which there exists j0 < k0 with xk0 ≡ xj0 mod r , then the
ρ-algorithm finds r in k ≤ 4k0 steps.

The total number of bit operations is bounded by → 4k0(C1log 3n + C2log 2n)

By Lemma the probability that k0 is greater than 1 +
√

2λr is less than e−λ.

If k0 ≤ 1 +
√

2λr , then the number of bit operations needed to find r is bounded by

4(1 +
√

2λr)(C1log 3n − C2log 2n) < 4(1 +
√

2λ 4
√

n)(C1log 3n + C2log 2n)

If we choose C > 4
√

2(C1 + C2), then we have that r will be found in C
√
λ 4
√

nlog 3n bit
operations – unless we made uniform choice of (f , x0) the probability of which a is at
most e−λ.
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COMMENTS

Pollard ρ-method works fine for integers n with a small factor.

Next method, so called Pollard (p-1)-method, works fine for n having a prime factor p
such that all prime factors of p-1 are small.

When all prime factors of p-1 are smaller than a B, we say that p-1 is B-smooth.
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POLLARD’s p-1 algorithm

Pollard’s algorithm (to factor n given a bound b on factors).

a := 2;

for j=2 to b do a := aj mod n;

f := gcd(a− 1, n); f = gcd(2b! − 1, n)

if 1 < f < n then f is a factor of n otherwise failure

Indeed, let p be a prime divisor of n and q < b for every prime q|(p − 1).

(Hence (p − 1)|b!).

At the end of the for-loop we have

a ≡ 2b! (mod n)

and therefore

a ≡ 2b! (mod p)

By Fermat theorem 2p−1 ≡ 1 (mod p) and since (p − 1)|b! we get a ≡ 2b! ≡ 1 (mod p).
and therefore we have p|(a− 1)

Hence

p|gcd(a− 1, n)
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IMPORTANT OBSERVATIONS II

Pollard ρ-method works fine for numbers with a small factor.

The p-1 method requires that p-1 is smooth. The elliptic curve method requires only that
there are enough smooth integers near p and so at least one of randomly chosen integers
near p is smooth.

This means that the elliptic curves factorization method succeeds much more often than
p-1 method.

Fermat factorization and Quadratic Sieve method discussed later works fine if integer has
two factors of almost the same size.
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Fermat FACTORIZATION I

If n = pq, p <
√

n , then

n =

„
q + p

2

«2

−
„

q − p

2

«2

= a2 − b2

Therefore, in order to find a factor of n, we need only to investigate the values

x = a2 − n

for a =
l√

n
m

+ 1,
l√

n
m

+ 2, . . . ,
(n − 1)

2

until a perfect square is found.
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Fermat FACTORIZATION

Basic idea: Factorization is easy if one finds x, y such that n|(x2 − y 2)

Proof: If n divides (x + y)(x - y) and n does not divide neither x+y nor x-y, then one
factor of n has to divide x+y and another one x-y.

Example n = 7429 = 2272 − 2102,
x – y = 17
gcd(17, 7429) = 17

x = 227, y = 210
x + y = 437
gcd(437, 7429) = 437.

How to find such x and y?

First idea: one tries all t starting with
√

n until t2 − n is a square S2.

Second idea: One forms a system of (modular) linear equations and determines x and y
from the solutions of such a system.

number

of digits of n 50 60 70 80 90 100 110 120
number

of equations 3000 4000 7400 15000 30000 51000 120000 245000
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METHOD of QUADRATIC SIEVE to FACTORIZE an INTEGER n

Step 1 One finds numbers x such that x2 − n is small and has small factors.
Example 832−7429 = −540 = (−1)·22 ·33 ·5

872 − 7429 = 140 = 22 · 5 · 7
882 − 7429 = 315 = 32 · 5 · 7

)
relations

Step 2 One multiplies some of the relations if their product is a square.
For example

(872 − 7429)(882 − 7429) = 22 · 32 · 52 · 72 = 2102

Now

(87 · 88)2 ≡ (872 − 7429)(882 − 7429) mod 7429
2272 ≡ 2102 mod 7429

Hence 7429 divides 2272 − 2102.
Formation of equations: For the i-th relation one takes a variable λi and forms the
expression
((−1) ·22 ·33 ·5)λ1 ·(22 ·5 ·7)λ2 ·(32 ·5 ·7)λ3 = (−1)λ1 ·22λ1+2λ2 ·32λ1+2λ2 ·5λ1+λ2+λ3 ·7λ2+λ3

If this is to form a square the λ1 ≡ 0 mod 2
following equations have to hold λ1 + λ2 + λ3 ≡ 0 mod 2

λ2 + λ3 ≡ 0 mod 2
λ1 = 0, λ2 = λ3 = 1
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METHOD of QUADRATIC SIEVE to FACTORIZE n

Problem How to find relations?

Using the algorithm called Quadratic sieve method.

Step 1 One chooses a set of primes that can be factors – a so-called factor basis.

One chooses an m such that m2 − n is small and considers numbers (m + u)2 − n for
−k ≤ u ≤ k for small k.

One then tries to factor all (m + u)2 − n with primes from the factor basis, from the
smallest to the largest.

u -3 -2 -1 0 1 2 3
(m + u)2 − n -540 -373 -204 -33 140 315 492
Sieve with 2 -135 -51 35 123
Sieve with 3 -5 -17 -11 35 41
Sieve with 5 -1 7 7
Sieve with 7 1 1

In order to factor a 129-digit number from the RSA challenge they used

8 424 486 relations

569 466 equations

544 939 elements in the factor base
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APPENDIX to CHAPTER 8
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HISTORY of ELLIPTIC CURVES CRYPTOGRAPHY

The use of elliptic curves in cryptography was suggested independently by Neal
Koblitz and Victor S. Miller in 1985.

Behind this method is a believe that the discrete logarithm of a random elliptic
curve element with respect to publicly known base point is infeasible.

At first Elliptic curves over a prime finite field were used for ECC. Later also elliptic
curves over the fields GF (2m) started to be used.

In 2005 the US NSA endorsed to use ECC (Elliptic curves cryptography) with
384-bit key to protect information classified as ”top secret”.

There are patents in force covering certain aspects of ECC technology.

Elliptic curves have been first used for factorization by Lenstra.

Elliptic curves played an important role in perhaps most celebrated mathematical
proof of the last hundred years - in the proof of Fermat’s Last Theorem - due to A.
Wiles and R. Taylor.
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SECURITY of ELLIPTIC CURVE CRYPTOGRAPHY

Security of ECC depends on the difficulty of solving the discrete logarithm problem
over elliptic curves.

Two general methods of solving such discrete logarithm problems are known.

The square root method and Silver-Pohling-Hellman (SPH) method.

SPH method factors the order of a curve into small primes and solves the discrete
logarithm problem as a combination of discrete logarithms for small numbers.

Computation time of the square root method is proportional to O(
√

en) where n is
the order of the based element of the curve.
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FACTORIZATION of a 512-BIT NUMBER

On August 22, 1999, a team of scientists from 6 countries found, after 7 months of
computing, using 300 very fast SGI and SUN workstations and Pentium II, factors of the
so-called RSA-155 number with 512 bits (about 155 digits).

RSA-155 was a number from a Challenge list issue by the US company RSA Data
Security and ”represented” 95 % of 512-bit numbers used as the key to protect electronic
commerce and financial transmissions on Internet.

Factorization of RSA-155 would require in total 37 years of computing time on a single
computer.

When in 1977 Rivest and his colleagues challenged the world to factor RSA-129, he
estimated that, using knowledge of that time, factorization of RSA-129 would require
1016 years.
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LARGE NUMBERS

Hindus named many large numbers – one having 153 digits.

Romans initially had no terms for numbers larger than 104.

Greeks had a popular belief that no number is larger than the total count of sand grains
needed to fill the universe.

Large numbers with special names:

googol - 10100 googolplex - 1010100

FACTORIZATION of very large NUMBERS

W. Keller factorized F23471 which has 107000 digits.

J. Harley factorized: 10101000

+ 1.

One factor: 316,912,650,057,350,374,175,801,344,000,001

1992 E. Crandal, Doenias proved, using a computer that F22, which has more than
million of digits, is composite (but no factor of F22 is known).

Number 10101034

was used to develop a theory of the distribution of prime numbers.
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Part IX

Identification, authentication, secret sharing and e-commerce



USER IDENTIFICATION and MESSAGE AUTHENTICATION,
SECRET SHARING and E-COMMERCE

Most of today’s cryptographic applications ask for authenticity of data rather than for
secret data.

Main related problems to deal with are:

1 User identification (authentication): How can a person/computer prove her/his
identity?

2 Message authentication: Can tools be provided to find out, for the recipient, that
the message is indeed from the person who was supposed to send it?

3 Message integrity (authentication): Can tools be provided to decide for the recipient
whether or not the message was changed on the fly?

Important practical objectives are to find identification schemes that are so simple that
they can be implemented on smart cards – they are essentially credit cards equipped with
a chip that can perform arithmetical operations and communications.

Secret sharing among a group of users so only well specify subsets of them can discover it
is another often used cryptographic primitive we will deal with

E-commerce: One of the main new applications of the cryptographic techniques is to
establish secure and convenient manipulation with digital money (e-money), especially for
e-commerce.
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USER IDENTIFICATION (AUTHENTICATION)

User identification (authentication) is a process at which one party (often referred to as a
Prover or Alice) convinces a second party (often referred to as a Verifier or Bob) of
Prover’s identity.

Namely, that the Prover (Alice) herself has actually participated in the identification
process. In other words that the Prover has been herself active in proving her identity in
the time the confirmative evidence of her identity has been required).

The purpose of any identification (authentication) process is to preclude (vylucit) some
impersonation (zosobnenie) of one person (the Prover) by someone else.

Identification usually serves to control access to a resource (often a resource should be
accessed only by privileged users).
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OBJECTIVES of IDENTIFICATIONS

User identification process has to satisfy the following objectives:

The Verifier has to accept Prover’s identity if both parties are honest;

The Verifier cannot later, after a successful identification, act as the Prover and
identify himself (as the Prover) to another Verifier;

A dishonest party, say E , that would claim to be the other party, say A, has only
negligible chance to identify itself successfully as A;

Each of the above conditions remains true even if an attacker has observed, or has
participated in, several identification processes of the same party.
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USER IDENTIFICATION PROTOCOLS

Identification protocols have to satisfy two security
conditions:

1 If one party, say Bob (a Verifier), gets a message from
the other party, that claims to be Alice (a Prover), then
Bob is able to verify that the sender was indeed Alice.

2 There is no way to pretend, for a third party, say
Charles, when communicating with Bob, that he is Alice
without Bob having a large chance to find that out.
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IDENTIFICATION SYSTEM BASED on a PKC

Alice chooses a random r and sends eB(r) to Bob.

Alice identifies a communicating person as Bob if he can send her back r.

Bob identifies a communicating person as Alice if she can send him back r.

A misuse of the above system

We show that (any non-honest) Alice could misuse the above identification scheme.

Indeed, Alice could intercept a communication of Jane (some new ”player”) with Bob,
and get a cryptotext eB(w), the one Jana has been sending to Bob, and then Alice could
send eB(w) to Bob.

Honest Bob, who follows fully the protocol, would then return w to Alice and she would
get this way the plaintext w.
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IDENTIFICATION SYSTEM BASED on a PKC - a better version

Alice chooses a random r and sends eB(r) to Bob.

Alice identifies a communicating person as Bob if he can send her back r through
eA(r , r1) for a random r1.

Bob identifies a communicating person as Alice if she can send him back r , r1.
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ELEMENTARY AUTHENTICATION PROTOCOLS

USER IDENTIFICATION

Static means of identification: People can be identified by their (a) attributes
(fingerprints), possessions (passports), or knowledge.

Dynamic means of identification: Challenge and respond protocols.

Example: Both Alice and Bob share a key k and a one-way function fk .

1 Bob sends Alice a random number, or a random string, RAND.

2 Alice sends Bob PI = fk(RAND).

3 If Bob gets PI, then he verifies whether PI = fk(RAND).

If yes, he starts to believe that the person he has communicated with is Alice (more
exactly that it is the person who sent RAND to him.

The process can be repeated to increase probability of a correct identification.

MESSAGE AUTHENTICATION – to be discussed in details later

MAC -method (Message Authentication Code) Alice and Bob share a key k and a
encoding algorithm Ak

1 With a message m, Alice sends (m, Ak (m)) – MAC is here Ak(m)

2 If Bob gets (m’, MAC), then he computes Ak (m’) and compares it with MAC.
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THREE-WAY AUTHENTICATION and also KEY-AGREEMENT I

A PKC will be used with encryption/decryption algorithms (eU , dU), for each user U, and
DSS with signing/verification algorithms(sU , vU). Alice and Bob will have their, public,
identity strings IA and IB .

1 Alice chooses a random integer rA, sets t = (IB , rA), signs it as sigsA (t) and sends
m1 = (t, sigsA (t)) to Bob.

2 Bob verifies Alice’s signature, chooses a random rB and a random session key k.He
then encrypts k with Alice’s public key to get EeA (k) = c, sets

t1 = (IA, rA, rB , c),

and signs it as sigsB (t1). Then he sends m2 = (t1, sigsB (t1)) to Alice.
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THREE-WAY AUTHENTICATION and KEY AGREEMENT II

3 Alice verifies Bob’s signature sigsB (t1) with t1 = (IA, rA, rB , c),, and then checks that
the rA she just got matches the one she generated in Step 1.

Once verified, she is convinced that she is communicating with Bob. She gets
session key k via

DdA (c) = DdA (EeA (k)) = k,

sets t2 = (IB , rB) and signs it as sigsA (t2). Then she sends m3 = (t2, sigsA (t2)) to
Bob.

4 Bob verifies Alice’s signature and checks that rB he just got matches his choice in
Step 2. If both verifications pass, Alice and Bob have mutually authenticated each
other’s identity and, in addition, have agreed upon a session key k.
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DATA AUTHENTICATION

The goal of data authentication schemes (protocols) is to
handle the case that data are sent through insecure
channels.

By creating so-called Message Authentication Code
(MAC) a sending this MAC, together with a message
through an insecure channel, one can create possibility to
verify whether data were not changed in the channel.

The price to pay is that communicating parties need to
share a secret random key that needs to be transmitted
through a secure channel.
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SCHEMES for DATA AUTHENTICATION

Basic difference between MACs and digital signatures is that MACs are symmetric in the
following sense: Anyone who is able to verify MAC of a message is also able to generate
the same MAC, and vice verse.

A scheme (M, T, K) for data authentication is given by:

M is a set of possible messages (data)

T is a set of possible MACs – (tags)

K is a set of possible keys

Moreover, it is required that

to each k from K there is a single and easy to compute authentication mapping

authk : {0, 1}∗ ×M → T

and a single and easy to compute verification mapping

verk : M × T → {true, false}
such that the following two conditions should be satisfied:

Correctness: For each m from M and k from K it holds verk(m, c) = true, if there exists
an r from {0, 1}∗ such that c = authk(r ,m)

Security: For any m ∈ M and any k ∈ K it is computationally unfeasible, without a
knowledge of k, to find t ∈ T such that verk(m, t) = true
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FROM BLOCK CIPHERS to MAC – CBC-MAC

Let C be an encryption algorithm that maps k-bit strings into k-bit strings.

If a message

m = m1m2 . . .ml

is divided into blocks of length k, then so-called CBC-mode of encryption assumes a
choice (random) of a special block y0 of length k, and performs the following
computations for i = 1, . . . ,l

yi = C(yi−1 ⊕mi )

and then

y1‖y2‖ . . . ‖yl

is the encryption of m and

yl can then be considered as the MAC for m.

A modification of this method is to use another crypto-algorithm to encrypt the last
block ml .
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SPECIAL WEAKNESS of the CBS-MAC METHOD

Let us have three pairs and in each pair a message and its MAC

(m1, t1), (m2, t2), (m3, t3)

where messages m1, m3 and also t1, t3 are also of the length k and

m2 = m1‖B‖m′2
for some B that is also of length k. The encryption of the block B within m2 is C(B ⊕ t1).

If we now define

B ′ = B ⊕ t1 ⊕ t3, m4 = m3‖B ′‖m′2 ,

then, during the encryption of m4, we get

C(B ′ ⊕ t3) = C(B ⊕ t1),

This implies that MAC’s for m4 and m2 are the same. One can therefore forge a new
valid pair

(m4, t2).
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ANALYSIS of CBC-MAC – a view

Theorem Given are two independent random permutations C1 and C2 on the set of
message blocks M of cardinality n. Let us define

MAC(m1,m2, . . . ,ml) = C2(C1(. . .C1(C1(m1)⊕m2)⊕ . . .⊕)ml−1)⊕ml).

Let us assume that the MAC function is implemented by an oracle, and consider an
adversary who can send queries to the oracle with a limited total length of q. Let
m1, . . . ,md denote the finite block sequences on M which are sent by the adversary to
the oracle and let the total number of blocks be less than q. Let the purpose of the
adversary be to output a message m which is different from all mi together with its MAC
value c. Then the probability of success of the adversary (i.e. the probability that his
MAC value is correct) is smaller than

q(q + 1)

2
×

1

n − q
+

1

n − d
.

When q = θn
1
2 , this is approximately a=

θ2

2
(which is greater than 1− e−a )

Implication: if the total length of all authenticated messages is negligible against # n,
then there is no better way than the brute force attack to get collisions on the CBC-MAC.
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FROM HASH FUNCTIONS TO HMAC

So called HMAC was published as the internet standard RFC2104.

Let a hash function h process messages by blocks of b bytes and produce a digest of l
bytes and let t be the size of MAC, in bytes. HMAC of a message m with a key k is
computed as follows:

If k has more than b bytes replace k with h(k).

Append zero bytes to k to have exactly b bytes.

Compute (using constant strings opad and ipad)

h(k ⊕ opad‖h(k ⊕ ipad‖m)).

and truncate the results to its t leftmost bytes to get HMACk(m).

There is a variety of HMAC systems and they are usually specified by hash function that
is used
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SECURITY of HMAC

It can be shown that if

h(k ⊕ ipad‖m) defines a secure MAC on fixed length messages, and

h is collision free,

then HMAC is a secure MAC on variable length messages with two independent keys.
More precisely:

Theorem Let h be a hash function which hashes into l bits. Given k1, k2 from {0, 1}l
consider the following MAC algorithm

MACk1,k2 (m) = h(k2‖h(k1‖m))

If h is collision free and m→ h(k2‖m) is a secure MAC algorithm for messages m of the
fixed length l, then the HMAC is a secure MAC algorithm for messages of arbitrary length.
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DISADVANTAGE of STATIC USER IDENTIFICATION SCHEMES

Everybody who knows your password or PIN can impersonate you.

Better are dynamic means of identification - for example challenge and
response protocols.
Basic idea.

Alice claims ability to solve some hard problem P.

Bob challenges her ability by asking her to solve a particular instance of
the P problem.

If she succeeds, then Bob intends to believe he is indeed
communicating with Alice.

Using so called zero-knowledge identification schemes, discussed in the next
chapter, you can identify yourself without giving to the identificator the
ability to impersonate you.
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SIMPLIFIED Fiat-Shamir IDENTIFICATION SCHEME

A trusted authority (TA) chooses: large random primes p,q, computes n = pq; and
chooses a quadratic residue v ∈ QRn, and s such that s2 = v (mod n).

public-key: v

private-key: s (that Alice knows, but not Bob)

Challenge-response Identification protocol

1 Alice chooses a random r < n, computes x = r 2 mod n and sends x to Bob.

2 Bob sends to Alice a random bit (a challenge) b.

3 Alice sends Bob (a response) y = rsb mod n
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ANALYSIS of Fiat-Shamir IDENTIFICATION I

public-key: v

private-key: s (of Alice) such that s2 = v (mod n).

Protocol

1 Alice chooses a random r < n, computes x = r 2 mod n and sends x (her
commitment) to Bob.

2 Bob sends to Alice a random bit b (a challenge).

3 Alice sends to Bob (a response) y = rsb.

4 Bob verifies if and only if y 2 = xvb mod n, proving that Alice knows a square root
of x.
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ANALYSIS of Fiat-Shamir IDENTIFICATION II

Analysis

1 The first message is a commitment by Alice that she knows square root of x.

2 The second message is a challenge by Bob.
If Bob sends b = 0, then Alice has to open her commitment and reveal r.
If Bob sends b = 1, the Alice has to show her secret s in an ”encrypted form”.

3 The third message is Alice’s response to the challenge of Bob.

Completeness If Alice knows s, and both Alice and Bob follow the protocol, then the
response rsb is the square root of xvb.

It can be shown that Eve can cheat with probability of success 1
2

as follows:

Eve chooses random r ∈ Z∗n , random b1 ∈ {0, 1} and sends x = r 2v−b1 , to Bob.

Bob chooses b ∈ {0, 1} at random and sends it to Eve.

Eve sends r to Bob.
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HOW CAN BAD EVE CHEAT?

Eve can send, to fool Bob, as her commitment, either r 2

for a random r or r 2v−1

In the first case Eve can respond correctly to the Bob’s
challenge b=0, by sending r; but cannot respond correctly
to the challenge b = 1.

In the second case Eve can respond correctly to Bob’s
challenge b = 1, by sending r again; but cannot respond
correctly to the challenge b = 0.

Eve has therefore a 50% chance to cheat.
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Fiat-Shamir IDENTIFICATION SCHEME – PARALLEL VERSION

In the following parallel version of Fiat-Shamir identification scheme the probability of a
false identification is decreased.

Choose primes p, q and compute n = pq and choose as security parameters integers k, t.

Choose quadratic residues v1, . . . , vk ∈ QRn.

Compute s1, . . . , sk such that si =
√

vi mod n

public-key: v1, . . . , vk secret-key: s1, . . . , sk of Alice PROTOCOL:

1 Alice chooses a random r < n, computes a = r 2 mod n and sends a to Bob.

2 Bob sends Alice a random k-bit string b1 . . . bk .

3 Alice sends to Bob

y = r
kY

i=1

sbi
i mod n

4 Bob accepts if and only if

y 2 = a
kY

i=1

vbi
i mod n

Alice and Bob repeat this protocol t times, until Bob is convinced that Alice knows
s1, . . . , sk .

The chance that Alice can fool Bob is 2−kt , a significant decrease comparing with the
chance 1

2
of the previous version of the identification scheme.
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THE SCHNORR IDENTIFICATION SCHEME – SETTING

This is a practically attractive because being computationally efficient (in time, space +
communication) scheme which minimizes storage + computations performed by Alice (to
be, for example, a smart card).

Scheme also requires a trusted authority (TA) who

1 chooses: a large prime p < 2512,
a large prime q dividing p - 1 and q ≤ 2140,
an α ∈ Z∗p of order q,
a security parameter t such that 2t < q,
p, q, α, t are made public.

2 establishes: a secure digital signature scheme with a secret signing algorithm sigTA

and a public verification algorithm verTA.

Protocol for issuing a certificate to Alice

1 TA establishes Alice’s identity by conventional means and forms a 512-bit string
ID(Alice) which contains the identification information.

2 Alice chooses a secret random 0 ≤ a ≤ q − 1 and computes

v = α−a mod p

and sends v to the TA.
3 TA generates signature

s = sigTA(ID(Alice), v)

and sends to Alice as hercertificate: C (Alice) = (ID(Alice), v, s)
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Schnorr IDENTIFICATION SCHEME - PROTOCOL

1 Alice chooses a random 0 ≤ k < q and computes

γ = αk mod p.

2 Alice sends to Bob her certificate C (Alice) = (ID(Alice), v, s) and also γ.

3 Bob verifies the signature of TA by checking that

verTA(ID(Alice), v , s) = true.

4 Bob chooses a random 1 ≤ r ≤ 2t , where t < lg q is a security parameter and sends
it to Alice (often t ≤ 40).

5 Alice computes and sends to Bob

y = (k + ar) mod p.

6 Bob verifies that

γ ≡ αy v r mod q

7 This way Alice proofs her identity to Bob. Indeed,

αy v r ≡ αk+arα−ar mod p
≡ αk mod p
≡ γ mod p.

Total storage needed: 512 bits for ID(Alice), 512 bits for v, 320 bits for s (if DSS is
used). In total – 1344 bits.

Total communication needed from: Alice → Bob – 1996 (= 1344+512+140) bits,
Bob → Alice 40 bits (to send r).
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Okamoto IDENTIFICATION SCHEME

The disadvantage of the Schnorr identification scheme is that there is no proof of its
security. For the following modification of the Schnorr identification scheme presented
below, for the Okamoto identification scheme, a proof of security exists.

Basic setting: To set up the scheme TA chooses:

a large prime p ≤ 2512,

a large prime q ≥ 2140 dividing p - 1;

two elements α1, α2 ∈ Z∗p of the order q.

TA makes public p, q, α1, α2 and keeps secret (also before Alice and Bob)

c = lgα1α2.

Finally, TA chooses a signature scheme and a hash function.

Issuing a certificate to Alice

TA establishes Alice’s identity and issues her identification string ID(Alice).

Alice secretly and randomly chooses 0 ≤ a1, a2 ≤ q − 1 and sends to TA

v = α−a1
1 α−a2

2 mod p.

TA generates a signature s = sigTA(ID(Alice), v) and sends to Alice the certificate

C (Alice) = (ID(Alice), v, s).
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Okamoto IDENTIFICATION SCHEME – BASICS ONCE MORE

Basic setting
TA chooses: a large prime p ≤ 2512,large prime q ≥ 2140 dividing p - 1; two elements
α1, α2 ∈ Z∗p of order q. TA keep secret (also from Alice and Bob)

c = lgα1
α2.

Issuing a certificate to Alice

TA establishes Alice’s identity and issues an identification string ID(Alice).

Alice randomly chooses 0 ≤ a1, a2 ≤ q − 1 and sends to TA.

v = α−a1
1 α−a2

2 mod p.

TA generates a signature s = sigTA(ID(Alice), v) and sends to Alice the certificate

C (Alice) = (ID(Alice), v, s).
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Okamoto IDENTIFICATION SCHEME

Okamoto IDENTIFICATION SCHEME

Alice chooses random 0 ≤ k1, k2 ≤ q − 1 and computes

γ = αk1
1 α

k2
2 mod p.

Alice sends to Bob her certificate (ID(Alice), v, s) and γ.

Bob verifies the signature of TA by checking that

verTA(ID(Alice), v , s) = true.

Bob chooses a random 1 ≤ r ≤ 2t and sends it to Alice.

Alice sends to Bob

y1 = (k1 + a1r) mod q; y2 = (k2 + a2r) mod q.

Bob verifies

γ ≡ αy1
1 α

y2
2 v r (mod p)
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AUTHENTICATION CODES

They provide methods to ensure integrity of messages – that a message has not been
tampered/changed, and that the message originated with the presumed sender.

The goal is to achieve authentication even in the presence of Mallot, a man in the middle,
who can observe transmitted messages and replace them by messages of his own choice.

Formally, an authentication code consists of:

A set M of possible messages.

A set T of possible authentication tags.

A set K of possible keys.

A set R of authentication algorithms ak : M → T , one for each k ∈ K

Transmission process

Alice and Bob jointly choose a secret key k.

If Alice wants to send a message w to Bob, she sends (w, t), where t = ak(w).

If Bob receives (w, t) he computes t′ = ak(w) and if t = t’, then Bob accepts the
message w as authentic.

prof. Jozef Gruska IV054 9. Identification, authentication, secret sharing and e-commerce 388/616



AUTHENTICATION CODES

They provide methods to ensure integrity of messages – that a message has not been
tampered/changed, and that the message originated with the presumed sender.

The goal is to achieve authentication even in the presence of Mallot, a man in the middle,
who can observe transmitted messages and replace them by messages of his own choice.

Formally, an authentication code consists of:

A set M of possible messages.

A set T of possible authentication tags.

A set K of possible keys.

A set R of authentication algorithms ak : M → T , one for each k ∈ K

Transmission process

Alice and Bob jointly choose a secret key k.

If Alice wants to send a message w to Bob, she sends (w, t), where t = ak(w).

If Bob receives (w, t) he computes t′ = ak(w) and if t = t’, then Bob accepts the
message w as authentic.

prof. Jozef Gruska IV054 9. Identification, authentication, secret sharing and e-commerce 388/616



ATTACKS and DECEPTION PROBABILITIES

There are two basic types of attacks Mallot, the man in the middle, can do.

Impersonation. Mallot introduces a message (w, t) into the channel – expecting that
message will be received as being sent by Alice.

Substitution. Mallot replaces a message (w, t) in the channel by another one, (w’, t’) –
expecting that message will be accepted as being sent by Alice.

With any impersonation (substitution) attack a probability Pi (Ps) is associated that
Mallot will deceive Bob, if Mallot follows an optimal strategy.

In order to determine such probabilities we need to know probability distributions pm on
messages and pk on keys.

In the following so called authentication matrices |K | × |M| will tabulate all
authentication tags. The item in a row corresponding to a key k and in a column
corresponding to a message w will contain the authentication tag tk(w).

The goal of authentication codes, to be discussed next, is to decrease probabilities that
Mallot performs successfully impersonation or substitution.
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EXAMPLE

Let M = T = Z3, K = Z3 × Z3.
For (i , j) ∈ K and w ∈ M, let tij(w) = (iw + j) mod 3.

Let the matrix key × message of authentication tags has the form

Key 0 1 2
(0,0) 0 0 0
(0,1) 1 1 1
(0,2) 2 2 2
(1,0) 0 1 2
(1,1) 1 2 0
(1,2) 2 0 1
(2,0) 0 2 1
(2,1) 1 0 2
(2,2) 2 1 0

Impersonation attack: Mallot picks a message w and tries to guess the correct
authentication tag.
However, for each message w and each tag a there are exactly three keys k such that
tk(w) = a. Hence Pi = 1

3
.

Substitution attack: By checking the table one can see that if Mallot observes an
authenticated message (w, t), then there are only three possibilities for the key that was
used.
Moreover, for each choice (w’, t’), w 6= w’, there is exactly one of the three possible keys
for (w’,t’) that can be used. Therefore Ps = 1

3
.
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ORTHOGONAL ARRAYS

Definition An orthogonal array OA(n, k, λ) is a λn2 × k array of n symbols, such that in
any two columns of the array every one of the possible n2 pairs of symbols occurs in
exactly λ rows.

Example OA(3,3,1) obtained from the authentication matrix presented before;0BBBBBBBBBB@

0 0 0
1 1 1
2 2 2
0 1 2
1 2 0
2 0 1
0 2 1
1 0 2
2 1 0

1CCCCCCCCCCA

Theorem Suppose we have an orthogonal array OA(n, k, λ).Then there is an

authentication code with |M| = k, |A| = n, |K | = λn2 and PI = Ps =
1

n
.

Proof Use each row of the orthogonal array as an authentication rule (key) with equal
probability. Therefore we have the following correspondence:

orthogonal array authentication code
row authentication rule

column message
symbol authentication tag
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CONSTRUCTION and BOUNDS for OAs

In an orthogonal array OA(n, k, λ)

n determines the number of authenticators (security of the code);

k is the number of messages the code can accommodate;

λ relates to the number of keys −λn2.

The following holds for orthogonal arrays.

If p is prime, then OA(p, p, 1) exits.

Suppose there exists an OA(n, k, λ). Then

λ ≥ k(n − 1) + 1

n2
;

Suppose that p is a prime and d ≤ 2 an integer. Then there is an orthogonal array

OA(p,
(pd − 1)

(p − 1)
, pd−2).

Let us have an authentication code with |A| = n and Pi = Ps =
1

n
.Then |K | ≥ n2.

Moreover, |K | = n2 if and only if there is an orthogonal array OA(n, k,1), where

|M| = k and PK (k) =
1

n2
for every key k ∈ K .

The last claim shows that there are no much better approaches to authentication codes
with deception probabilities as small as possible than orthogonal arrays.
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SECRET SHARING - PROBLEM

In many applications it is of importance to distribute a sensitive information, called here
as a secret (for example an algorithm how to open a safe or a secret key) among several
parties in such a way that only a well define subset of parties can determine the secret if
they cooperate.

In some other cases one can increase security of confidential information, say a secret
key, by sharing it between several parties.

In the following we show how to solve this problem in the following ”threshold” setting:

How to ”partition” a number S (called here as a ”secret”)
into n ”shares” and distribute them among n parties in
such a way that for a fixed (threshold) t < n any t of
them can create S, but no t − 1, or less, of them can can
the slightest idea how to do that.
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BASIC IDEA of the (n,t) THRESHOLD SECRET SHARING

To distribute a secret (number) S among n parties, the
dealer creates a degree t − 1 random polynomial p such
that p(0)=S and distributes to each party a ”share” of it –
value of p in a separate point.

Since each degree t − 1 polynomial p is uniquely
determined by any t points on p, the above distribution of
points allows any t users to determine p, and so also
p(0)=S, and no smaller group of parties, can have
slightest idea about S.
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SECRET SHARING between TWO PARTIES

A dealer creates shares of a binary-string secret s and
distributes them between two parties P1 and P2 by
choosing a random binary string b, of the same length as
s, and

sends the share b to P1 and

sends the share s ⊕ b to P2.

This way, none of the parties P1 and P2 alone has a
slightest idea about s, but both together easily recover s
by computing

b ⊕ (s ⊕ b) = s.

The above scheme can be easily extended to the case of n
users so that only all of them can reveal the secret.
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THRESHOLD SECRET SHARING SCHEMES

Secret sharing schemes ”partition” a ”secret” into shares and distributes them among
several parties in such a way that only predefined sets of parties can ”assemble” the
secret.

For example, a vault in the bank can be opened only if at least two out of three
responsible employees use their knowledge and tools (keys) to open the vault.

An important special simple case of secret sharing schemes are threshold secret sharing
schemes at which a certain threshold of participant is needed and sufficient to assemble
the secret.

Definition Let t ≤ n be positive integers. A (n, t)-threshold scheme is a method of
sharing a secret S among a set P of n parties, P = {Pi | 1 ≤ i ≤ n}, in such a way that
any t, or more, parties can compute the value S , but no group of t - 1, or less, parties
can compute S .

Secret S is chosen by a ”dealer” D /∈ P.

It is assumed that the dealer ”distributes” the secret through shares to parties secretly
and in such a way that no party knows shares of other parties.
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Shamir’s (n,t)-THRESHOLD SCHEME

Initial phase:
Dealer D chooses a prime p, n randomly chooses integers xi , 1 ≤ i ≤ n and sends xi to
the user Pi .
The values xi are then made public.

Share distribution: Suppose that the dealer D wants to distribute a secret S ∈ Zp among
n parties. D randomly chooses, and keeps secret, t - 1 elements of Zp, a1, . . . , at−1.
For 1 ≤ i ≤ n, D computes the ”shares” yi = a(xi ),
where

a(x) = S +
t−1X
j=1

ajx
j mod p.

D then sends the share yi to the party Pi , 1 ≤ i ≤ n and keeps coefficients ai secret.
Secret accumulation: Let parties Pi1 , . . . ,Pit want to determine secret S. Since, unknown
to them, polynomial a(x) has degree t-1, a(x) they know that it has the form

a(x) = a0 + a1x + . . .+ at−1x t−1,

and therefore they can determine all coefficients ai from t equations a(xij ) = yij , where all
arithmetic is done modulo p.

It can be easily shown that equations obtained this way are linearly independent and the
system has a unique solution.
In such a case S = a0.
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Shamir’s SCHEME — TECHNICALITIES

Shamir’s scheme uses the following result concerning polynomials over fields Zp, where p
is prime.

Theorem Let f (x) =
t−1X
i=0

ai x
i ∈ Zp[x ] be a polynomial of degree t - 1 and let

Ω = {(xi , f (xi )) | xi ∈ Zp, i = 1, . . . , t, xi 6= xj}

if i 6= j . For any Q ⊆ Ω, let PQ = {g ∈ Zp[x ]|deg(g) = t − 1, g(x) = y for all (x,y)
∈ Q}. Then it holds:

PS = {f (x)}, i.e. f is the only polynomial of degree t - 1, whose graph contains all t
points in Ω.

If Q is a proper subset of Ω and x 6= 0 for all (x , y) ∈ Q, then each a ∈ Zp appears
with the same frequency as the constant coefficient of polynomials in PQ .

Corollary (Lagrange formula) Let f (x) =
t−1X
i=0

ai x
i ∈ Zp[x ] be a polynomial and let

P = {(xI , f (xi )) | i = 1, . . . , t, xi 6= xj , i 6= j}. Then

f (x) =
tX

i=1

f (xi )
Y

1≤j≤t, j 6=i

x − xj

xi − xj
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Shamir’s (n,t)-THRESHOLD SCHEME — SUMMARY

To distribute n shares of a secret S among parties P1, . . . ,Pn a dealer - a trusted
authority TA proceeds as follows:

TA chooses a prime p > max{S , n} and sets a0 = S .

TA selects randomly a1, . . . , at−1 ∈ Zp and creates the polynomial f (x) =
t−1X
i=0

ai x
i .

TA computes si = f (i), i = 1, . . . , n and transfers each (i , si ) to the party Pi in a
secure way.

Any group J of t or more parties can compute the secret. Indeed, from the previous
corollary we have

S = a0 = f (0) =
X
i∈J

f (i)
Y

j∈J,j 6=i

j

j − i

In case |J| < t, then each a0 ∈ Zp is equally likely to be the secret.
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SECRET SHARING – GENERAL CASE

A serious limitation of the threshold secret sharing schemes is that all groups of parties
with the same number of parties have the same access to the secret.

Practical situations usually require that some (sets of) parties are more important than
others.

Let P be a set of parties. To deal with the above situation such concepts as authorized
set of user of P and access structures are used.

An authorized set of parties A ⊆ P is a set of parties who can together construct the
secret.

An unauthorized set of parties U ⊆ P is a set of parties who alone cannot learn anything
about the secret.

Let P be a set of parties. The access structure Γ ⊆ 2P is a set such that A ∈ Γ for all
authorized sets A and U ∈ 2P − Γ for all unauthorized sets U.

Theorem: For any access structure there exists a secret sharing scheme realizing this
access structure.
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SECRET SHARING SCHEME with VERIFICATION

Secret sharing protocols increase security of a secret information by
sharing it between several parties.

Some secret sharing scheme are such that they work even in case some
parties behave incorrectly.

A secret sharing scheme with verification is such a secret sharing
scheme that:

Each Pi is capable to verify correctness of his/her share si
No party Pi is able to provide incorrect information and to convince
others about its correctness

prof. Jozef Gruska IV054 9. Identification, authentication, secret sharing and e-commerce 401/616



SECRET SHARING SCHEME with VERIFICATION

Secret sharing protocols increase security of a secret information by
sharing it between several parties.

Some secret sharing scheme are such that they work even in case some
parties behave incorrectly.
A secret sharing scheme with verification is such a secret sharing
scheme that:

Each Pi is capable to verify correctness of his/her share si
No party Pi is able to provide incorrect information and to convince
others about its correctness

prof. Jozef Gruska IV054 9. Identification, authentication, secret sharing and e-commerce 401/616



Feldman’s (n,k)-PROTOCOL

Feldman’s protocol is an example of the secret sharing scheme with verification. The
protocol is a generalization of Shamir’s protocol.

It is assumed that all n participants can
broadcast messages to all others and each of them can determine all senders.

Given are large primes p, q, q|(p − 1), q > n and h < p – a generator of Z∗p . All these

numbers, and also the number g = h
p−1

q mod p, are public.

As in Shamir’s scheme, to share a secret S, the dealer assigns to each party Pi a specific
random xi from {1, . . . , q − 1} and generates a random secret polynomial

f (x) =
k−1X
j=0

ajx
j mod q (1)

such that f(0) = S and sends to each Pi a value yi = f (xi ). In addition, using a
broadcasting scheme, the dealer sends to each Pi all values vj = g aj mod p.
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q mod p, are public.

As in Shamir’s scheme, to share a secret S, the dealer assigns to each party Pi a specific
random xi from {1, . . . , q − 1} and generates a random secret polynomial

f (x) =
k−1X
j=0

ajx
j mod q (1)

such that f(0) = S and sends to each Pi a value yi = f (xi ). In addition, using a
broadcasting scheme, the dealer sends to each Pi all values vj = g aj mod p.
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Feldman’s (n,k)-PROTOCOL - continuation

Each Pi verifies that

g yi =
k−1∏
j=0

(vj)
x j
i mod p (1)

If (1) does not hold, Pi asks, using the broadcasting scheme, the dealer to
broadcast correct value of yi . If there are at least k such requests, or some
of the new values of yi does not satisfy (1), the dealer is considered as not
reliable.

One can easily verify that if the dealer works correctly, then all relations (1)
hold.
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VISUAL SECRET SHARING

The basic idea is to create, for a visual information (a
secret) S, a set of n transparencies in such a way that one
can see S only if all n trancparencies are overlaid.
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E-COMMERCE

Very important is to ensure security of e-money
transactions needed for e-commerce.

In addition to providing security and privacy, the task is
also to prevent alterations of purchase orders and forgery
of credit card information.
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BASIC REQUIREMENTS for e-COMMERCE SYSTEMS

Authenticity: Participants in transactions cannot be
impersonated and signatures cannot be forged.

Integrity: Documents (purchase orders, payment
instructions,...) cannot be forged.

Privacy: Details of transaction should be kept secret.

Security: Sensitive information (as credit card numbers)
must be protected.

Anonymity: Anonymity of money senders should be
guaranteed.

Additional requirement: In order to allow an efficient
fighting of the organized crime a system for processing
e-money has to be such that under well defined conditions
it has to be possible to revoke customer’s identity and flow
of e-money.
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HISTORICAL COMMENT

So called Secure Electronic Transaction protocol
was created to standardize the exchange of credit
card information.

Development of SET initiated in 1996 credit card
companies MasterCard and Visa.

prof. Jozef Gruska IV054 9. Identification, authentication, secret sharing and e-commerce 407/616



EXAMPLE – DUAL SIGNATURE PROTOCOL

We present a protocol to solve the following security and privacy problem in e-commerce:
How to arrange e-shopping in such a way that shoppers’ banks should not know what
shoppers/cardholders are ordering and shops should not learn credit card numbers of
shoppers.

Participants of our e-commerce protocol will be: a bank, a shopper/cardholder, a shop

The cardholder will use the following information:

GSO – Goods and Services Order (cardholder’s name, shop’s name, items being
ordered, their quantity,...)

PI - Payment Instructions (shop’s name, card number, total price,...)

Protocol will use also a public hash function h.

RSA cryptosystem will also be used and

eC , eS and eB will be public (encryption) keys of cardholder, shop, bank and

dC , dS and dB will be their secret (decryption) keys.
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CARDHOLDER and SHOP ACTIONS

A cardholder performs the following procedure – to create GSO-goods and services order

1 Computes HEGSO = h(eS(GSO)) – hash value of the encryption of GSO.

2 Computes HEPI = h(eB(PI )) – hash value of the encryption of the payment
instructions for the bank.

3 Computes HPO = h(HEPI‖HEGSO) – Hash value of the Payment Order.

4 Signs HPO by computing ”Dual Signature” DS = dC (HPO).

5 Sends eS(GSO), DS, HEPI, and eB(PI ) to the shop.

The Shop does the following: – to create payment instructions

Calculates h(eS(GSO)) = HEGSO;

Calculates h(HEPI |HEGSO) and eC (DS). If they are equal, the shop has verified by
that the cardholder signature;

Computes dS(eS(GSO)) to get GSO.

Sends HEGSO,HEPI , eB(PI ), and DS to the bank.
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BANK and SHOP ACTIONS

The Bank has received HEPI, HEGSO, eB(PI ), and DS and performs the following
actions.

1 Computes h(eB(PI )) – which should be equal to HEPI.

2 Computes h(h(eB(PI ))‖HEGSO) which should be equal to eC (DS) = HPO.

3 Computes dB(eB(PI )) to obtain PI;

4 Returns an encrypted (with eS) digitally signed authorization to shop, guaranteeing
the payment.

Shop completes the procedure by encrypting, with eC , the receipt to the cardholder,
indicating that transaction has been completed.

It is easy to verify that the above protocol fulfills basic requirements concerning security,
privacy and integrity.
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DIGITAL MONEY

Is it possible to have electronic (digital) money?

It seems that not, because copies of digital information are indistinguishable from their
origin and one could therefore hardly prevent double spending,....

T. Okamoto and K. Ohia formulated six properties digital money systems should have.

1 One should be able to send e-money through e-networks.

2 It should not be possible to copy and reuse e-money.

3 Transactions using e-money could be done off-line – that is no communication with
central bank should be needed during translation.

4 One should be able to sent e-money to anybody.

5 An e-coin could be divided into e-coins of smaller values.

Several systems of e-money have been created that satisfy all or at least some of the
above requirements.
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BLIND SIGNATURES – APPLICATIONS

Blind digital signatures allow the signer (bank) to sign a message without seeing its
content.

Scenario: Customer Bob would like to give e-money to Shop. E-money has to be signed
by a Bank. Shop must be able to verify Bank’s signature. Later, when Shop sends
e-money to Bank, Bank should not be able to recognize that it signed these e-money for
Bob. Bank has therefore to sign money blindly.

Bob can obtain a blind signature for a message m from Bank by executing the Schnorr
blind signature protocol described on the next slide.

Basic setting

Bank chooses large primes p, q|(p − 1) and an g ∈ Zp of order q.

Let h : {0, 1}∗ → Zp be a collision-free hash function.

Bank’s secret will be a randomly chosen x ∈ {0, . . . , p − 1}.
Public information: (p, q, g , y = g x).
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BLIND SIGNATURES – protocols

1 Schnorr’s simplified identification scheme in which Bank proves its identity by
proving that it knows x.

Bank chooses a random r ∈ {0, . . . , q − 1} and send a = g r to Bob. {By that Bank
”commits” itself to r}.
Bob sends to Bank a random c ∈ {0, . . . , q − 1} {a challenge}.
Bank sends to Bob b = r – cx {a response}.
Bob accepts the proof that bank knows x if a = gby c . {because y = gx}

2 Transfer of the identification scheme to a signature scheme:

Bob chooses as c = h(m‖a), where m is message to sign.

Signature: (c, b); Verification rule: a = gby c ; Transcript: (a, c, b).

3 Shnorr’s blind signature scheme

Bank sends to Bob a′ = g r′ with random r ′ ∈ {0, . . . , q − 1}.
Bob chooses random u, v ,w ∈ {0, . . . , q − 1}, u 6= 0, computes a = a′ugvyw ,
c = h(m‖a), c ′ = (c − w)u−1 and sends c’ to Bank.
Bank sends to Bob b’ = r’ - c’x.

Bob verifies whether a′ = gb′y c′ , computes b = ub’ + v and gets blind signature
σ(m) = (c, b) of m.

Verification condition for the blind signature: c = h(m‖gby c).

Both (a,c,b) and (a’,c’,b’) are valid transcripts.
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COMPUTATION of DECEPTION PROBABILITIES I

Probability of impersonation: For w ∈ M, t ∈ T , let us define payoff(w, t) to be the
probability that Bob accepts the message (w, t) as authentic. Then

payoff (w , t) = Pr(t = ak0 (w)) (4)

=
X

{k∈K |ak (w)=t}

PrK (k) (5)

In other words, payoff(w, t) is computed by selecting the rows of the authentication
matrix that have entry t in column w and summing probabilities of the corresponding
keys.
Therefore Pi = max{payoff (w , t), |w ∈ M, t ∈ A}.

Probability of substitution: Define, for w ,w ′ ∈ M,w 6= w ′ and
t, t′ ∈ A, payoff (w ′, t′,w , t) to be the probability that a substitution of (w, t) with
(w’, t’) will succeed to deceive Bob. Hence

payoff (w ′, t′,w , t) = Pr(t′ = ak0 (w ′)|t = ak0 (w)) (6)

=
Pr(t′ = ak0 (w ′) ∩ t = ek0 (w))

Pr(t = ak0 (w))
(7)

=

P
{k∈K |ak (w)=t,ak (w′)=t′} pk(k)

payoff (w , t)
(8)

Observe that the numerator in the last fraction is found by selecting rows of the
authentication matrix with value t in column w and t’ in column w’.
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COMPUTATION of DECEPTION PROBABILITIES II

Since Mallot wants to maximize his chance of deceiving Bob, he needs to compute

pw,t = max{payoff (w ′, t′,w , t)|w ′ ∈ M,w 6= w ′, t′ ∈ A}.

pw,t therefore denotes the probability that Mallot can deceive Bob with a substitution in
the case (w, t) is the message observed.

If PrMa(w , t) is the probability of observing a message (w, t) in the channel, then

PS =
X

(w,t)∈Ma

PrMa(w , t)pw,t

and

PrMa(w , t) = PrM(w)PrK (t|w) = PrM(w)× payoff (w , t).

The next problem is to show how to construct an authentication code such that the
deception probabilities are as low as possible.

The concept of orthogonal arrays, introduced next, serves well such a purpose.
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Part X

Protocols to do seemingly impossible and zero-knowledge protocols



PROTOCOLS to do SEEMINGLY IMPOSSIBLE

A protocol is an algorithm two (or more) parties have to follow to perform
a communication/cooperation.

A cryptographical protocol is a protocol to achieve secure
communication during some goal oriented cooperation.

In this chapter we first present several cryptographic protocols for such
basic cryptographic primitives as coin tossing, bit commitment and
oblivious transfer.

After that we deal with a variety of cryptographical protocols that allow to
solve easily seemingly unsolvable problems.

Of special importance among them are so called zero-knowledge protocols
we will deal with afterwards. They are counter intuitive, though powerful
and useful.
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PRIMITIVES for CRYPTOGRAPHIC PROTOCOLS

Cryptographic protocols are specifications how two parties, Alice and Bob, should prepare
themselves for a communication and how they should behave during a communication in
order to achieve their goal and be protected against an adversary.

In coin-flipping protocols Alice and Bob can flip a coin over a distance in such a way
that neither of them can determine the outcome of the flip, but both can agree on the
outcome in spite of the fact that they do not trust each other.

In bit commitment protocols Alice can choose a bit and get committed to it in the
following sense: Bob has no way of learning Alice’s commitment and Alice has no way of
changing her commitment. Alice commits herself to a bit x using a commit(x)
procedure, and reveals her commitment, if needed, using open(x) procedure. In 1-out-2

oblivious transfer protocols Alice transmits two messages m1 and m2 to Bob who can
chose whether to receive m1 or m2, but cannot learn both, and Alice has no idea which of
them Bob has received.
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SCHEMES for PRIMITIVES of CRYPTOGRAPHIC PROTOCOLS

Coin−�ipping
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b

random
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Bit commitment
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PROTOCOLS for COIN-FLIPPING BY PHONE

Coin-flipping by telephone:

Alice and Bob got divorced and they do not trust each other any longer. They want to
decide, communicating by phone only, who gets the car.

Protocol 1 Alice sends Bob messages head and tail encrypted by a one-way function f.
Bob guesses which one of them is encryption of head. Alice tells Bob whether his guess
was correct. If Bob does not believe her, Alice sends f to Bob.

Protocol 2 Alice chooses two large primes p,q, sends Bob n = pq and keeps p, q secret.

Bob chooses randomly an integer y ∈ {1, . . . , n
2
}, sends Alice x = y 2 mod n and tells

Alice: if you guess y correctly, car will be yours.

Alice computes four square roots (x1, n − x1) and (x2, n − x2) of x.

Let

x ′1 = min(x1, n − x1), x ′2 = min(x2, n − x2).

Since y ∈ {1, . . . , n
2
}, either y = x ′1 or y = x ′2.

Alice then guesses whether y = x ′1 or y = x ′2 and tells Bob her choice (for example by
reporting the position and value of the leftmost bit in which x ′1 and x ′2 differ).

Bob tells Alice whether her guess was correct.

(Later, if necessary, Alice reveals p and q, and Bob reveals y.)
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Alice computes four square roots (x1, n − x1) and (x2, n − x2) of x.

Let

x ′1 = min(x1, n − x1), x ′2 = min(x2, n − x2).

Since y ∈ {1, . . . , n
2
}, either y = x ′1 or y = x ′2.

Alice then guesses whether y = x ′1 or y = x ′2 and tells Bob her choice (for example by
reporting the position and value of the leftmost bit in which x ′1 and x ′2 differ).

Bob tells Alice whether her guess was correct.

(Later, if necessary, Alice reveals p and q, and Bob reveals y.)
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PROTOCOLS for COIN-FLIPPING BY PHONE
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COIN TOSSING – requirements and problems

In any good coin tossing protocol both parties should influence the
outcome and should accept the outcome. Both outcomes should have
the same probability.
Requirements for a coin tossing protocol are sometimes generalized as
follows:

The outcome of the protocol is an element from the set {0, 1,
reject}
If both parties behave correctly, the outcome should be from the
set {0, 1}
If it is not the case that both parties behave correctly, the outcome
should be reject

Problem: In some coin tossing protocols one party can find out the
outcome sooner than the second party. In such a case if she is not happy
with the outcome she can disrupt the protocol – to produce reject or to say
”I do not continue in performing the protocol”. A way out is to require
that in case of correct behavior no outcome should have probability > 1

2 .
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COIN TOSSING USING a ONE-WAY FUNCTION

Protocol:

Alice chooses a one-way function f and informs Bob about the
definition domain of f.

Bob chooses randomly r1, r2 from dom(f) and sends them to Alice

Alice sends to Bob one of the values f (r1) or f (r2)

Bob announces Alice his guess which of the two values he received

Alice announces Bob whether his guess was correct (0) or not (1)

If one needs to verify correctness, Alice should send to Bob
specification of f

The protocol is computationally secure. Indeed, to cheat, Alice should be
able to find, for randomly chosen r1, r2 such a one-way function f that
f (r1) = f (r2).
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BIT COMMITMENT PROTOCOLS (BCP)

Basic ideas and solutions I

In a bit commitment protocol Alice chooses a bit b and gets committed to b, in the
following sense:

Bob has no way of knowing which commitment Alice has made, and Alice has no way of
changing her commitment once she has made it; say after Bob announces his guess as to
what Alice has chosen.

An example of a ”pre-computer era” bit commitment protocol is that Alice writes her
commitment on a paper, locks it in a box, sends the box to Bob and, later, in the
opening phase, she sends also the key to Bob.

Complexity era solution I. Alice chooses a one-way function f and an even (odd) x if she
wants to commit herself to 0 (1) and sends to Bob f(x) and f.

Problem: Alice may know an even x1 and an odd x2 such that f (x1) = f (x2).

Complexity era solution II. Alice chooses a one-way function f, two random x1, x2 and a
bit b she wishes to commit to, and sends to Bob (f (x1, x2, b), x1) - a commitment.

When times comes for Alice to reveal her bit she sends to Bob f and the triple (x1, x2, b).
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BIT COMMITMENT SCHEMES I

The basis of bit commitment protocols are bit commitment schemes:

A bit commitment scheme is a mapping f : {0, 1} × X → Y , where X and
Y are finite sets.

A commitment to a b ∈ {0, 1}, or an encryption of b, is any value (called a
blow) f(b, x) where x ∈ X.

Each bit commitment protocol has two phases:

Commitment phase: The sender sends a bit b he wants to commit to, in an
encrypted form, to the receiver.

Opening phase: If required, the sender sends to the receiver additional
information that enables the receiver to get b.
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BIT COMMITMENT SCHEMES II

Each bit commitment scheme should have three properties:

Hiding (privacy): For no b ∈ {0, 1} and no x ∈ X , it is feasible for Bob to
determine b from B = f(b, x).

Binding: Alice can ”open” her commitment b, by revealing (opening) x and
b such that B = f(b, x), but she should not be able to open a commitment
(blow) B as both 0 and 1.

Correctness: If both, the sender and the receiver, follow the protocol, then
the receiver will always learn (recover) the committed value b.
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BIT COMMITMENT with ONE-WAY FUNCTIONS

Commitment phase:

Alice and Bob choose a one-way function f

Bob sends a randomly chosen r1 to Alice

Alice chooses random r2 and her committed bit b and sends to Bob
f (r1, r2, b).

Opening phase:

Alice sends to Bob r2 and b

Bob computes f (r1, r2, b) and compares with the value he has already
received.
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HASH FUNCTIONS and COMMITMENTS

A commitment to a data w, without revealing w, using a hash function h,
can be done as follows:

Commitment phase: To commit to a w choose a random r and make public
h(wr).

Opening phase: reveal r and w.

For this application the hash function h has to be one-way: from h(wr) it
should be unfeasible to determine wr
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TWO SPECIAL BIT COMMITMENT SCHEMES

Bit commitment scheme I. Let p, q be large primes, n = pq, m ∈ QNR(n), X = Y =
Z∗n . Let n,m be public.

Commitment: f(b, x) = mbx2 mod n for a random x from X.

Since computation of quadratic residues is in general infeasible, this bit commitment
scheme is hiding.

Since m ∈ QNR(n), there are no x1, x2 such that mx2
1 = x2

2 mod n and therefore the
scheme is binding.

Bit commitment scheme II. Let p be a large Blum prime, X = Zp∗ = Y, α be a
primitive element of Z∗p .

f (b, x) = αx mod p, if SLB(x) = b;
= αp−x mod p, if SLB(x) 6= b.

where

SLB(x) = 0 if x ≡ 0, 1 (mod 4);
= 1 if x ≡ 2, 3 (mod 4).

Binding property of this bit commitment scheme follows from the fact that in the case of
discrete logarithms modulo Blum primes there is no effective way to determine second
least significant bit (SLB) of the discrete logarithm.
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TWO SPECIAL BIT COMMITMENT SCHEMES
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MAKING COIN TOSSING FROM BIT COMMITMENT

Each bit commitment scheme can be used to solve coin tossing problem as follows:

1 Alice tosses a coin, and commits itself to its outcome bA (say to 0 (1) if the
outcome is head (tail)) and sends the commitment to Bob.

2 Bob also tosses a coin and sends the outcome bB to Alice.

3 Alice opens her commitment. to Bob (so he knows bA)

4 Both Alice and Bob compute b = bA ⊕ bB .

Observe that if at least one of the parties follows the protocol, that is it tosses a random
coin, the outcome is indeed a random bit.

Note: Observe that after step 2 Alice will know what the outcome is, but
Bob does not. So Alice can disrupt the protocol if the outcome is to be not
good for her. This is a weak point of this protocol.
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BASIC TYPES of HIDING and BINDING

If the hiding or the binding property of a commitment protocol depends on
the complexity of a computational problem, we speak about computational
hiding and computational binding.

In case, the binding or the hiding property does not depend on the
complexity of a computational problem, we speak about unconditional
hiding or unconditional binding.
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A COMMITMENT SCHEME BASED on DISCRETE LOGARITHM

Alice wants to commit herself to an m ∈ {0, . . . , q − 1}.

Scheme setting:

Bob randomly chooses primes p and q such that

q|(p − 1).

Bob chooses random generators g 6= 1 6= v of the subgroup G of order q ∈ Z∗n . Bob
sends p, q, g and v to Alice.

Commitment phase:

To commit to an m ∈ {0, . . . , q − 1}, Alice chooses a random r ∈ Zq, and sends
c = g r vm to Bob.

Opening phase:

Alice sends r and m to Bob who then verifies whether c= g r vm.
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COMMENTS

If Alice, committed to an m, could open her commitment as m̄ 6= m,
using some r̄ , then g rvm = g r̄v m̄ and therefore

lgg v = (r − r̄)(m̄ −m)−1.

Hence, Alice could compute lggv of a randomly chosen element v ∈ G ,
what contradicts the assumption that computation of discrete
logarithms in G is infeasible.

Since g and v are generators of G, then g r is a uniformly chosen
random element in G, perfectly hiding vm and m in g rvm, as in the
encryption with ONE-TIME PAD cryptosystem.
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BIT COMMITMENT using ENCRYPTIONS

Commit phase:

1 Bob generates a random string r and sends it to Alice

2 Alice commit herself to a bit b using a key k through an encryption

Ek(rb)

and sends it to Bob.

Opening phase:

1 Alice sends the key k to Bob.

2 Bob decrypts the message to learn b and to verify r.

Comment: without Bob’s random string r Alice could find a different key l
such that ek(b) = el(¬b).
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COMMITMENTS and ELECTRONIC VOTING

Let com(r, m) = g rvm denote commitment to m in the commitment scheme based on discrete
logarithm. If r1, r2,m1,m2 ∈ Zn, then com(r1,m1)× com(r2,m2) = com(r1 + r2,m1 + m2).
Commitment schemes with such a property are called homomorphic commitment schemes.

Homomorphic schemes can be used to cast yes-no votes of n voters V1, . . . ,Vn, by the trusted
authority TA for whom eT and dT are ElGamal encryption and decryption algorithms.
This works as follows: Each voter Vi chooses his vote mi ∈ {0, 1}, a random rI ∈ {0, . . . , q − 1}
and computes his voting commitment cI = com(ri ,mi ). Then Vi makes ci public and sends
eT (g ri ) to TA and TA computes

dT

 
nY

i=1

eT (g ri )

!
=

nY
i=1

g ri = g r ,

where r =
nX

i=1

ri , and makes public g r .

Now, anybody can compute the result s of voting from publicly known ci and g r since

v s =

nY
i=1

ci

g r
,

with s =
nX

i=1

mi .

s can now be derived from v s by computing v1, v2, v3, . . . and comparing with v s if the number

of voters is not too large.
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TRUST in CRYPTOGRAPHIC PROTOCOLS - deliberations

In any interaction between people, there is a certain level of risk, trust, and
expected behaviour, that is implicit in the interchanges.

People may behave properly for a variety of reasons: fear from prosecution,
desire to act in unethical manner due to social influences, and so on.

However, in cryptographic protocols trust has to be kept to the lowest
possible level.

In any cryptographic protocol, if there is an absence of a mechanism for
verifying, say authenticity, one must assume, as default, that other
participants can be dishonest (if for no other reason than for self-
preservation).
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OBLIVIOUS TRANSFER (OT) PROBLEM

Story: Alice knows a secret and wants to send secret to
Bob in such a way that he gets secret with probability 1

2 ,
and he knows whether he got secret, but Alice has no idea
whether he received secret. (Or Alice has several secrets
and Bob wants to buy one of them but he does not want
Alice to know which one he bought.)

Oblivious transfer problem: Design a protocol for sending
a message from Alice to Bob in such a way that Bob
receives the message with probability 1

2 and ”garbage”
with the probability 1

2 . Moreover, Bob knows whether he
got the message or garbage, but Alice has no idea which
one he got.
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OBLIVIOUS TRANSFER PROTOCOL - continuation

Oblivious transfer problem: Design a protocol for sending a message from Alice to Bob in
such a way that Bob receives the message with probability 1

2
and ”garbage” with the

probability 1
2
. Moreover, Bob knows whether he got the message or garbage, but Alice

has no idea which one he got.

An Oblivious transfer protocol:

1 Alice chooses two large primes p and q and sends n = pq to Bob.

2 Bob chooses a random number x and sends y = x2 mod n to Alice.

3 Alice computes four square roots ±x1,±x2 of y (mod n) and sends one of them to
Bob. (She can do it, but has no idea which of them is x.)

4 Bob checks whether the number he got is congruent to x. If yes, he has received no
new information. Otherwise, Bob has two different square roots modulo n and can
factor n. Alice has no way of knowing whether this is the case.
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1-OUT-OF-2 OBLIVIOUS TRANSFER PROBLEM

The 1-out-of-2 oblivious transfer problem: Alice sends two messages to
Bob in such a way that Bob can choose which of the messages he receives
(but he cannot choose both), but Alice cannot learn Bob’s decision.

A generalization of 1-out-of-2 oblivious transfer problem is two-party
oblivious circuit evaluation problem:

Alice has a secret i and Bob has a secret j and they both know some
function f.

At the end of protocol the following conditions should hold:
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1-out-2 OBLIVIOUS TRANSFER BOX

1-out-of-two oblivious transfer can be imagined as a box with three inputs
and one output.

INPUTS: Alice inputs: x0 and x1;

. . . . . . . . . Bob inputs a bit c

OUTPUT: Bob gets as the output: xc
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AN IMPLEMENTATION of OBLIVIOUS TRANSFER PROTOCOLS

Alice generates two key pairs for a PKC P and sends both her public
keys p1, p2 to Bob.

Bob chooses a to-be random secret key k for a SKC S, encrypts it by
one of Alice’s public keys, p1 or p2 and sends the outcome to Alice.

Alice uses her two secret keys to decrypt the message she received.
One of the outcomes is garbage g, another one is k, but she does not
know which one is k.

Alice encrypts her two secret messages, one with k, another with g and
sends them to Bob.

Bob uses S with k to decrypt both messages he got and one of the
attempts is successful. Alice has no idea which one.
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HISTORY and POWER of OBLIVIOUS TRANSFER PROTOCOLS

C. Crépeau (1988) showed that both versions of oblivious transfer are
equivalent – a protocol for each version can be realized using any
protocol for the other version, using a cryptographic reduction

Original definition of the oblivious transfer is due to J. Halpern and M.
O. Rabin (1983); 1-out-of-2 oblivious transfer suggested S. Even, O.
Goldreich and A. Lempel in 1985.

J. Kilian (1988) showed that oblivious transfers are very powerful
protocols that allow secure computation of the value f(x, y) of any
binary function f , where x is a secret value known only by Alice, and y
is a secret value known only by Bob, in such a way that it holds:

Both, Alice and Bob, learn f(x, y)
Alice learns about y only as much as she can learn from x and f(x,
y)
Bob learns about x only as much as he can learn from y and f(x, y)
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BIT COMMITMENT from 1-out-2 oblivious transfer

Using 1-out-of-2 oblivious transfer box (OT-box) one can design a bit commitment
scheme:

COMMITMENT PHASE:

1 Alice selects a random bit r and her commitment bit b;

2 Alice inputs x0 = r and x1 = r ⊕ b into the OT-box.

3 Alice sends a message to Bob telling him it is his turn.

4 Bob selects a random bit c, inputs c into the OT-box and records the output xc .

OPENING PHASE:

1 Alice sends r and b to Bob.

2 Bob checks to see if xc = r ⊕ (bc)
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MENTAL POKER PLAYING by PHONE by Alice and Bob

Basic requirements (for playing poker with 52 cards):

Initial hands (sets of 5 cards) of both players are equally likely.

The initial hands of Alice and Bob are disjoint.

Both players always know their own hands but not that of the opponent.

Each player can detect eventual cheating of the other player.

A commutative cryptosystem is used with all functions kept secret.

Players agree on numbers w1, . . . ,w52 as the names of 52 cards.

Protocol:

1 Bob encrypts cards with eB , and tells eB(w1), . . . , eB(w52), in a randomly chosen
order, to Alice.

2 Alice chooses five of the items eB(wi ) as Bob’s hand and tells them Bob.

3 Alice chooses another five of eB(wi ), encrypts them with eA and sends them to Bob.

4 Bob applies dB to all five values eA(eB(wi )) he got from Alice and sends eA(wi ) to
Alice as Alice’s hand. At this point both players have their hands and poker can
start.

Remark: The cryptosystems that are used cannot be public-key in the normal sense.
Otherwise Alice could compute eB(wi ) and deal with the cards accordingly – a good hand
for B but slightly better for herself.
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MENTAL POKER by PHONE with THREE PLAYERS

1 Alice encrypts 52 cards w1, . . . ,w52 with eA and sends encryptions, in a random
order, to Bob.

2 Bob, who cannot decode the encryptions, chooses 5 of them, randomly. He encrypts
them with eB , and sends eB(eA(wi )) to Alice and the remaining 47 encryptions
eA(wi ) to Carol.

3 Carol, who cannot decode any of the encryptions, chooses five of them randomly,
encrypts them also with her key and sends Alice eC (eA(wi )).

4 Alice, who cannot read encrypted messages from Bob and Carol, decrypt them with
her key and sends back to the senders,

five dA(eB(eA(wi ))) = eB(wi ) to Bob,

five dA(eC (eA(wi ))) = eC (wi ) to Carol.

5 Bob and Carol decrypt encryptions they got to learn their hands.

6 Carol chooses randomly 5 other messages eA(wi ) from the remaining 42 and sends
them to Alice.

7 Alice decrypt messages to learn her hand.

Additional cards can be dealt with in a similar manner. If either Bob or Carol wants a
card, they take an encrypted message eA(wi ) and go through the protocol with Alice. If
Alice wants a card, whoever currently has the deck sends her a card.
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Alice wants a card, whoever currently has the deck sends her a card.
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MENTAL POKER by PHONE with THREE PLAYERS
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ZERO-KNOWLEDGE PROOF PROTOCOLS

To the most important primitives for cryptographic protocols, and at the
same time very counter intuitive primitives, belong so-called
zero-knowledge (proof) protocols.

Very informally, a zero-knowledge proof protocol allows one party, usually
called PROVER, to convince another party, called VERIFIER, that
PROVER knows some fact (a secret, a proof of a theorem,...) without
revealing to the VERIFIER ANY information about his knowledge (secret,
proof,...).

In the rest of this chapter we present and illustrate very basic ideas of
zero-knowledge proof protocols and their importance for cryptography.

Zero-knowledge proof protocols are a special type of so-called interactive
proof systems.

By a theorem we understand in the following a claim that a specific object
has a specific property. For example, that a specific graph is 3-colorable.
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AN ILLUSTRATIVE EXAMPLE

(A cave with a door opening on a secret word)

Alice knows a secret word opening the door in cave. How can she convince Bob about it
without revealing this secret word?
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ZERO-KNOWLEDGE PROOFS

Informally speaking, an interactive proof systems has the property of being
zero-knowledge if the Verifier, that interacts with the honest Prover of the
system, learns nothing from their interaction beyond the validity of the
statement being proved.

There are several variants of zero-knowledge protocols that differ in the
specific way the notion of learning nothing is formalized.

In each variant it is viewed that a particular Verifier learns nothing if there
exists a polynomial time simulator whose output is indistinguishable from
the output of the Verifier after interacting with the Prover on any possible
instance of the problem.

The different variants of zero-knowledge proof systems concern the
strength of this distinguishability. In particular, perfect or statistical
zero-knowledge refer to the situation where the simulator’s output and the
Verifier’s output are indistinguishable in an information theoretic sense.

Computational zero-knowledge refer to the case there is no polynomial time
distinguishability.
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INTERACTIVE PROOF PROTOCOLS

In an interactive proof system there are two parties

An (all powerful) Prover, often called Peggy (a randomized algorithm that uses a
private random number generator);

A (little (polynomially) powerful) Verifier, often called Vic (a polynomial time
randomized algorithm that uses a private random number generator).

Prover knows some secret, or a knowledge, or a fact about a specific object, and wishes
to convince Vic, through a communication with him, that he has the above knowledge.

For example, both Prover and Verifier posses an input x and Prover wants to convince
Verifier that x has a certain Property and that Prover knows how to prove that.

The interactive proof system consists of several rounds. In each round Prover and Verifier
alternatively do the following.

1 Receive a message from the other party.

2 Perform a (private) computation.

3 Send a message to the other party.

Communication starts usually by a challenge of Verifier and a response of Prover.

At the end, Verifier either accepts or rejects Prover’s attempts to convince Verifier.
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EXAMPLE – GRAPH NON-ISOMORPHISM

A simple interactive proof protocol exists for a computationally very hard graph
non-isomorphism problem.

Input: Two graphs G1 and G2, with the set of nodes {1, . . . , n}

Protocol: Repeat n times the following steps:

1 Vic chooses randomly an integer i ∈ {1, 2} and a permutation π of {1, . . . , n}. Vic
then computes the image H of Gi under permutation π and sends H to Peggy.

2 Peggy determines the value j such that GJ is isomorphic to H, and sends j to Vic.

3 Vic checks to see if i = j.

Vic accepts Peggy’s proof if i = j in each of n rounds.

Completeness: If G1 is not isomorphic to G2, then probability that Vic accepts is clearly
1 because Peggy will have no problem answer correctly.

Soundness: If G1 is isomorphic to G2, then Peggy can deceive Vic if and only if she
correctly guesses n times those i’s Vic chooses randomly. Probability that this happens is
2−n.

Observe that Vic’s computations can be performed in polynomial time (with respect to
the size of graphs).
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INTERACTIVE PROOF SYSTEMS

An interactive proof protocol is said to be an interactive proof system for a
secret/knowledge or a decision problem Π if the following properties are satisfied provided
that Prover and Verifier posses an input x (or Prover has secret knowledge) and Prover
wants to convince Verifier that x has certain properties and that Prover knows how to
prove that (or that Prover knows the secret).

(Knowledge) Completeness: If x is a yes-instance of Π, or Peggy knows the secret, then
Vic always accepts Peggy’s ”proof” for sure.

(Knowledge) Soundness: If x is a no-instance of Π, or Peggy does not know the secret,
then Vic accepts Peggy’s ”proof” only with very small probability.

CHEATING

If the Prover and the Verifier of an interactive proof system fully follow the protocol
they are called honest Prover and honest Verifier.

A Prover who does not know secret or proof and tries to convince the Verifier is
called cheating Prover.

A Verifier who does not follow the behaviour specified in the protocol is called a
cheating Verifier.
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ZERO-KNOWLEDGE PROOF PROTOCOLS INFORMATION VERY
INFORMALLY

Very informally An interactive ”proof protocol” at which a
Prover tries to convince a Verifier about the truth of a
statement, or about possession of a knowledge, is called
”zero-knowledge” protocol if the Verifier does not learn
from communication anything more except that the
statement is true or that Prover has knowledge (secret)
she claims to have.

Example The proof n = 670592745 =
12345 × 54321 is not a zero-knowledge proof that n is not
a prime.
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ZERO-KNOWLEDGE PROOF PROTOCOLS INFORMATION
MORE FORMALLY

huge Informally A zero-knowledge proof is an interactive proof protocol that provides
highly convincing evidence that a statement is true or that Prover has certain knowledge
(of a secret) and that Prover knows a (standard) proof of it while providing not a single
bit of information about the proof (knowledge or secret). (In particular, Verifier who got

convinced about the correctness of a statement cannot convince the third person about that.)

More formally A zero-knowledge proof of a theorem T is an interactive two party
protocol, in which Prover is able to convince Verifier who follows the same protocol, by
the overwhelming statistical evidence, that T is true, if T is indeed true, but no Prover is
able to convince Verifier that T is true, if this is not so. In addition, during interactions,
Prover does not reveal to Verifier any other information, except whether T is true or not.
Consequently, whatever Verifier can do after he gets convinced, he can do just believing
that T is true.
Similar arguments hold for the case Prover possesses a secret.
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AGE DIFFERENCE FINDING PROTOCOL

Alice and Bob want to find out who of them is older without disclosing any other
information about their age.

The following protocol is based on a public-key cryptosystem, in which it is assumed that
neither Bob nor Alice are older than 100 years.

Protocol Let age of Bob be j; and age of Alice be i.

1 Bob chooses a random x ∈ {1, . . . , 100}, computes k = eA(x) and sends to Alice s
= k - j.

2 Alice first computes the numbers yu = dA(s + u); 1 ≤ u ≤ 100, then chooses a large
random prime p and computes numbers

zu = yu mod p, 1 ≤ u ≤ 100 (*)

and verifies that for all u 6= v

|zu − zv | ≥ 2 and zu 6= 0 (**)

(If this is not the case, Alice choose a new p, repeats computations in (*) and
checks (**) again.)

Finally, Alice sends Bob the following sequence (order is important).

z1, . . . , zi , zi+1 + 1, . . . , z100 + 1, p
as z ′1, . . . , z

′
i , z
′
i+1, . . . , z

′
100, p

3 Bob checks whether j-th number in the above sequence is congruent to x modulo p.
If yes, Bob knows that i ≥ j , otherwise i < j .

i ≥ j ⇒ z ′J = zJ ≡ yJ = dA(k) ≡ x (mod p)
i < j ⇒ z ′J = zJ + 1 6= yJ = dA(k) ≡ x (mod p)
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Protocol Let age of Bob be j; and age of Alice be i.

1 Bob chooses a random x ∈ {1, . . . , 100}, computes k = eA(x) and sends to Alice s
= k - j.

2 Alice first computes the numbers yu = dA(s + u); 1 ≤ u ≤ 100, then chooses a large
random prime p and computes numbers

zu = yu mod p, 1 ≤ u ≤ 100 (*)

and verifies that for all u 6= v

|zu − zv | ≥ 2 and zu 6= 0 (**)

(If this is not the case, Alice choose a new p, repeats computations in (*) and
checks (**) again.)

Finally, Alice sends Bob the following sequence (order is important).

z1, . . . , zi , zi+1 + 1, . . . , z100 + 1, p
as z ′1, . . . , z

′
i , z
′
i+1, . . . , z

′
100, p

3 Bob checks whether j-th number in the above sequence is congruent to x modulo p.
If yes, Bob knows that i ≥ j , otherwise i < j .

i ≥ j ⇒ z ′J = zJ ≡ yJ = dA(k) ≡ x (mod p)
i < j ⇒ z ′J = zJ + 1 6= yJ = dA(k) ≡ x (mod p)
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3-COLORABILITY of GRAPHS

With the following protocol Peggy can convince Vic that a particular graph G, known to
both of them, is 3-colorable and that Peggy knows such a coloring, without revealing to
Vic any information how such coloring looks.

(a)

1 red e1 e1(red) = y1

2 green e2 e2(green) = y2

3 blue e3 e3(blue) = y3

4 red e4 e4(red) = y4

5 blue e5 e5(blue) = y5

6 green e6 e6(green) = y6

(b)

Protocol: Peggy colors the graph G = (V, E) with colors (red, blue, green) and she
performs with Vic |E |2- times the following interactions, where v1, . . . , vn are nodes of V.

1 Peggy chooses a random permutation of colors, recolors G, and encrypts, for i =
1,2,. . . ,n, the color ci of node vi by an encryption procedure ei – for each i different.
Peggy then removes colors from nodes, labels the i-th node of G with cryptotext
yi = ei (ci ), and designs Table (b).
Peggy finally shows Vic the graph with nodes labeled by cryptotexts.

2 Vic chooses an edge and asks Peggy to show him coloring of the corresponding
nodes.

3 Peggy shows Vic entries of the table corresponding to the nodes of the chosen edge.
4 Vic performs desired encryptions to verify that nodes really have colors as shown.
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APPLICATIONS of ZERO-KNOWLEDGE PROOFS in
CRYPTOGRAPHIC PROTOCOLS

The fact that for a big class of statements there are zero-knowledge proofs can be used to
design secure cryptographic protocols. (All languages in NP have zero-knowledge proofs.)

A cryptographic protocol can be seen as a set of interactive programs to be executed by
non-trusting parties.

Each party keeps secret her local input.

The protocol specifies the actions parties should take, depending on their local secrets
and previous messages exchanged.

The main problem in this setting is how can a party verify that the other parties have
really followed the protocol?

The way out: a party A can convince a party B that the transmitted message was
completed according to the protocol without revealing its secrets.

An idea how to design a reliable protocol

1 Design a protocol under the assumption that all parties follow the protocol.
2 Transform protocol, using known methods how to make zero-knowledge proofs out

of normal ones, into a protocol in which communication is based on zero-knowledge
proofs, and which preserves both correctness and privacy and works even if some
parties display an adversary behavior.
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ZERO-KNOWLEDGE PROOF for QUADRATIC RESIDUA

Input: An integer n = pq, where p, q are primes and x ∈ QR(n).

Protocol: Repeat lg n times the following steps:

1 Peggy chooses a random v ∈ Z∗n and sends to Vic

y = v 2 mod n.

2 Vic sends to Peggy a random i ∈ {0, 1}.
3 Peggy computes a square root u of x and sends to Vic

z = ui v mod n.

4 Vic checks whether

z2 ≡ x i y mod n.

Vic accepts Peggy’s proof that x is QR if he succeeds in point 4 in each of lg n rounds.

Completeness is straightforward:

Soundness If x is not a quadratic residue, then Peggy can answer only one of two possible
challenges (only if i = 0), because in such a case y is a quadratic residue if and only if xy
is not a quadratic residue.This means that Peggy will be caught in any given round of the
protocol with probability 1

2
.

The overall probability that prover deceives Vic is therefore 2− lg n = 1
n

.
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challenges (only if i = 0), because in such a case y is a quadratic residue if and only if xy
is not a quadratic residue.This means that Peggy will be caught in any given round of the
protocol with probability 1

2
.

The overall probability that prover deceives Vic is therefore 2− lg n = 1
n

.
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ZERO-KNOWLEDGE PROOF for GRAPH ISOMORPHISM

Input: Given are two graphs G1 and G2 with the set of nodes {1, . . . , n}.
Repeat the following steps n times:

1 Peggy chooses a random permutation π of {1, . . . , n} and computes H to be the
image of G1 under the permutation π, and sends H to Vic.

2 Vic chooses randomly i ∈ {1, 2} and sends it to Peggy. {This way Vic asks for
isomorphism between H and Gi .}

3 Peggy creates a permutation ρ of {1, . . . , n} such that ρ specifies isomorphism
between H and Gi and Peggy sends ρ to Vic.

{If i = 1 Peggy takes ρ = π; if i = 2 Peggy takes ρ = σoπ, where σ is a fixed
isomorphic mapping of nodes of G2 to G1.}

4 Vic checks whether H provides the isomorphism between Gi and H.

Vic accepts Peggy’s ”proof” if H is the image of Gi in each of the n rounds.

Completeness. It is obvious that if G1 and G2 are isomorphic then Vic accepts with
probability 1.

Soundness: If graphs G1 and G2 are not isomorphic, then Peggy can deceive Vic only if
she is able to guess in each round the i Vic chooses and then sends as H the graph Gi .
However, the probability that this happens is 2−n.

Observe that Vic can perform all computations in polynomial time. However, why is this
proof a zero-knowledge proof?
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WHY is the last ”PROOF” a ”ZERO-KNOWLEDGE PROOF”?

Because Vic gets convinced, by the overwhelming statistical evidence, that graphs G1 and
G2 are isomorphic, but he does not get any information (“knowledge”) that would help
him to create isomorphism between G1 and G2.

In each round of the proof Vic see isomorphism between H (a random isomorphic copy of
G1) and G1 or G2, (but not between both of them)!

However, Vic can create such random copies H of the graphs by himself and therefore it
seems very unlikely that this can help Vic to find an isomorphism between G1 and G2.

Information that Vic can receive during the protocol, called transcript, contains:

The graphs G1 and G2.

All messages i transmitted during communications by Peggy and Vic.

Random numbers r used by Peggy and Vic to generate their outputs.

Transcript has therefore the form

T = ((G1,G2); (H1, i1, r1), . . . , (Hn, in, rn)).

The essential point, which is the basis for the formal definition of zero-knowledge proof,
is that Vic can forge transcript, without participating in the interactive proof, that look
like “real transcripts”, if graphs are isomorphic, by means of the following forging
algorithm called simulator.
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SIMULATOR

A simulator for the previous graph isomorphism protocol.

T = (G1,G2),

for j = 1 to n do

Chose randomly ij ∈ {1, 2}.
Chose ρj to be a random permutation of {1, . . . , n}.
Compute Hj to be the image of Gij under ρj ;
Concatenate (Hj , ij , ρj) at the end of T.
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CONSEQUENCES and FORMAL DEFINITION

The fact that a simulator can forge transcripts has several important consequences.

Anything Vic can compute using the information obtained from the transcript can
be computed using only a forged transcript and therefore participation in such a
communication does not increase Vic capability to perform any computation.

Participation in such a proof does not allow Vic to prove isomorphism of G1 and G2.

Vic cannot convince someone else that G1 and G2 are isomorphic by showing the
transcript because it is indistinguishable from a forged one.

Formal definition of what this means that a forged transcript ”looks like” a real one:

Definition Suppose that we have an interactive proof system for a decision problem Π
and a polynomial time simulator S.

Denote by Γ(x) the set of all possible transcripts that could be produced during the
interactive proof communication for a yes-instance x.

Denote F(x) the set of all possible forged transcripts produced by the simulator S.

For any transcript T ∈ Γ(x), let pΓ(T ) denote the probability that T is the transcript
produced during the interactive proof. Similarly, for T ∈ F (x), let pF (T ) denote the
probability that T is the transcript produced by S.

If Γ(x) = F (x) and, for any T ∈ Γ(x), pΓ(T ) = pF (T ) , then we say that the interactive
proof system is a zero-knowledge proof system.
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WHY is the last ”PROOF” a ”ZERO-KNOWLEDGE PROOF”?

Because Vic gets convinced, by the overwhelming statistical evidence, that graphs G1 and
G2 are isomorphic, but he does not get any information (“knowledge”) that would help
him to create isomorphism between G1 and G2.

In each round of the proof Vic see isomorphism between H (a random isomorphic copy of
G1) and G1 or G2, (but not between both of them)!

However, Vic can create such random copies H of the graphs by himself and therefore it
seems very unlikely that this can help Vic to find an isomorphism between G1 and G2.

Information that Vic can receive during the protocol, called transcript, contains:

The graphs G1 and G2.

All messages i transmitted during communications by Peggy and Vic.

Random numbers r used by Peggy and Vic to generate their outputs.

Transcript has therefore the form

T = ((G1,G2); (H1, i1, r1), . . . , (Hn, in, rn)).

The essential point, which is the basis for the formal definition of zero-knowledge proof,
is that Vic can forge transcript, without participating in the interactive proof, that look
like “real transcripts”, if graphs are isomorphic, by means of the following forging
algorithm called simulator.
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In each round of the proof Vic see isomorphism between H (a random isomorphic copy of
G1) and G1 or G2, (but not between both of them)!

However, Vic can create such random copies H of the graphs by himself and therefore it
seems very unlikely that this can help Vic to find an isomorphism between G1 and G2.

Information that Vic can receive during the protocol, called transcript, contains:

The graphs G1 and G2.

All messages i transmitted during communications by Peggy and Vic.

Random numbers r used by Peggy and Vic to generate their outputs.

Transcript has therefore the form

T = ((G1,G2); (H1, i1, r1), . . . , (Hn, in, rn)).

The essential point, which is the basis for the formal definition of zero-knowledge proof,
is that Vic can forge transcript, without participating in the interactive proof, that look
like “real transcripts”, if graphs are isomorphic, by means of the following forging
algorithm called simulator.
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SIMULATOR

A simulator for the previous graph isomorphism protocol.

T = (G1,G2),

for j = 1 to n do

Chose randomly ij ∈ {1, 2}.
Chose ρj to be a random permutation of {1, . . . , n}.
Compute Hj to be the image of Gij under ρj ;
Concatenate (Hj , ij , ρj) at the end of T.

If, in an interactive proof system, the probability distributions specified
by the protocols with Vic and with simulator are computationally
indistinguishable in polynomial time , then we speak about
computationally zero-knowledge proof system.
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Part XI

Steganography and Watermarking



DIGITAL STEGANOGRAPHY and DIGITAL WATERMARJIN

A very important property of (digital) information is that it is, in principle,
very easy to produce and distribute unlimited number of its copies.

This might undermine the music, film, book and software industries and
therefore it brings a variety of important problems, concerning protection of
the intellectual and production rights, that badly need to be solved.

Since an unlimited number of perfect copies of text, audio and video data
can be illegally produced and distributed requires to develop ways of
embedding copyright and source information in audio and video data.

Digital steganography and digital watermarking bring techniques to hide
important information, in an undetectable and/or irremovable way, in audio
and video digital data.

Digital steganography is the art and science of embedding
information/signals in such a hidden way, especially in texts, images, video
and audio carriers, that only intended recipients can recover them.

Digital watermarking is a process of embedding (hiding) information
(through ”watermarks”) into digital data (signals) - picture, audio or video
- to identify its owner or to authentisized its origin in an unremovable way.

Steganography and (digital) watermarking are main parts of the fast
developing area of information hiding.
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INFORMATION HIDING SUB-DISCIPLINES

Covert channels occur especially in operating systems and networks. They are
communication paths that were neither designed nor intended to transfer information at
all, but can be used that way.

These channels are typically used by untrustworthy/spying programs to leak (confidential)
information to their owner while performing service for another user/program.

Anonymity is finding ways to hide meta content of the message (for example who is the
sender and/or the recipients of a message). Anonymity is needed, for example, when
making on-line voting, or to hide access to some web pages, or to hide sender.

Steganography – covered writing – from Greek στεγαν–ξ γραφ–ειν

is the art and science of hiding secret messages in innocently looking ones.

Watermarking – is the technique to embed visible and especially imperceptible
(invisible, transparent,...) watermarks into carriers in undetectable or unremovable way.
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STEGANOGRAPHY versus WATERMARKING.II

Both techniques belong to the category of information hiding, but the
objectives and embeddings of these techniques are just opposite.

In watermarking, the important information is in the cover data. The
embedded data - watermarks - are for protection or detection of the cover
data origins.

In steganography, the cover data is not important. It mostly serves as a
diversion from the most important information that is in embedded data.

Comment Steganography tools typically embed/hide relatively large blocks
of information while watermarking tools embed/hide less information in an
image or sounds or videos or texts.

Data hiding dilemma: to find the best trade-off between three quantities of
embeddings: robustness, capacity and security.
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STEGANOGRAPHY versus WATERMARKING again

Technically, differences between steganography and watermarking are both subtle and
quite essential.

The main goal of steganography is to hide a message m in some audio or video (cover)
data d, to obtain new data d’, in such a way that an eavesdropper cannot detect the
presence of m in d’.

The main goal of watermarking is to hide a message m in some audio or video (cover)
data d, to obtain new data d’, practically indistinguishable from d, by people, in such a
way that an eavesdropper cannot remove or replace m in d’.

Shortly, one can say that cryptography is about protecting the content of messages,
steganography is about concealing its very existence.

Steganography methods usually do not need to provide strong security against removing
or modification of the hidden message. Watermarking methods need to to be very robust
to attempts to remove or modify a hidden message.
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BASIC QUESTIONS

Where and how can be secret data undetectably hidden?

Who and why needs steganography or watermarking?

What is the maximum amount of information that can be hidden, given
a level of degradation, to the digital media?

How one chooses good cover media for a given stego message?

How to detect, localize a stego message?
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SOME APPLICATIONS of STEGANOGRAPHY

To have secure secret communications where cryptographic encryption
methods are not available.

To have secure secret communication where strong cryptography is
impossible.

In some cases, for example in military applications, even the knowledge
that two parties communicate can be of large importance.

The health care, and especially medical imaging systems, may very
much benefit from information hiding techniques.
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SOME APPLICATIONS of WATERMARKING

A basic application of watermarking techniques is to provide ownership information of
digital data (images, video and audio products) by embedding copyright information into
them.

Other applications:

Automatic monitoring and tracking of copy-write material on WEB. (For example, a
robot searches the Web for marked material and thereby identifies potential illegal
issues.)

Automatic audit of radio transmissions: (A robot can “listen” to a radio station and
look for marks, which indicate that a particular piece of music, or advertisement ,
has been broadcast.)

Data augmentation – to add information for the benefit of the public.

Fingerprinting applications (in order to distinguish distributed data)

Actually, watermarking has recently emerged as the leading technology to solve the above
very important problems.

All kind of data can be watermarked: audio, images, video, formatted text, 3D
models, . . .
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STEGANOGRAPHY/WATERMARKING versus CRYPTOGRAPHY

The purpose of both is to provide secret communication.

Cryptography hides the contents of the message from an attacker, but not the existence
of the message.

Steganography/watermarking even hide the very existence of the message in the
communicated data.

Consequently, the concept of breaking the system is different for cryptosystems and
stegosystems (watermarking systems).

A cryptographic system is broken when the attacker can read the secrete message.

Breaking of a steganographic/watermarking system has two stages:
The attacker can detect that steganography/watermarking has been used;
The attacker is able to read, modify or remove the hidden message.

A steganography/watermarking system is considered as insecure already if the detection
of steganography/watermarking is possible.

The advantage of steganography over cryptography is that messages do not attract
attention to themselves.
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CRYPTOGRAPHY and STEGANOGRAPHY

Steganography can be also use to increase secrecy provided by
cryptographical methods

Indeed, when steganography is used to hide the encrypted communication,
an enemy is not only faced with a difficult decryption problem, but also
with the problem of finding the communicated data.
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FIRST STEGANOGRAPHIC METHODS

First recorded use of steganographic methods was traced to 440 BC. Greek
Demaratus sent a warning about an attack by writing it on a wooden desk and then
covering it by vax.

Ancient Chinese wrote messages on fine silk, which was then crunched into a tiny
ball and covered in wax. The messenger then swallowed the ball of wax.
A variety of steganographic methods was used also in Roman times and then in
15-16 century (ranging from coding messages in music, and string knots, to invisible
inks).

In the sixteenth century, the Italian scientist Giovanni Porta described how to
conceal a message within a hard-boiled egg by making an ink from a mixture of one
ounce of alum and a pint of vinegar, and then using ink to write on the shell. The
ink penetrated the porous shell, and left the message on the surface of the hardened
egg albumen, which could be read only when the shell was removed.
Special invisible ”inks” (milk, urine,...) were important steganographic tools since
middle ages and even during the Second World War.
Acrostic - hiding messages in first, last or other letters of words was popular
steganographic method since middle ages.
During the Second World War a technique was developed to shrink photographically
a page of text into a dot less than one millimeter in diameter, and then hide this
microdot in an apparently innocuous letter. (The first microdot has been spotted by
FBI in 1941.)
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HISTORY of MICRODOTS

In 1857, Brewster suggested hiding secret messages ”in spaces not larger than a full
stop or small dot of ink”.

In 1860 the problem of making tiny images was solved by French photographer
Dragon.

During Franco-Prussian war (1870-1881) from besieged Paris messages were sent on
microfilms using pigeon post.

During the Russo-Japanese war (1905) microscopic images were hidden in ears,
nostrils, and under fingernails.

During the First World War messages to and from spies were reduced to microdots,
by several stages of photographic reductions, and then stuck on top of printed
periods or commas (in innocuous cover materials, such as magazines).
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FIRST STEGANOGRAPHY BOOKS

In the fourth century BC, the Greek Aeneas Tacticus, wrote a book on military
techniques, On the defence of fortification in which the whole chapter is devoted to
steganographic methods.

In 1499 Johannes Trithemius, opat from Würzburg, wrote 3 out of 8 planned books
“Steganographie”.

In 1518 Trithemius printed 6 books, 540 pages, on cryptography and steganography
called Polygraphiae.

This is Trithemius’ most notorious work. It includes a sophisticated system of
steganography, as well as angel magic. It also contains a synthesis of the science of
knowledge, the art of memory, magic, an accelerated language learning system, and a
method of sending messages without symbols.

In 1665 Gaspari Schotti published the book “Steganographica”, 400pages. (New
presentation of Trithemius.)
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TRITHEMIUS

Born on February 2, 1462 and considered as one of the main intellectuals of his time.

His book STEGANOGRAPHIA was published in 1606.

In 1609 catholic church has put the book on the list of forbidden books (to be there
for more than 200 years).

His books are obscured by his strong belief in occult powers.

He classified witches into four categories.

He fixed creation of the world at 5206 B.C.

He described how to perform telepathy.

Trithemius died on December 14, 1516.
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ORIGIN of MODERN - DIGITAL - STEGANOGRAPHY

The origin of modern (digital) steganography has been dated to around 1985 - after
personal computers started to be applied to classical steganographic problems.

This was related to new problems at which information needed to be sent securely and
safely between parties across restrictive communication channels.

B. Morgen and M. Bary, from a small Dallas based company created and fielded two
steganographic systems.

Since then a huge spectrum of methods and tools have been discovered and developed
for digital cryptography.

Some examples”

Network steganohraphy

WLAN steganography

Inter-protocol steganography

Blog steganography

Echo steganography

Sudoku puzzles using steganography

Steganography used before is usually called physical steganography because physical
carrier have been used to embed secret messages.
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GENERAL STEGANOGRAPHIC MODEL

A general model of a steganographic system:

Figure 1: Model of steganographic systems

Steganographic algorithms are in general based on replacing noise component of a digital
object with a to-be-hidden message.

Kerckhoffs’s principle holds also for steganography. Security of the system should not be
based on hiding embedding algorithm, but on hiding the key.
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BASIC CONCEPTS of STEGOSYSTEMS

Covertext (cover-data – cover-object) is an original (unaltered) message.

Embedding process (ukryvaci process) in which the sender, Alice, tries to hide a
message by embedding it into a (randomly chosen) covertext, usually using a key, to
obtain a stegotext (stego-data or stego-object). The embedding process can be
described by the mapping E : C × K ×M → C , where C is the set of possible cover
– and stegotexts, K is the set of keys, and M is the set of messages.

Stegotext (stego-data – stego-object) is the message that comes out of the
embedding process and contains the hidden message.

Recovering process (or extraction process – odkryvaci process) in which the receiver,
Bob, tries to get, using the key only but not the covertext, the hidden message in
the stegotext.

The recovery (decoding) process D can be seen as a mapping D : C × K → C .

Security requirement is that a third person watching such a communication should
not be able to find out whether the sender has been active, and when, in the sense
that he really embedded a message in the covertext. In other words, stegotexts
should be indistinguishable from covertexts.
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BASIC TYPES of STEGOSYSTEMS

There are three basic types of stegosystems

Pure stegosystems – no key is used.

Secret-key stegosystems – shared secret key is used.

Public-key stegosystems – public and secret keys are used.

Definition Pure stegosystem S = 〈C ,M,E ,D〉, where C is the set of possible
covertexts, M is the set of secret messages, |C | ≥ |M|, E : C ×M → C is the embedding
function and D : C → M, is the extraction function, with the property that D(E(c,m)) =
m, for all m ∈ M and c ∈ C .

Security of the pure stegosystems depends completely on its secrecy.On the other hand,
security of other two stegosystems depends on the secrecy of the key used.

Definition Secret-key (asymmetric) stegosystem S = 〈C ,M,K ,EK ,DK 〉, where C is
the set of possible covertexts, M is the set of secret messages with |C | ≥ |M|,K is the
set of secret keys, EK : C ×M × K → C , DK : C × K → M with the property that
DK (EK (c,m, k), k) = m for all m ∈ M, c ∈ C and k ∈ K .

prof. Jozef Gruska IV054 11. Steganography and Watermarking 480/616



BASIC TYPES of STEGOSYSTEMS

There are three basic types of stegosystems

Pure stegosystems – no key is used.

Secret-key stegosystems – shared secret key is used.

Public-key stegosystems – public and secret keys are used.

Definition Pure stegosystem S = 〈C ,M,E ,D〉, where C is the set of possible
covertexts, M is the set of secret messages, |C | ≥ |M|, E : C ×M → C is the embedding
function and D : C → M, is the extraction function, with the property that D(E(c,m)) =
m, for all m ∈ M and c ∈ C .

Security of the pure stegosystems depends completely on its secrecy.On the other hand,
security of other two stegosystems depends on the secrecy of the key used.

Definition Secret-key (asymmetric) stegosystem S = 〈C ,M,K ,EK ,DK 〉, where C is
the set of possible covertexts, M is the set of secret messages with |C | ≥ |M|,K is the
set of secret keys, EK : C ×M × K → C , DK : C × K → M with the property that
DK (EK (c,m, k), k) = m for all m ∈ M, c ∈ C and k ∈ K .

prof. Jozef Gruska IV054 11. Steganography and Watermarking 480/616



BASIC TYPES of STEGOSYSTEMS

There are three basic types of stegosystems

Pure stegosystems – no key is used.

Secret-key stegosystems – shared secret key is used.

Public-key stegosystems – public and secret keys are used.

Definition Pure stegosystem S = 〈C ,M,E ,D〉, where C is the set of possible
covertexts, M is the set of secret messages, |C | ≥ |M|, E : C ×M → C is the embedding
function and D : C → M, is the extraction function, with the property that D(E(c,m)) =
m, for all m ∈ M and c ∈ C .

Security of the pure stegosystems depends completely on its secrecy.On the other hand,
security of other two stegosystems depends on the secrecy of the key used.

Definition Secret-key (asymmetric) stegosystem S = 〈C ,M,K ,EK ,DK 〉, where C is
the set of possible covertexts, M is the set of secret messages with |C | ≥ |M|,K is the
set of secret keys, EK : C ×M × K → C , DK : C × K → M with the property that
DK (EK (c,m, k), k) = m for all m ∈ M, c ∈ C and k ∈ K .

prof. Jozef Gruska IV054 11. Steganography and Watermarking 480/616



PUBLIC-KEY STEGANOGRAPHY

Similarly as in the case of the public-key cryptography, two keys are used: a
public-key E for embedding and a private-key D for recovering.

It is often useful to combine such a public-key stegosystem with a
public-key cryptosystem.

For example, in case Alice wants to send a message m to Bob, she encodes
first m using Bob’s public key eB , then makes embedding of eB(m) using
process E into a cover and then sends the resulting stegotext to Bob, who
recovers eB(m) using D and then decrypts it, using his decryption function
dB .
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TEXT STEGANOGRAPHY

A variety of steganography techniques allow to hide messages in formatted texts.

Acrostic. A message is hidden into certain letters of the text, for example into the
first letters of some words.

Tables have been produced, the first one by Trithentius, called Ave Maria, how to
replace plaintext letters by words.

An improvement of the previous method is to distribute plaintext letters randomly in
the cover-text and then use a mask to read it.

The presence of errors or stylistic features at predetermined points in the cover data
is another way to select the location of the embedded information.

Line shifting encodings.

Word shifting encodings.

Data hiding through justifications.

Through features encoding (for example in the vertical lines of letters b, d, h, k).

Text steganography (a really good one) is considered to be very difficult kind of
steganography due to the lack of redundancy in texts comparing to images or audio.
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ACROSTIC

Amorosa visione by Giovanni Boccaccio (1313-1375) is said to be the
world largest acrostic.

Boccaccio first wrote three sonnets (1500 letters together) and then he
wrote other poems such that the initials of the successive tercets
correspond exactly to the letters of the sonnets.

In the book Hypnerotomachia Poliphili, published by an anonymous in
1499, and considered as one of the most beautiful books ever,the first
letters of the 38 chapters spelled out as follows:

Poliam frater Franciscus Columna peramavit

with the translation

Brother Francesco Colonna passionately loves Polia
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PERFECT SECRECY of STEGOSYSTEMS

In order to define secrecy of a stegosystem we need to consider

probability distribution PC on the set C of covertexts;

probability distribution PM on the set M of secret messages;

probability distribution PK on the set K of keys;

probability distribution PS on the set {EK (c,m, k), |c ∈ C ,m ∈ M, k ∈ K} of
stegotexts.

The basic related concept is that of the relative entropy D(P1‖P2) of two probability
distributions P1 and P2 defined on a set Q by

D(P1‖P2) =
X
q∈Q

P1(q)lg
P1(q)

P2(q)
,

which measures the inefficiency of assuming that the distribution on Q is P2 if it is really
P1.

Definition Let S be a stegosystem, PC the probability distribution on covertexts C and
PS the probability distribution of the stegotexts and ε > 0. S is called – ε-secure against
passive attackers, if

D(PC‖PS) ≤ ε

and perfectly secure if ε = 0.
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PERFECTLY SECURE STEGOSYSTEMS

A perfectly secure stegosystem can be constructed out of the ONE
TIME-PAD CRYPTOSYSTEM

Theorem There exist perfectly secure stegosystems.

Proof. Let n be an integer, Cn = {0, 1}n and PC be the uniform
distribution on Cn, and let m ∈ Cn be a secret message.

The sender selects randomly c ∈ Cn, computes c ⊕m = s. The resulting
stegotexts are uniformly distributed on Cn and therefore PC = PS from
what it follows that

D(PCn‖PS) = 0.

In the extraction process, the message m can be extracted from s by the
computation

m = s ⊕ c .
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INFORMATION HIDING in NOISY DATA

Perhaps the most basic methods of steganography is to utilize the existence of redundant
information in communication channels/media.

Images and digital sounds naturally contain such redundancies in the form of noise
components.

For images and digital sounds it is natural to assume that a cover-data are represented by
a sequence of numbers and their least significant bits (LSB) represent noise.

If cover-data are represented by numbers

c1, c2, c3, . . . ,

then one of the most basic steganographic methods is to replace, in some of ci ’s, chosen
using an algorithm and a key, the least significant bits by the bits of the message that
should be hidden.

Unfortunately, this method does not provide high level of security and it can change
significantly statistical properties of the cover-data.
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ACTIVE and MALICIOUS ATTACKS

At the design of stegosystems special attention has to be paid to the
presence of active and malicious attackers.

Active attackers can change cover during the communication process.

An attacker is malicious if he forges messages or initiates a
steganography protocol under the name of one communicating party.

In the presence of a malicious attacker, it is not enough that stegosystem is
robust.

If the embedding method does not depend on a key shared by the sender
and receiver, then an attacker can forge messages, since the recipient is not
able to verify sender’s identity.
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SECURITY of STEGOSYSTEMS

Definition A steganographic algorithm is called secure if

Messages are hidden using a public algorithm and a secret key. The
secret key must identify the sender uniquely.

Only the holder of the secret key can detect, extract and prove the
existence of the hidden message. (Nobody else should be able to find
any statistical evidence of a message’s existence.)

Even if an enemy gets the contents of one hidden message, he should
have no chance of detecting others.

It is computationally infeasible to detect hidden messages.
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STEGO – ATTACKS

Stego-only attack Only the stego-object is available for stegoanalysis.

Known-cover attack The original cover-object and stego-object are both
available.

Known-message attack Sometimes the hidden message may become
known to the stegoanalyser. Analyzing the stego-object for patterns that
correspond to the hidden message may be beneficial for future attacks
against that system. (Even with the message, this may be very difficult and
may even be considered equivalent to the stego-analysis.)

Chosen-stego attack The stegoanalysis generates a stego-object from
some steganography tool or algorithm from a chosen message. The goal in
this attack is to determine corresponding patterns in the stego-object that
may point to the use of specific steganography tools or algorithms.

Known-stego attack The steganography algorithm is known and both the
original and stego-objects are available.
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BASIC STEGANOGRAPHIC TECHNIQUES

Substitution techniques: substitute a redundant part of the cover-object
with the secret message.

Transformed domain techniques: embed the secret message in a
transform space of the signal (e.g. in the frequency domain).

Spread spectrum techniques: embed the secret messages adopting ideas
from the spread spectrum communications.

Statistical techniques: embed messages by changing some statistical
properties of the cover-objects and use hypothesis-testing methods in the
extraction process.

Cover generation techniques: do not embed the message in randomly
chosen cover-objects, but create covers that fit a message that needs to be
hidden.
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DIGITAL COVER DATA

A cover-object or, shortly, a cover c is a sequence of numbers ci , i = 1, 2, . . . , |c|.

Such a sequence can represent digital sounds in different time moments, or a linear
(vectorized) version of an image.

ci ∈ {0, 1} in case of binary images and, usually, 0 ≤ ci ≤ 256 in case of quantized
images or sounds.

An image C can be seen as a discrete function assigning a color vector c(x,y) to each
pixel p(x,y).

A color value is normally a three-component vector in a color space. Often used are the
following color spaces:

RGB-space – every color is specified as a weighted sum of a red, green and a blue
component. A vector specifies intensities of these three components.

YCbCr-space It distinguishes a luminance Y and two chrominance components (Cb, Cr).

Note A color vector can be converted to YCbCr components as follows:

Y = 0.299 R + 0.587 G + 0.114 B

Cb = 0.5 +
(B − Y )

2

Cr = 0.5 +
(R − Y )

1.6
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BASIC SUBSTITUTION TECHNIQUES

LSB substitution – the LSB of an binary block cki is replaced by the bit mi of the
secret message.

The methods differ by techniques how to determine ki for a given i.

For example, ki+1 = ki + ri , where ri is a sequence of numbers generated by a
pseudo-random generator.

Substitution into parity bits of blocks. If the parity bit of block cki is mi , then the
block cki is not changed; otherwise one of its bits is changed.

Substitution in binary images. If image ci has more (less) black pixels than white
pixels and mi = 1(mi = 0), then ci is not changed; otherwise the portion of black
and white pixels is changed (by making changes at those pixels that are neighbors of
pixels of the opposite color).

Substitution in unused or reserved space in computer systems.
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LSB SUBSTITUTION PLUSES and MINUSES

Bits for substitution can be chosen (a) randomly; (b) adaptively according to local
properties of the digital media that is used.

Advantages:

(a) LSB substitution is the simplest and most common stego technique and it can be
used also for different color models.

(b) This method can reach a very high capacity with little, if any, visible impact to the
cover digital media.

(c) It is relatively easy to apply on images and radio data.

(d) Many tools for LSB substitutions are available on the internet

Disadvantages:

(a) It is relatively simple to detect the hidden data;

(b) It does not offer robustness against small modifications (including compression) at
the stego images.
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ROBUSTNESS of STEGANOGRAFY

Steganographic systems are extremely sensitive to cover modifications, such as

image processing techniques (smoothing, filtering, image transformations, . . .);

filtering of digital sounds;

compression techniques.

Informally, a stegosystem is robust if the embedded information cannot be altered
without making substantial changes to the stego-objects.

Definition Let S be a stegosystem and P be a class of mappings C → C . S is P-robust,
if for all p ∈ P

DK (p(EK (c,m, k)), k) = DK (EK (c,m, k), k) = m

in the case of a secret-key stegosystem and

D(p(E(c,m))) = D(E(c,m)) = m

in the case of pure stegosystem, for any m, c, k.

There is a clear tradeoff between security and robustness.

Some stegosystems are designed to be robust against a specific class of mappings
(for example JPEG compression/decompression).
There are two basic approaches to make stegosystems robust:

By foreseeing possible cover modifications, the embedding process can be robust so
that possible modifications do not entirely destroy embedded information.
Reversing operations that has been made by an active attacker.
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DETECTING SECRET MESSAGES

The main goal of a passive attacker is to decide whether data sent to Bob by Alice
contain secret message or not.

The detection task can be formalized as a statistical hypothesis-testing problem with the
test function f : C → {0, 1}:

f (c) =


1, if c contains a secret message;
0, otherwise

There are two types of errors possible:

Type-I error - a secret message is detected in data with no secret message;
Type-II error - a hidden secret message is not detected

In the case of ε-secure stegosystems there is well know relation between the probability β
of the type II error and probability α of the type I error.
Let S be a stegosystem which is ε-secure against passive attackers, β the probability that
the attacker does not detect a hidden message and α the probability that the attacker
falsely detects a hidden message. Then

d(α, β) ≤ ε,
where d(α, β) is the binary relative entropy defined by

d(α, β) = α lg
α

1− β + (1− α) lg
1− α
β

.
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DIGITAL WATERMARKING

Digital watermarking seems to be a promising technique to deal with the following
problem:

Problem Digitalization allows to make unlimited number of copies of intellectual products
(books, art products, music, video,...). How to make use of this enormous potential
digitalization has and, at the same time, to protect intellectual rights of authors
(copyrights, protection against modifications and insertion into other products), in a that
is legally accepted?

Solution Digital watermarking tries to solve the above problem using a variety of methods
of informatics, cryptography, signal processing, ... and in order to achieve that tries to
insert specific information (watermarks) into data/carrier/signal in such a way that
watermarks cannot be extracted or at least detected and if data with one or several
watermarks are copied, watermarks should not change.
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BASIC APPLICATIONS

Copyright protection - ownership assertion For example, if a watermark is embedded
into a music (or video) product, then each time music (video) is played in public
information about author is extracted and tandem are established. Another example:
annotation of digital photographs

Source tracing. Watermarks can be used to trace or verify the source of digital data.

Insertion of additional (sensitive) information For example, personal data into
röntgen photos r of keywords into multimedia products.
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HISTORY of WATERMARKING

Paper watermarks appeared in the art of handmade paper marking 700
hundred years ago.

Watermarks were mainly used to identify the mill producing the paper and
paper format, quality and strength.

Paper watermarks was a perfect technique to eliminate confusion from
which mill paper is and what are its parameters.

Legal power of watermarks has been demonstrated in 1887 in France when
watermarks of two letters, presented as a piece of evidence in a trial,
proved that the letters had been predated, what resulted in the downfall of
a cabinet and, finally, the resignation of the president Grévy.

Paper watermarks in bank notes or stamps inspired the first use of the term
water mark in the context of digital data.

The first publications that really focused on watermarking of digital images
were from 1990 and then in 1993.

prof. Jozef Gruska IV054 11. Steganography and Watermarking 498/616



HISTORY of WATERMARKING

Paper watermarks appeared in the art of handmade paper marking 700
hundred years ago.

Watermarks were mainly used to identify the mill producing the paper and
paper format, quality and strength.

Paper watermarks was a perfect technique to eliminate confusion from
which mill paper is and what are its parameters.

Legal power of watermarks has been demonstrated in 1887 in France when
watermarks of two letters, presented as a piece of evidence in a trial,
proved that the letters had been predated, what resulted in the downfall of
a cabinet and, finally, the resignation of the president Grévy.
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EMBEDDING and RECOVERY SYSTEMS

in WATERMARKING SYSTEMS

Figure 2 shows the basic scheme of the watermarks embedding systems.

Figure 2: Watermark embedding scheme

Inputs to the scheme are the watermark, the cover data and an optional public or secret
key. The output are watermarked data. The key is used to enforce security.

Figure 3 shows the basic scheme for watermark recovery schemes.

Figure 3: Watermark recovery scheme

Inputs to the scheme are the watermarked data, the secret or public key and, depending
on the method, the original data and/or the original watermark. The output is the
recovered watermark W or some kind of confidence measure indicating how likely it is for
the given watermark at the input to be present in the data under inspection.
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TYPES of WATERMARKING SCHEMES

Private (non-blind) watermarking systems require for
extraction/detection the original cover-data.

Type I systems use the original cover-data to determine where a
watermark is and how to extract the watermark from stego-data.

Type II systems require a copy of the embedded watermark for
extraction and just yield a yes/no answer to the question whether the
stego-data contains a watermark.

Semi-private (semi-blind) watermarking does not use the original
cover-data for detection, but tries to answer the same question. (Potential
application of blind and semi-blind watermarking is for evidence in court
ownership,. . . )

Public (blind) watermarking – neither cover-data nor embedded
watermarks are required for extraction – this is the most challenging
problem.

prof. Jozef Gruska IV054 11. Steganography and Watermarking 500/616



TYPES of WATERMARKING SCHEMES

Private (non-blind) watermarking systems require for
extraction/detection the original cover-data.

Type I systems use the original cover-data to determine where a
watermark is and how to extract the watermark from stego-data.

Type II systems require a copy of the embedded watermark for
extraction and just yield a yes/no answer to the question whether the
stego-data contains a watermark.

Semi-private (semi-blind) watermarking does not use the original
cover-data for detection, but tries to answer the same question. (Potential
application of blind and semi-blind watermarking is for evidence in court
ownership,. . . )

Public (blind) watermarking – neither cover-data nor embedded
watermarks are required for extraction – this is the most challenging
problem.

prof. Jozef Gruska IV054 11. Steganography and Watermarking 500/616



SECRET SHARING by SECRET HIDING

A simple technique has been developed, by Naor and Shamir, that allows
for a given n and t < n to hide any secret (image) message m in images on
transparencies in such away that each of n parties receives one transparency
and

no t - 1 parties are able to obtain the message m from the
transparencies they have.

any t of the parties can easily get (read or see) the message m just by
stacking their transparencies together and aligning them carefully.
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APPENDIX
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SIGNAL PROCESSING TERMINOLOGY

In some applications of steganography the following signal processing technology is used.

Payload - message to be secretly communicated;

Carrier - data file or signal into which payload is embedded

Package - stego file - covert message - the outcome of embedding of payload into
carrier.

Encoding density - the percentage of bytes or other signal elements into which the
payload is embedded.
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TO REMEMBER !!!

There is no use in trying, she said: one cannot believe impossible things.

I dare to say that you have not had much practice, said the queen,

When I was your age, I always did it for half-an-hour a day and sometimes I
have believed as many as six impossible things before breakfast.

Lewis Carroll: Through the Looking-glass, 1872
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Part XII

From theory to practice in cryptography



From Crypto-Theory to Crypto-Practice I

I.SHIFT REGISTERS
The first practical approach to ONE-TIME PAD cryptosystem.

Basic idea: to use a short key, called
“seed” with a pseudorandom generator
to generate as long key as needed.

Shift registers as pseudorandom generators

linear shift register

Theorem For every n > 0 there is a linear shift register of maximal period 2n − 1.
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CRYPTANALYSIS of linear feedback shift registers

Sequences generated by linear shift registers have excellent statistical properties, but they
are not resistant to a known plaintext attack.

Example Let us have a 4-bit shift register and let us assume we know 8 bits of plaintext
and of cryptotext. By XOR-ing these two bit sequences we get 8 bits of the output of the
register (of the key), say 00011110

We need to determine c4, c3, c2, c1 such that the above sequence is outputted by the shift
register

state of cell 4 state of cell 3 state of cell 2 state of cell 1
c4 1 0 0

c4 ⊕ c3 c4 1 0
c2 ⊕ c4 c4 ⊕ c3 c4 1

c1 ⊕ c3(c4 ⊕ c3)⊕ c4 c2 ⊕ c4 c4 ⊕ c3 c4

c4 = 1 c4 = 1
c4 ⊕ c3 = 1 c3 = 0
c2 ⊕ c4 = 1 c2 = 0

c1 ⊕ c3 ⊕ c4 ⊕ c3 · c4 = 0 c1 = 1
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Linear Recurrences

Linear feedback shift registers are an efficient way to realize recurrence relations of the
type

xn+m = c0xn + c1xn+1 + · · ·+ cm−1xn+m−1 (mod n)

that can be specified by 2m bits c0, . . . , cm−1 and x1, . . . , xm.

Recurrences realized by shift registers on previous slides are:

xn+4 = xn; xn+4 = xn+2 + xn; xn+4 = xn+3 + xn.

The main advantage of such recurrences is that a key of a very large period can be
generated using a very few bits.

For example, the recurrence xn+31 = xn + xn+3, and any non-zero initial vector, produces
sequences with period 231 − 1, what is more than two billions.

Encryption using one-time pad and key generated by a linear feedback shift register
succumbs easily to a known plaintext attack. If we know few bits of the plaintext and of
the corresponding cryptotext, one can easily determine the initial part of the key and
then the corresponding linear recurrence, as already shown.
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Finding Linear Recurrences – a method

To test whether a given portion of a key was generated by a recurrence of a
length m, if we know x1, . . . , x2m, we need to solve the matrix equation

x1 x2 . . . xm

x2 x3 . . . xm+1
...

...
. . .

...
xm xm+1 . . . x2m−1




c0

c1
...

cm−1

 =


xm+1

xm+2
...

x2m


and then to verify whether the remaining available bits, x2m+1, . . . , are
really generated by the recurrence obtained.
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Finding Linear Recurrences

The basic idea to find linear recurrences generating a given sequence is to
check whether there is such a recurrence for m = 2, 3, . . . In doing that we
use the following result.

Theorem Let

M =


x1 x2 . . . xm

x2 x3 . . . xm+1
...

...
. . .

...
xm xm+1 . . . x2m−1


If the sequence x1, x2 . . . , x2m−1 satisfies a linear recurrence of length less
than m, then det(M) = 0.

Conversely, if the sequence x1, x2 . . . , x2m−1 satisfies a linear recurrence of
length m and det(M) = 0, then the sequence also satisfies a linear
recurrence of length less than m.
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II. How to make cryptanalyst’s task harder?

Two general methods are called diffusion and confusion.

Diffusion: dissipate the source language redundancy found in the plaintext by spreading it
out over the cryptotext.

Example 1: A permutation of the plaintext rules out possibility to use frequency tables
for digrams, trigrams.

Example 2: Make each letter of cryptotext to depend on so many letters of the plaintext
as possible

Illustration: Let letters of English be encoded by integers from {0, . . . , 25}. Let the key
k = k1, . . . , ks be a sequence of such integers.

Let

p1, . . . , pn

be a plaintext.

Define for 0 ≤ i < s, p−i = ks−i and construct the cryptotext by

ci =

 
sX

j=0

pi−j

!
mod 26, 1 ≤ i ≤ n

Confusion makes the relation between the cryptotext and plaintext as complex as
possible.

Example: polyalphabetic substitutions.
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Confusion and diffusion – a more detailed view

As already mentioned, two fundamental cryptographic techniques,
introduced already by Shannon, are confusion and diffusion.

Confusion obscures the relationship between the plaintext and the
ciphertext, which makes much more difficult cryptanalyst’s attempts to
study cryptotext by looking for redundancies and statistical patterns. (The
best way to cause confusion is through complicated substitutions.)

Diffusion dissipates redundancy of the plaintext by spreading it over
cryptotext – that again makes much more difficult a cryptanalyst’s
attempts to search for redundancy in the plaintext through observation of
cryptotext. (The best way to achieve it is through transformations that
cause that bits from different positions in plaintext contribute to the same
bit of cryptotext.)

Mono-alphabetic cryptosystems use no confusion and no diffusion.
Polyalphabetic cryptosystems use only confusion. In permutation
cryptosystems only diffusion step is used. DES essentially uses a sequence
of confusion and diffusion steps.

prof. Jozef Gruska IV054 12. From theory to practice in cryptography 512/616



Confusion and diffusion – a more detailed view

As already mentioned, two fundamental cryptographic techniques,
introduced already by Shannon, are confusion and diffusion.

Confusion obscures the relationship between the plaintext and the
ciphertext, which makes much more difficult cryptanalyst’s attempts to
study cryptotext by looking for redundancies and statistical patterns. (The
best way to cause confusion is through complicated substitutions.)

Diffusion dissipates redundancy of the plaintext by spreading it over
cryptotext – that again makes much more difficult a cryptanalyst’s
attempts to search for redundancy in the plaintext through observation of
cryptotext. (The best way to achieve it is through transformations that
cause that bits from different positions in plaintext contribute to the same
bit of cryptotext.)

Mono-alphabetic cryptosystems use no confusion and no diffusion.
Polyalphabetic cryptosystems use only confusion. In permutation
cryptosystems only diffusion step is used. DES essentially uses a sequence
of confusion and diffusion steps.

prof. Jozef Gruska IV054 12. From theory to practice in cryptography 512/616



Confusion and diffusion – a more detailed view

As already mentioned, two fundamental cryptographic techniques,
introduced already by Shannon, are confusion and diffusion.

Confusion obscures the relationship between the plaintext and the
ciphertext, which makes much more difficult cryptanalyst’s attempts to
study cryptotext by looking for redundancies and statistical patterns. (The
best way to cause confusion is through complicated substitutions.)

Diffusion dissipates redundancy of the plaintext by spreading it over
cryptotext – that again makes much more difficult a cryptanalyst’s
attempts to search for redundancy in the plaintext through observation of
cryptotext. (The best way to achieve it is through transformations that
cause that bits from different positions in plaintext contribute to the same
bit of cryptotext.)

Mono-alphabetic cryptosystems use no confusion and no diffusion.

Polyalphabetic cryptosystems use only confusion. In permutation
cryptosystems only diffusion step is used. DES essentially uses a sequence
of confusion and diffusion steps.

prof. Jozef Gruska IV054 12. From theory to practice in cryptography 512/616



Confusion and diffusion – a more detailed view

As already mentioned, two fundamental cryptographic techniques,
introduced already by Shannon, are confusion and diffusion.

Confusion obscures the relationship between the plaintext and the
ciphertext, which makes much more difficult cryptanalyst’s attempts to
study cryptotext by looking for redundancies and statistical patterns. (The
best way to cause confusion is through complicated substitutions.)

Diffusion dissipates redundancy of the plaintext by spreading it over
cryptotext – that again makes much more difficult a cryptanalyst’s
attempts to search for redundancy in the plaintext through observation of
cryptotext. (The best way to achieve it is through transformations that
cause that bits from different positions in plaintext contribute to the same
bit of cryptotext.)

Mono-alphabetic cryptosystems use no confusion and no diffusion.
Polyalphabetic cryptosystems use only confusion. In permutation
cryptosystems only diffusion step is used. DES essentially uses a sequence
of confusion and diffusion steps.

prof. Jozef Gruska IV054 12. From theory to practice in cryptography 512/616



III. Cryptosystem DES – its history

15. 5. 1973 National Bureau of Standards published a solicitation for a
new cryptosystem.

This led to the development of so far the most often used cryptosystem

Data Encryption Standard – DES

DES was developed at IBM, as a modification of an earlier cryptosystem
called Lucifer.

17. 3. 1975 DES was published for the first time.

After long ad heated public discussion, DES was adopted as a standard on
15. 1. 1977.

DES used to be reviewed by NBS every 5 years.
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DES – description

DES was a revolutionary step in the secret-key cryptography history:

Both encryption and decryption algorithms were made public!!!!!!

Preprocessing: A secret 56-bit key k56 is chosen.

A fixed+public permutation φ56 is applied to get φ56(k56). The first (second) part of the
resulting string is taken to get a 28-bit block C0(D0). Using a fixed+public sequence
s1, . . . , s16 of integers, 16 pairs of 28-bit blocks (Ci ,Di ), i = 1,. . . ,16 are obtained as
follows:
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Using a fixed and public order, a 48-bit block Ki is created from each pair Ci and Di .
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DES cryptosystem – Data Encryption Standard – 1977

Encryption A fixed+public permutation φ64 is applied to a 64-bits long plaintext w to get
w ′ = L0R0, where each of the strings L0 and R0 has 32 bits. 16 pairs of 32-bit blocks
Li ,Ri , 1 ≤ i ≤ 16, are designed using the recurrence:

Li = Ri−1

Ri = Li−1 ⊕ f (Ri−1,Ki ),

where f is a fixed+public and easy-to-implement function.

The cryptotext c = φ−1
64 (L16,R16)

Decryption φ64(c) = L16R16 is computed and then the recurrence

Ri−1 = Li

Li−1 = Ri ⊕ f (Li ,Ki ),

is used to get Li ,Ri i = 15,. . . ,1,0, w = φ−1
64 (L0,R0).
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How fast is DES?

200 megabits can be encrypted per second using a special hardware.

How safe is DES?

Pretty good.

How to increase security when using DES?

1 Use two keys, for a double encryption.

2 Use three keys, k1, k2 and k3 to compute

c = DESk1 (DES−1
k2

(DESk3 (w)))

How to increase security when encrypting long plaintexts?

w = m1m2 . . .mn

where each mi has 64-bits.

Choose a 56-bit key k and a 64-bit block c0 and compute

ci = DES(mi ⊕ ci−1)

for i = 1,. . . ,n.
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The DES controversy

1 There have been suspicions that the design of DES might contain hidden
“trapdoors’‘ what allows NSA to decrypt messages.

2 The main criticism has been that the size of the keyspace, 256, is too small for DES
to be really secure.

3 In 1977 Diffie+Hellamn suggested that for $ 20 millions one could build a VLSI chip
that could search the entire key space within 1 day.

4 In 1993 M. Wiener suggested a machine of the cost $ 100.000 that could find the
key in 1.5 days.
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What are the key elements of DES?

A cryptosystem is called linear if each bit of cryptotext is a linear
combination of bits of plaintext.

For linear cryptosystems there is a powerful decryption method –
so-called linear cryptanalysis.

The only components of DES that are non-linear are S-boxes.
Some of original requirements for S-boxes:

Each row of an S-box should include all possible output bit
combinations;
It two inputs to an S-box differ in precisely one bit, then the output
must differ in a minimum of two bits;
If two inputs to an S-box differ in their first two bits, but have
identical last two bits, the two outputs have to be distinct.

There have been many other very technical requirements for DES items
in order to ensure security.

prof. Jozef Gruska IV054 12. From theory to practice in cryptography 518/616



What are the key elements of DES?

A cryptosystem is called linear if each bit of cryptotext is a linear
combination of bits of plaintext.

For linear cryptosystems there is a powerful decryption method –
so-called linear cryptanalysis.

The only components of DES that are non-linear are S-boxes.
Some of original requirements for S-boxes:

Each row of an S-box should include all possible output bit
combinations;
It two inputs to an S-box differ in precisely one bit, then the output
must differ in a minimum of two bits;
If two inputs to an S-box differ in their first two bits, but have
identical last two bits, the two outputs have to be distinct.

There have been many other very technical requirements for DES items
in order to ensure security.

prof. Jozef Gruska IV054 12. From theory to practice in cryptography 518/616



What are the key elements of DES?

A cryptosystem is called linear if each bit of cryptotext is a linear
combination of bits of plaintext.

For linear cryptosystems there is a powerful decryption method –
so-called linear cryptanalysis.

The only components of DES that are non-linear are S-boxes.
Some of original requirements for S-boxes:

Each row of an S-box should include all possible output bit
combinations;
It two inputs to an S-box differ in precisely one bit, then the output
must differ in a minimum of two bits;
If two inputs to an S-box differ in their first two bits, but have
identical last two bits, the two outputs have to be distinct.

There have been many other very technical requirements for DES items
in order to ensure security.

prof. Jozef Gruska IV054 12. From theory to practice in cryptography 518/616



What are the key elements of DES?

A cryptosystem is called linear if each bit of cryptotext is a linear
combination of bits of plaintext.

For linear cryptosystems there is a powerful decryption method –
so-called linear cryptanalysis.

The only components of DES that are non-linear are S-boxes.
Some of original requirements for S-boxes:

Each row of an S-box should include all possible output bit
combinations;
It two inputs to an S-box differ in precisely one bit, then the output
must differ in a minimum of two bits;
If two inputs to an S-box differ in their first two bits, but have
identical last two bits, the two outputs have to be distinct.

There have been many other very technical requirements for DES items
in order to ensure security.

prof. Jozef Gruska IV054 12. From theory to practice in cryptography 518/616



Weaknesses of DES

Existence of weak keys: they are such keys k that for any plaintext p,

Ek(Ek(p)) = p.

There are four such keys:

k ∈ {(028, 028), (128, 128), (028, 128), (128, 028)}

The existence of semi-weak key pairs (k1, k2) such that for any plaintext

Ek1(Ek2(p)) = p.

The existence of complementation property

Ec(k)(c(p)) = c(Ek(p)),

where c(x) is binary complement of binary string x.
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DES modes of operation

ECB mode: to encode a sequence

x1, x2, x3, . . .

of 64-bit plaintext blocks, each xi is encrypted with the same key.

CBC mode: to encode a sequence

x1, x2, x3, . . .

of 64-bit plaintext blocks, a y0 is chosen and each xi is encrypted by cryptotext

yi = ek(yi−1 ⊕ xi ).

OFB mode: to encode a sequence

x1, x2, x3, . . .

of 64-bit plaintext blocks, a z0 is chosen, zi = ek(zi−1) are computed and each xi is
encrypted by cryptotext yi = xi ⊕ zi .

CFB mode: to encode a sequence

x1, x2, x3, . . .

of 64-bit plaintext blocks a y0 is chosen and each xi is encrypted by cryptotext

yi = xi ⊕ z , where zi = ek(yi−1).
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8-bit VERSION of the CFB MODE

In this mode each 8-bit piece of the plaintext is encrypted without having to wait for an
entire block to be available.

The plaintext is broken into 8-bit pieces: P=[P1,P2, . . . ].

Encryption: An initial 64-bit block X1 is chosen and then, for j=1,2,. . . , the following
computation is done:

Cj = Pj ⊕ L8(ek(Xj))
Xj+1 = R56(Xj)‖Cj ,

L8(X ) denotes the 8 leftmost bits of X. R56(X ) denotes the rightmost 56 bits of X. X‖Y
denotes concatenation of strings X and Y.

Decryption:

Pj = Cj ⊕ L8(ek(Xj))
Xj+1 = R56(Xj)‖Cj ,
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Advantages of different encryption modes

CBC mode is used for block-encryption and also for authentication;

CFB mode is used for stream-encryption;

OFB mode is used for stream-encryptions that require message authentication;

CTR MODE

Counter Mode – some consider it as the best one.

Key design: ki = Ek(n, i) for a nonce n;

Encryption: yi = xi ⊕ ki

This mode is very fast because a key stream can be parallelised to any degree. Because
of that this mode is used in network security applications.
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Killers and death of DES

In 1993 M. J. Weiner suggested that one could design, using one
million dollars, a computer capable to decrypt, using brute force, DES
in 3.5 hours.

In 1998 group of P. Kocher designed, using a quarter million of dolars,
a computer capable to decrypt DES in 56 hours.

In 1999 they did that in 24 hours.

It started to be clear that a new cryptosystem with larger keys is badly
needed.
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Product- and Feistel-cryptosystems

Design of several important practical cryptosystems used the following
three general design principles for cryptosystems.

A product cryptosystem combines two or more crypto-transformations in
such a way that resulting cryptosystem is more secure than component
transformations.

An iterated block cryptosystem iteratively uses a round function (and it has
as parameters number of rounds r, block bit-size n, subkeys bit-size k) of
the input key K from which r subkeys Ki are derived.

A Feistel cryptosystem is an iterated cryptosystem mapping 2t-bit plaintext
(L0,R0) of t-bit blocks L0 and R0 to a 2t-bit cryptotext (Rr , Lr ), through
an r-round process, where r > 0.

For 0 < I < r + 1, the round i maps (Li−1,Ri−1) to (Li ,Ri ) using a subkey
Ki as follows

Li = Ri−1, Ri = Ki−1 ⊕ f (Ri−1,Ki ),

where each subkey Ki is derived from the main key K.
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Blowfish cryptosystem

Blowfish is Feistel type cryptosystem developed in 1994 by Bruce
Schneier.

Blowfish is more secure and faster than DES.

It encrypts 8-bytes blocks into 8-bytes blocks.

Key length is variable 32k, for k = 1, 2, . . . , 16.

For decryption it does not reverse the order of encryption, but it follows
it.

S-boxes are key dependent and they, as well as subkeys are created by
repeated execution of Blowfish enciphering transformation.

Blowfish has very strong avalanche effect.

A follower of Blowfish, Twofish, was one of 5 candidates for AES.

Blowfish can be downloaded free from the B. Schneier web site.
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AES CRYPTOSYSTEM

On October 2, 2000, NIST selected, as new Advanced Encryption Standard, the
cryptosystem Rijndael, designed in 1998 by Joan Daemen and Vincent Rijmen.

The main goal has been to develop a new cryptographic standard that could be used to
encrypt sensitive governmental information securely, well into the next century.

AES was expected to be used obligatory by U.S. governmental institution and, naturally,
voluntarily, but as a necessity, also by the private sector.

AES is to encrypt 128-bit blocks using a key with 128, 192 or 256 bits. In addition, AES
is to be used as a standard for authentication (MAC), hashing and pseudorandom
numbers generation.

Motivations and advantages of AES:

Short code and fast implementations

Simplicity and transparency of the design

Variable key length

Resistance against all known attacks
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ARITHMETIC in GF(28)

The basic data structure of AES is a byte

a = (a7, a6, a5, a4, a3, a2, a1, a0)

where ai ’s are bits, which can be conveniently represented by the polynomial

a(x) = a7x7 + a6x6 + a5x5 + a4x4 + a3x3 + a2x2 + a1x + a0.

Bytes can be conveniently seen as elements of the field

F = GF (28)/m(x), where m(x) = x8 + x4 + x3 + x + 1.

In the field F, the addition is the bit-wise-XOR and multiplication can be elegantly
expressed using polynomial multiplication modulo m(x).

c = a⊕ b; c = a • b where c(x) = [a(x) • b(x)] mod m(x)
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MULTIPLICATION in GF(28)

Multiplication

c = a • b where c(x) = [a(x) • b(x)] mod m(x)

in GF(28) can be easily performed using a new operation

b = xtime(a)

that corresponds to the polynomial multiplication

b(x) = [a(x) • x ] mod m(x),

as follows

set c = 00000000 and p = a;

for i = 0 to 7 do

c ← c ⊕ (bi • p)

p ← xtime(p)

Hardware implementation of the multiplication requires therefore one circuit for operation
xtime and two 8-bit registers.

Operation b = xtime(a) can be implemented by one step (shift) of the following shift
register:
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EXAMPLES

‘53‘ + ‘87’ = ‘D4‘

because, in binary,

‘01010011‘ ⊕ ‘10000111‘ = ‘11010100‘

what means

(x6 + x4 + x + 1) + (x7 + x2 + x + 1) = x7 + x6 + x4 + x2

‘57’‘• ‘83‘ = ‘C1’

Indeed,

(x6 + x4 + x2 + x + 1)(x7 + x + 1) = x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1

and

(x13 + x11 + x9 + x8 + x6 + x5 + x4 + x3 + 1)
mod (x8 + x4 + x3 + x + 1) = x7 + x6 + 1

‘57‘ • ‘13‘ = (‘57‘ • ‘01’) ⊕ (‘57‘ • ‘02’) ⊕ (‘57‘ • ‘10’) = ‘57‘ ⊕ ‘AE‘ ⊕ ‘07‘ = ‘FE‘

because

‘57‘ • ‘02‘ = xtime(57) = ‘AE‘
‘57‘ • ‘04‘ = xtime(AE) = ‘47‘
‘57‘ • ‘08‘ = xtime(47) = ‘8E‘
‘57‘ • ‘10‘ = xtime(8E) = ‘07’
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POLYNOMIALS over GF(28)

Algorithms of AES work with 4-byte vectors that can be represented by polynomials of
the degree at most 4 with coefficients in GF(28).

Addition of such polynomials is done using component-wise and bit-wise XOR.
Multiplication is done modulo M(x) = x4 + 1. (It holds xJ mod (x4 + 1) = xJ mod 4.)

Multiplication of vectors

(a3x3 + a2x2 + a1x + a0)⊗ (b3x3 + b2x2 + b1x + b0)

can be done using matrix multiplication0BB@
d0

d1

d2

d3

1CCA =

0BB@
a0 a1 a2 a3

a1 a2 a3 a0

a2 a3 a0 a1

a3 a0 a1 a2

1CCA
0BB@

b0

b1

b2

b3

1CCA ,

where additions and multiplications (·) are done in GF(28) as described before.

Multiplication of a polynomial a(x) by x results in a cyclic shift of the coefficients.
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BYTE SUBSTITUTION

Byte substitution b = SubByte(a) is defined by the following matrix
operations

b7

b6

b5

b4

b3

b2

b1

b0


=



1 1 1 1 1 0 0 0
0 1 1 1 1 1 0 0
0 0 1 1 1 1 1 0
0 0 0 1 1 1 1 1
1 0 0 0 1 1 1 1
1 1 0 0 0 1 1 1
1 1 1 0 0 0 1 1
1 1 1 1 0 0 0 1


×



(a−1)7

(a−1)6

(a−1)5

(a−1)4

(a−1)3

(a−1)2

(a−1)1

(a−1)0


+



0
1
1
0
0
0
1
1


This operation is computationally heavy and it is assumed that it will be
implemented by a pre-computed substitution table.

prof. Jozef Gruska IV054 12. From theory to practice in cryptography 531/616



ENCRYPTION in AES

Encryption and decryption are done using state matrices

A E I M
B F J N
C G K O
D H L P

elements of which are bytes.
A byte-matrix with 4 rows and k = 4, 6 or 8 columns is also used to write down a key
with Dk = 128, 192 or 256 bits.

ENCRYPTION ALGORITHM

1 KeyExpansion
2 AddRoundKey
3 do (k + 5)-times:

a) SubByte
b) ShiftRow
c) MixColumn
d) AddRoundKey

4 Final round
a) SubByte
b) ShiftRow
c) AddRoundKey

The final round does not contain MixColumn procedure. The reason being is to be able
to use the same hardware for encryption and decryption.
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KEY EXPANSION

The basic key is written into the state matrix with 4, 6 or 8 columns. The
goal of the key expansion procedure is to extend the number of keys in
such a way that each time a key is used actually a new key is used.

The key extension algorithm generates new columns Wi of the state matrix
from the columns Wi−1 and Wi−k using the following rule

Wi = Wi−k ⊕ V ,

where

V =


F (Wi−1), if i mod k = 0

G (Wi−1), if i mod k = 4 and Dk = 256 bits,

Wi−1 otherwise

where the function G performs only the byte-substitution of the
corresponding bytes. Function F is defined in a quite a complicated way.
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STEPS of ENCRYPTION

AddRoundKey procedure adds byte-wise and bit-wise current key to the
current contents of the state matrix.

ShiftRow procedure cyclically shifts i-th row of the state matrix by i shifts.

MixColumns procedure multiplies columns of the state matrix by the
matrix 

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2


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DECRYPTION in AES

Steps of the encryption algorithm map an input state matrix into an output matrix. All
encryption operations have inverse operations. Decryption algorithm applies, in the
opposite order as at the encryption, the inverse versions of the encryption operations.

DECRYPTION

1 Key Expansion

2 AddRoundKey
3 do k+5 - times:

a) InvSubByte
b) InvShiftRow
c) InvMixColumn
d) AddInvRoundKey

4 Final round
a) InvSubByte
b) InvShiftRow
c) AddInvRoundKey
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SECURITY GOALS

The goal of the authors was that Rijndael (AES) is K-secure and hermetic
in the following sense:

Definition A cryptosystem is K-secure if all possible attack strategies for it
have the same expected work factor and storage requirements as for the
majority of possible cryptosystems with the same security.

Definition A block cryptosystem is hermetic if it does not have weaknesses
that are not present for the majority of cryptosystems with the same block
and key length.
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MISCELANEOUS

Pronunciation of the name Rijndael is as “Reign Dahl’‘ or “rain Doll” or
“Rhine Dahl”.
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PKC versus SKC – comparisons

Security: If PKC is used, only one party needs to keep secret a (single) key; If SKC is
used, both party needs to keep secret one key. No PKC has been shown perfectly secure.
Perfect secrecy has been shown for One-time Pad and for quantum generation of classical
keys.

Longevity: With PKC, keys may need to be kept secure for (very) long time; with SKC a
change of keys for each session is recommended.

Key management: If a multiuser network is used, then fewer private keys are required
with PKC than with SKC.

Key exchange: With PKC no key exchange between communicating parties is needed;
with SKC a hard-to-implement secret key exchange is needed.

Digital signatures: Only PKC are usable for digital signatures.

Efficiency: PKC is much slower than SKC (10 times when software implementations of
RSA and DES are compared).

Key sizes: Keys for PKC (2048 bits for RSA) are significantly larger than for SCK (128
bits for AES).

Non-repudiation: With PKC we can ensure, using digital signatures, non-repudiation, but
not with SKC.
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Digital envelopes

Modern cryptography uses both SKC and PKC, in so-called hybrid
cryptosystems or in digital envelopes to send a message m using a secret
key k, public encryption exponent e, and secret decryption exponent d, as
follows:

1 Key k is encrypted using e and sent as e(k)

2 Secret description exponent d is used to get k=d(e(k))

3 SKC with k is then used to encrypt a message
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KEY MANAGEMENT

Secure methods of key management are extremely important. In practice, most of the
attacks on public-key cryptosystems are likely to be at the key management levels.

Problems: How to obtain securely an appropriate key pair? How to get other people’s
public keys? How to get confidence in the legitimacy of other’s public keys? How to
store keys? How to set, extend,. . . expiration dates of the keys?

Who needs a key? Anyone wishing to sign a message, to verify signatures, to encrypt
messages and to decrypt messages.

How does one get a key pair? Each user should generate his/her own key pair. Once
generated, a user must register his/her public-key with some central administration,
called a certifying authority. This authority returns a certificate.

Certificates are digital documents attesting to the binding of a public-key to an individual
or institutions. They allow verification of the claim that a given public-key does belong to
a given individual. Certificates help to prevent someone from using a phony key to
impersonate someone else. In their simplest form, certificates contain a public-key and a
name. In addition they contain: expiration date, name of the certificate issuing authority,
serial number of the certificate and the digital signature of the certificate issuer.
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How are certificates used – certification authorities

The most secure use of authentication involves enclosing one or more certificates with
every signed message. The receiver of the message verifies the certificate using the
certifying authorities public-keys and, being confident of the public-keys of the sender,
verifies the message’s signature. There may be more certificates enclosed with a message,
forming a hierarchical chain, wherein one certificate testifies to the authenticity of the
previous certificate. At the top end of a certificate hierarchy is a top-level
certifying-authority to be trusted without a certificate.

Example According to the standards, every signature points to a certificate that validates
the public-key of the signer. Specifically, each signature contains the name of the issuer
of the certificate and the serial number of the certificate.

How do certifying authorities store their private keys?

It is extremely important that private-keys of certifying authorities are stored securely.
One method to store the key in a tamper-proof box called a Certificate Signing Unit,
CSU.

The CSU should, preferably, destroy its contents if ever opened. Not even employees of
the certifying authority should have access to the private-key itself, but only the ability to
use private-key in the certificates issuing process.

CSU are for sells

Note: PKCS – Public Key Certification Standards.
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What is PKI?

PKI (Public Key Infrastructure) is an infrastructure that allows to
handle public-key problems for the community that uses public-key
cryptography.

Structure of PKI

Security policy that specifies rules under which PKI can be handled.

Products that generate, store, distribute and manipulate keys.

Procedures that define methods
to generate and manipulate keys
to generate and manipulate certificates
to distribute keys and certificates
to use certificates.

Authorities that take care that the general security policy is fully
performed.
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PKI users and systems

Certificate holder

Certificate user

Certification authority (CA)

Registration authority (RA)

Revocation authority

Repository (to publish a list of certificates, of relocated certificates,...)

Policy management authority (to create certification policy)

Policy approving authority
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SECURITY of Certification and Registration authorities

PKI system is so secure how secure are systems for certificate authorities (CA) and
registration authorities (RA).

Basic principles to follow to ensure necessary security of CA and RA.

Private key of CA has to be stored in a way that is secure against intentional
professional attacks.

Steps have to be made for renovation of the private key in the case of a collapse of
the system.

Access to CA/RA tools has to be maximally controlled.

Each requirement for certification has to be authorized by several independent
operators.

All key transactions of CA/RA have to be logged to be available for a possible audit.

All CA/RA systems and their documentation have to satisfy maximal requirements
for their reliability.
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PUBLIC-KEY INFRASTRUCTURE PROBLEMS

Public-key cryptography has low infrastructure overhead, it is more secure,
more truthful and with better geographical reach. However, this is due to
the fact that public-key users bear a substantial administrative burden and
security advantages of the public key cryptography rely excessively on the
end-users’ security discipline.

Problem 1: With public-key cryptography users must constantly be careful
to validate rigorously every public-key they use and must take care for
secrecy of their private secret keys.

Problem 2: End-users are rarely willing or able to manage keys sufficiently
carefully.

User’s behavior is the weak link in any security system, and public-key
security is unable to reinforce this weakness.

Problem 3: Only sophisticated users, like system administrators, can
realistically be expected to meet fully the demands of public-key
cryptography.
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Main components of public-key infrastructure

The Certification Authority (CA) signs user’s public-keys.
(There has to be a hierarchy of CA, with a root CA on the top.)

The Directory is a public-access database of valid certificates.

The Certificate Revocation List (CRL) – a public-access database of invalid
certificates. (There has to be a hierarchy of CRL).

Stages at which key management issues arise

Key creation: user creates a new key pair, proves his identify to CA. CA signs a
certificate. User encrypts his private key.

Single sign-on: decryption of the private key, participation in public-key protocols.

Key revocation: CRL should be checked every time a certificate is used. If a user’s
secret key is compromised, CRL administration has to be notified.
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MAIN PROBLEMS

Authenticating the users: How does a CA authenticate a distant user, when issuing
the initial certificate?
(Ideally CA and the user should meet. Consequently, properly authenticated
certificates will have to be expensive, due to the label cost in a face-to-face identity
check.)

Authenticating the CA: Public key cryptography cannot secure the distribution and
the validation of the Root CA’s public key.

Certificate revocation lists: Timely and secure revocation presents big scaling and
performance problems. As a result public-key deployment is usually proceeding
without a revocation infrastructure.
(Revocation is the classical Achilles’ Heel of public-key cryptography.)

Private key management: The user must keep his long-lived secret key in memory
during his login-session: There is no way to force a public-key user to choose a good
password.
(Lacking effective password-quality controls, most public-key systems are vulnerable
to the off-line guessing attacks.)
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LIFE CYCLE of CERTIFICATES

Issuing of certificates

registration of applicants for certificates;

generation of pairs of keys;

creation of certificates;

delivering of certificates;

dissemination of certificates;

backuping of keys;

Using of certificates

receiving a certificate;

validation of the certificate;

key backup and recovery;

automatic key/certificate updating

Revocation of certificates

expiration of certificates validity period;

revocation of certificates;

archivation of keys and certificates.
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Pretty Good Privacy

In June 1991 Phil Zimmermann, made publicly available software that
made use of RSA cryptosystem very friendly and easy and by that he made
strong cryptography widely available.

Starting February 1993 Zimmermann was for three years a subject of FBI
and Grand Jury investigations, being accused of illegal exporting arms
(strong cryptography tools).

William Cowell, Deputy Director of NSA said: “If all personal computers in
the world - approximately 200 millions – were to be put to work on a single
PGP encrypted message, it would take an average an estimated 12 million
times the age of universe to break a single message”.

Heated discussion whether strong cryptography should be allowed keep
going on. September 11 attack brought another dimension into the
problem.
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SECURITY / PRIVACY REALITY and TOOLS

Concerning security we are winning battles, but we are loosing wars
concerning privacy.

Four areas concerning security and privacy:

Security of communications – cryptography

Computer security (operating systems, viruses, . . . )

Physical security

Identification and biometrics

With Google we lost privacy.
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How cryptographic systems get broken

Techniques that are indeed used to break cryptosystems:

By NSA:

By exhaustive search (up to 280 options).

By exploiting specific mathematical and statistical weaknesses to speed up the
exhaustive search.

By selling compromised crypto-devices.

By analysing crypto-operators methods and customs.

By FBI:

Using keystroke analysis.

Using the fact that in practice long keys are almost always designed from short
guessable passwords.
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APPENDIX
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RSA in practice

660-bits integers were already (factorized) broken in practice.

1024-bits integers are currently used as moduli.

512-bit integers can be factorized with a device costing 5 K $ in about
10 minutes.

1024-bit integers could be factorized in 6 weeks by a device costing 10
millions of dollars.
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Patentability of cryptography

Cryptographic systems are patentable

Many secret-key cryptosystems have been patented

The basic idea of public-key cryptography are contained in U.S. Patents 4 200 770
(M. Hellman, W. Diffie, R. Merkle) – 29. 4. 1980 U.S. Patent 4 218 582 (M.
Hellman, R. Merkle)

The exclusive licensing rights to both patents are held by “Public Key Partners” (PKP)
which also holds rights to the RSA patent.

All legal challenges to public-key patents have been so far settled before judgment.

Some patent applications for cryptosystems have been blocked by intervention of US:
intelligence or defense agencies.

All cryptographic products in USA needed export licences from the State department,
acting under authority of the International Traffic in Arms Regulation, which defines
cryptographic devices, including software, as munition.

Export of cryptography for authentication has not been restricted, Problems were only
whith cryptography for privacy.
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Part XIII

Quantum cryptography



Quantum cryptography

Quantum cryptography has a potential to be cryptography of 21st century.

An important new feature of quantum cryptography is that security of
quantum cryptographic protocols is based on the laws of nature – of
quantum physics, and not on the unproven assumptions of computational
complexity.

Quantum cryptography is the first area of information processing and
communication in which quantum particle physics laws are directly
exploited to bring an essential advantage in information processing.
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MAIN OUTCOMES – so far

It has been shown that would we have quantum computer, we could
design absolutely secure quantum generation of shared and secret
random classical keys.

It has been proven that even without quantum computers
unconditionally secure quantum generation of classical secret and
shared keys is possible (in the sense that any eavesdropping is
detectable).

Unconditionally secure basic quantum cryptographic primitives, such as
bit commitment and oblivious transfer, are impossible.

Quantum zero-knowledge proofs exist for all NP-complete languages

Quantum teleportation and pseudo-telepathy are possible.

Quantum cryptography and quantum networks are already in advanced
experimental stage.
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BASICS of QUANTUM INFORMATION PROCESSING

As an introduction to quantum cryptography

the very basic motivations, experiments, principles, concepts and results of
quantum information processing and communication

will be presented in the next few slides.
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BASIC MOTIVATION

In quantum information processing we witness an interaction between the
two most important areas of science and technology of 20-th century,
between

quantum physics and informatics.

This is very likely to have important consequences for 21th century.
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QUANTUM PHYSICS

Quantum physics deals with fundamental entities of physics – particles (waves?) like

protons, electrons and neutrons (from which matter is built);

photons (which carry electromagnetic radiation)

various “elementary particles” which mediate other interactions in physics.

We call them particles in spite of the fact that some of their properties are totally
unlike the properties of what we call particles in our ordinary classical world.

For example, a quantum particle can go through two places at the same time and
can interact with itself.

Because of that quantum physics is full of counter-intuitive, weird, mysterious
and even paradoxical events.
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FEYNMAN’s VIEW

I am going to tell you what Nature behaves like . . .

However, do not keep saying to yourself, if you can possibly avoid it,

BUT HOW CAN IT BE LIKE THAT?

Because you will get ”down the drain” into a blind alley from which
nobody has yet escaped

NOBODY KNOWS HOW IT CAN BE LIKE THAT

Richard Feynman (1965): The character of physical law.
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CLASSICAL versus QUANTUM INFORMATION

Main properties of classical information:

1 It is easy to store, transmit and process classical information in time
and space.

2 It is easy to make (unlimited number of) copies of classical information

3 One can measure classical information without disturbing it.

Main properties of quantum information:

1 It is difficult to store, transmit and process quantum information

2 There is no way to copy unknown quantum information

3 Measurement of quantum information destroys it, in general.
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Classical versus quantum computing

The essence of the difference between
classical computers and quantum computers

is in the way information is stored and processed.

In classical computers, information is represented on macroscopic level by bits, which can
take one of the two values

0 or 1

In quantum computers, information is represented on microscopic level using qubits,
(quantum bits) which can take on any from the following uncountable many values

α|0〉+ β|1〉

where α, β are arbitrary complex numbers such that

|α|2 + |β|2 = 1.
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CLASSICAL versus QUANTUM REGISTERS

An n bit classical register can store at any moment exactly one n-bit string.

An n-qubit quantum register can store at any moment a superposition of
all 2n n-bit strings.

Consequently, on a quantum computer one can compute in a single step
with 2n values.

This enormous massive parallelism is one reason why quantum computing
can be so powerful.
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CLASSICAL EXPERIMENTS

Figure 1: Experiment with bullets Figure 2: Experiments with waves
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QUANTUM EXPERIMENTS

Figure 3: Two-slit experiment Figure 4: Two-slit experiment with an observation
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THREE BASIC PRINCIPLES

P1 To each transfer from a quantum state φ to a state ψ a complex number

〈ψ|φ〉
is associated. This number is called the probability amplitude of the transfer and

|〈ψ|φ〉|2

is then the probability of the transfer.

P2 If a transfer from a quantum state φ to a quantum state ψ can be decomposed into
two subsequent transfers

ψ ← φ′ ← φ

then the resulting amplitude of the transfer is the product of amplitudes of subtransfers:
〈ψ|φ〉 = 〈ψ|φ′〉〈φ′|φ〉

P3 If a transfer from a state φ to a state ψ has two independent alternatives

then the resulting amplitude is the sum of amplitudes of two subtransfers.
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QUANTUM SYSTEMS = HILBERT SPACE

Hilbert space Hn is n-dimensional complex vector space with

scalar product

〈ψ|φ〉 =
nX

i=1

φiψ
∗
i of vectors|φ〉 =

˛̨̨̨
˛̨̨̨
˛
φ1

φ2

...
φn

˛̨̨̨
˛̨̨̨
˛ , |ψ〉 =

˛̨̨̨
˛̨̨̨
˛
ψ1

ψ2

...
ψn

˛̨̨̨
˛̨̨̨
˛ ,

This allows to define the norm of vectors as

‖φ‖ =
p
|〈φ|φ〉|.

Two vectors |φ〉 and |ψ〉 are called orthogonal if 〈φ|ψ〉 = 0.

A basis B of Hn is any set of n vectors |b1〉, |b2〉, . . . , |bn〉 of the norm 1 which are
mutually orthogonal.

Given a basis B, any vector |ψ〉 from Hn can be uniquely expressed in the form

|ψ〉 =
nX

i=1

αi |bi 〉.
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BRA-KET NOTATION

Dirac introduced a very handy notation, so called bra-ket notation, to deal
with amplitudes, quantum states and linear functionals f : H → C .

If ψ, φ ∈ H, then

〈ψ|φ〉 – scalar product of ψ and φ (an amplitude of going from φ to ψ).

|φ〉 – ket-vector (a column vector) - an equivalent to φ

〈ψ| – bra-vector (a row vector) a linear functional on H

such that 〈ψ|(|φ〉) = 〈ψ|φ〉
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QUANTUM EVOLUTION / COMPUTATION

EVOLUTION
in

QUANTUM SYSTEM

COMPUTATION
in

HILBERT SPACE

is described by
Schrödinger linear equation

ih
∂|Φ(t)〉
∂t

= H(t)|Φ(t)〉

where h is Planck constant, H(t) is a Hamiltonian (total energy) of the system that can
be represented by a Hermitian matrix and Φ(t) is the state of the system in time t.

If the Hamiltonian is time independent then the above Shrödinger equation has solution

|Φ(t)〉 = U(t)|Φ(0)〉
where

U(t) = e
iHt
h

is the evolution operator that can be represented by a unitary matrix. A step of such an
evolution is therefore a multiplication of a unitary matrix A with a vector |ψ〉, i.e. A |ψ〉

A matrix A is unitary if

A · A∗ = A∗ · A = I
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PAULI MATRICES

Very important one-qubit unary operators are the following Pauli operators,
expressed in the standard basis as follows;

σx =

(
0 1
1 0

)
, σy =

(
0 −1
1 0

)
, σz =

(
1 0
0 −1

)

Observe that Pauli matrices transform a qubit state |φ〉 = α|0〉+ β|1〉 as
follows

σx(α|0〉+ β|1〉) = β|0〉+ α|1〉
σz(α|0〉+ β|1〉) = α|0〉 − β|1〉
σy (α|0〉+ β|1〉) = β|0〉 − α|1〉

Operators σx , σz and σy represent therefore a bit error, a sign error and a
bit-sign error.
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QUANTUM (PROJECTION) MEASUREMENTS

A quantum state is always observed (measured) with respect to an observable O – a
decomposition of a given Hilbert space into orthogonal subspaces (where each vector can
be uniquely represented as a sum of vectors of these subspaces).

There are two outcomes of a projection measurement of a state |φ〉 with respect to O:

1 Classical information into which subspace projection of |φ〉 was made.

2 Resulting quantum projection (as a new state) |φ′〉 in one of the above subspaces.

The subspace into which projection is made is chosen randomly and the corresponding
probability is uniquely determined by the amplitudes at the representation of |φ〉 as a sum
of states of the subspaces.
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QUANTUM STATES and PROJECTION MEASUREMENT

In case an orthonormal basis {βi}ni=1 is chosen in Hn, any state |φ〉 ∈ Hn can be expressed
in the form

|φ〉 =
nX

i=1

ai |βi 〉,
nX

i=1

ai |2 = 1

where

ai = 〈βi |φ〉 are called probability amplitudes

and

their squares provide probabilities

that if the state |φ〉 is measured with respect to the basis {βi}ni=1, then the state |φ〉
collapses into the state |βi 〉 with probability |ai |2.

The classical “outcome” of a measurement of the state |φ〉 with respect to the basis
{βi}ni=1 is the index i of that state |βi 〉 into which the state collapses.
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QUBITS

A qubit is a quantum state in H2

|φ〉 = α|0〉+ β|1〉
where α, β ∈ C are such that |α|2 + |β|2 = 1 and

{|0〉, |1〉} is a (standard) basis of H2

EXAMPLE: Representation of qubits by

(a) electron in a Hydrogen atom

(b) a spin-1/2 particle

Figure 5: Qubit representations by energy levels of an electron in a hydrogen atom and by a

spin-1/2 particle. The condition |α|2 + |β|2 = 1 is a legal one if |α|2 and |β|2 are to be the

probabilities of being in one of two basis states (of electrons or photons).
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HILBERT SPACE H2

STANDARD BASIS
|0〉, |1〉„
1
0

«„
0
1

« DUAL BASIS
|0′〉, |1′〉0B@

1√
2

1√
2

1CA
0B@

1√
2

− 1√
2

1CA
Hadamard matrix

H =
1√
2

(
1 1
1 −1

)
H|0〉 = |0′〉
H|1〉 = |1′〉

H|0′〉 = |0〉
H|1′〉 = |1〉

transforms one of the basis into another one.

General form of a unitary matrix of degree 2

U = e iγ

„
e iα 0
0 e−iα

«„
cos θ i sin θ
i sin θ cos θ

«„
e iβ 0
0 e−iβ

«
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QUANTUM MEASUREMENT

of a qubit state

A qubit state can “contain” unboundly large amount of classical information. However,
an unknown quantum state cannot be identified.

By a measurement of the qubit state

α|0〉+ β|1〉
with respect to the basis

{|0〉, |1〉}
we can obtain only classical information and only in the following random way:

0 with probability |α|2 1 with probability |β|2
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MIXED STATES – DENSITY MATRICES

A probability distribution {(pi , |φi 〉)}ki=1 on pure states is called a mixed
state to which it is assigned a density operator

ρ =
n∑

i=1

pi |φ〉〈φi |.

One interpretation of a mixed state {(pi , |φi 〉)}ki=1 is that a source X
produces the state |φi 〉 with probability pi .

Any matrix representing a density operator is called density matrix.

Density matrices are exactly Hermitian, positive matrices with trace 1.

To two different mixed states can correspond the same density matrix.

Two mixes states with the same density matrix are physically
undistinguishable.
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MAXIMALLY MIXED STATES

To the maximally mixed state(1

2
, |0〉

)
,
(1

2
, |1〉

)
which represents a random bit corresponds the density matrix

1

2

(
1
0

)
(1, 0) +

1

2

(
0
1

)
(0, 1) =

1

2

(
1 0
0 1

)
=

1

2
I2

Surprisingly, many other mixed states have density matrix that is the same
as that of the maximally mixed state.
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QUANTUM ONE-TIME PAD CRYPTOSYSTEM

CLASSICAL ONE-TIME PAD cryptosystem

plaintext an n-bit string c
shared key an n-bit string c
cryptotext an n-bit string c
encoding c = p ⊕ k
decoding p = c ⊕ k

QUANTUM ONE-TIME PAD cryptosystem

plaintext: an n-qubit string |p〉 = |p1〉 . . . |pn〉
shared key: two n-bit strings k,k’
cryptotext: an n-qubit string |c〉 = |c1〉 . . . |cn〉

encoding: |ci 〉 = σki
x σ

k
′
i

z |pi 〉

decoding: |pi 〉 = σki
x σ

k
′
i

z |ci 〉

where |pi 〉 =

„
ai

bi

«
and |ci 〉 =

„
di

ei

«
are qubits and σx =

„
0 1
1 0

«
with σz =

„
1 0
0 −1

«
are Pauli matrices.
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UNCONDITIONAL SECURITY of QUANTUM ONE-TIME PAD

In the case of encryption of a qubit

|φ〉 = α|0〉+ β|1〉

by QUANTUM ONE-TIME PAD cryptosystem, what is being transmitted
is the mixed state(1

4
, |φ〉

)
,
(1

4
, σx |φ〉

)
,
(1

4
, σz |φ〉

)
,
(1

4
, σxσz |φ〉

)
whose density matrix is

1

2
I2

This density matrix is identical to the density matrix corresponding to that
of a random bit, that is to the mixed state(1

2
, |0〉

)
,
(1

2
, |1〉

)
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SHANNON’s THEOREMS

Shannon classical encryption theorem says that n bits are necessary and
sufficient to encrypt securely n bits.

Quantum version of Shannon encryption theorem says that 2n classical bits
are necessary and sufficient to encrypt securely n qubits.
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COMPOSED QUANTUM SYSTEMS (1)

Tensor product of vectors

(x1, . . . , xn)⊗ (y1, . . . , ym) = (x1y1, . . . , x1ym, x2y1, . . . , x2ym, . . . , x2ym, . . . , xny1, . . . , xnym)

Tensor product of matrices A⊗ B =

0B@a11B . . . a1nB
...

...
an1B . . . annB

1CA
where A =

0B@a11 . . . a1n

...
...

an1 . . . ann

1CA

Example

„
1 0
0 1

«
⊗
„

a11 a12

a21 a22

«
=

0BB@
a11 a12 0 0
a21 a22 0 0
0 0 a11 a12

0 0 a21 a22

1CCA
„

a11 a12

a21 a22

«
⊗
„

1 0
0 1

«
=

0BB@
a11 0 a12 0
0 a11 0 a12

a21 0 a22 0
0 a21 0 a22

1CCA
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«
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0 0 a21 a22
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„

a11 a12

a21 a22

«
⊗
„

1 0
0 1

«
=

0BB@
a11 0 a12 0
0 a11 0 a12

a21 0 a22 0
0 a21 0 a22
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COMPOSED QUANTUM SYSTEMS (2)

Tensor product of Hilbert spaces H1 ⊗ H2 is the complex vector space
spanned by tensor products of vectors from H1 and H2 . That corresponds
to the quantum system composed of the quantum systems corresponding
to Hilbert spaces H1 and H2.

An important difference between classical and quantum systems

A state of a compound classical (quantum) system can be (cannot be)
always composed from the states of the subsystem.
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QUANTUM REGISTERS

A general state of a 2-qubit register is:

|φ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉

where

|α00|2 + |α01|2 + |α10|2 + |α11|2 = 1

and |00〉, |01〉, |10〉, |11〉 are vectors of the “standard” basis of H4, i.e.

|00〉 =

0BB@
1
0
0
0

1CCA |01〉 =

0BB@
0
1
0
0

1CCA |10〉 =

0BB@
0
0
1
0

1CCA |11〉 =

0BB@
0
0
0
1

1CCA
An important unitary matrix of degree 4, to transform states of 2-qubit registers:

CNOT = XOR =

0BB@
1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

1CCA
It holds:

CNOT : |x , y〉 ⇒ |x , x ⊕ y〉
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QUANTUM MEASUREMENT

of the states of 2-qubit registers
|φ〉 = α00|00〉+ α01|01〉+ α10|10〉+ α11|11〉

1 Measurement with respect to the basis {|00〉, |01〉, |10〉, |11〉}
RESULTS:

|00〉 and 00 with probability |α00|2
|01〉 and 01 with probability |α01|2
|10〉 and 10 with probability |α10|2
|11〉 and 11 with probability |α11|2

2 Measurement of particular qubits:

By measuring the first qubit we get

0 with probability |α00|2 + |α01|2

and |φ〉 is reduced to the vector
α00|00〉+ α01|01〉p
|α10|2 + |α11|2

1 with probability |α10|2 + |α11|2

and |φ〉 is reduced to the vector
α10|10〉+ α11|11〉p
|α10|2 + |α11|2
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NO-CLONING THEOREM

INFORMAL VERSION: Unknown quantum state cannot be cloned.

FORMAL VERSION: There is no unitary transformation U such that for any qubit state
|ψ〉

U(|ψ〉|0〉) = |ψ〉|ψ〉

PROOF: Assume U exists and for two different states |α〉 and |β〉

U(|α〉|0〉) = |α〉|α〉 U(|β〉|0〉) = |β〉|β〉

Let

|γ〉 =
1√
2

(|α〉+ |β〉)

Then

U(|γ〉|0〉) =
1√
2

(|α〉|α〉+ |β〉|β〉) 6= |γ〉|γ〉 =
1√
2

(|α〉|α〉+ |β〉|β〉+ |α〉|β〉+ |β〉|α〉)

However, CNOT can make copies of basis states |0〉, |1〉:

CNOT (|x〉|0〉) = |x〉|x〉
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BELL STATES

States

|Φ+〉 =
1√
2

(|00〉+ |11〉), |Φ−〉 =
1√
2

(|00〉 − |11〉)

|Ψ+〉 =
1√
2

(|01〉+ |10〉), |Ψ−〉 =
1√
2

(|01〉 − |10〉)

form an orthogonal (Bell) basis in H4 and play an important role in
quantum computing.

Theoretically, there is an observable for this basis. However, no one has
been able to construct a measuring device for Bell measurement using
linear elements only.
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QUANTUM n-qubit REGISTER

A general state of an n-qubit register has the form:

|φ〉 =
2n−1X
i=0

αi |i〉 =
X

i∈{0,1}n
αi |i〉, where

2n−1X
i=0

|αi |2 = 1

and |φ〉 is a vector in H2n .

Operators on n-qubits registers are unitary matrices of degree 2n.

Is it difficult to create a state of an n-qubit register?

In general yes, in some important special cases not. For example, if n-qubit Hadamard
transformation

Hn = ⊗n
i=1H.

is used then

Hn|0(n)〉 = ⊗n
i=1H|0〉 = ⊗n

i=1|0′〉 = |0′(n)〉 =
1√
2n

2n−1X
i=0

|i〉 =
1√
2n

X
x∈{0,1}n

|x〉

and, in general, for x ∈ {0, 1}n

Hn|x〉 =
1√
2n

X
x∈{0,1}n

(−1)x·y |y〉. 1

1The dot product is defined as follows: x · y = ⊗n
i=1xiyi .
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QUANTUM PARALLELISM

If

f : {0, 1, . . . , 2n − 1} ⇒ {0, 1, . . . , 2n − 1}

then the mapping

f ′ : (x , 0)⇒ (x , f (x))

is one-to-one and therefore there is a unitary transformation Uf such that.

Uf (|x〉|0〉)⇒ |x〉|f (x)〉

Let us have the state

|Ψ〉 =
1√
2n

2n−1X
i=0

|i〉|0〉

With a single application of the mapping Uf we then get

Uf |Ψ〉 =
1√
2n

2n−1X
i=0

|i〉|f (i)〉

OBSERVE THAT IN A SINGLE COMPUTATIONAL STEP 2n VALUES
OF f ARE COMPUTED!
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IN WHAT LIES POWER OF QUANTUM COMPUTING?

In quantum superposition or in quantum parallelism?
NOT,

in QUANTUM ENTANGLEMENT!

Let

|ψ〉 =
1√
2

(|00〉+ |11〉)

be a state of two very distant particles, for example on two planets
Measurement of one of the particles, with respect to the standard basis, makes the above
state to collapse to one of the states

|00〉 or |11〉.

This means that subsequent measurement of other particle (on another planet) provides
the same result as the measurement of the first particle. This indicate that in quantum
world non-local influences, correlations, exist.
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POWER of ENTANGLEMENT

Quantum state |Ψ〉 of a composed bipartite quantum system A⊗ B is
called entangled if it cannot be decomposed into tensor product of the
states from A and B.

Quantum entanglement is an important quantum resource that allows

To create phenomena that are impossible in the classical world (for
example teleportation)

To create quantum algorithms that are asymptotically more efficient
than any classical algorithm known for the same problem.

To create communication protocols that are asymptotically more
efficient than classical communication protocols for the same task

To create, for two parties, shared secret binary keys

To increase capacity of quantum channels
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CLASSICAL versus QUANTUM CRYPTOGRAPHY

Security of classical cryptography is based on unproven assumptions of
computational complexity (and it can be jeopardize by progress in
algorithms and/or technology).

Security of quantum cryptography is based on laws of quantum physics
that allow to build systems where undetectable eavesdropping is
impossible.

Since classical cryptography is vulnerable to technological
improvements it has to be designed in such a way that a secret is
secure with respect to future technology, during the whole period in
which the secrecy is required.

Quantum key generation, on the other hand, needs to be designed only
to be secure against technology available at the moment of key
generation.
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QUANTUM KEY GENERATION

Quantum protocols for using quantum systems to achieve unconditionally
secure generation of secret (classical) keys by two parties are one of the
main theoretical achievements of quantum information processing and
communication research.

Moreover, experimental systems for implementing such protocols are one of
the main achievements of experimental quantum information processing
research.

It is believed and hoped that it will be

quantum key generation (QKG)

another term is

quantum key distribution (QKD)

where one can expect the first

transfer from the experimental to the development stage.
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QUANTUM KEY GENERATION – EPR METHOD

Let Alice and Bob share n pairs of particles in the entangled EPR-state.

1√
2

(|00〉+ |11〉).

If both of them measure their particles in the standard basis, then they get,
as the classical outcome of their measurements the same random, shared
and secret binary key of length n.
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POLARIZATION of PHOTONS

Polarized photons are currently mainly used for experimental quantum key
generation.

Photon, or light quantum, is a particle composing light and other forms of
electromagnetic radiation.

Photons are electromagnetic waves and their electric and magnetic fields are
perpendicular to the direction of propagation and also to each other.

An important property of photons is polarization – it refers to the bias of the
electric field in the electromagnetic field of the photon.

Figure 6: Electric and magnetic fields of a linearly polarized photon
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POLARIZATION of PHOTONS

Figure 6: Electric and magnetic fields of a linearly polarized photon

If the electric field vector is always parallel to a fixed line we have linear polarization
(see Figure).
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POLARIZATION of PHOTONS

There is no way to determine exactly polarization of a single photon.

However, for any angle θ there are θ-polarizers – “filters” – that produce θ-polarized
photons from an incoming stream of photons and they let θ1-polarized photons to get
through with probability cos2(θ − θ1).

Figure 6: Photon polarizers and measuring devices-80%

Photons whose electronic fields oscillate in a plane at either 0◦ or 90◦ to some reference
line are called usually rectilinearly polarized and those whose electric field oscillates in a
plane at 45◦ or 135◦ as diagonally polarized. Polarizers that produce only vertically or
horizontally polarized photons are depicted in Figure 6 a, b.
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POLARIZATION of PHOTONS

Generation of orthogonally polarized photons.

Figure 6: Photon polarizers and measuring devices-80%

For any two orthogonal polarizations there are generators that produce photons of two
given orthogonal polarizations. For example, a calcite crystal, properly oriented, can do
the job.

Fig. c – a calcite crystal that makes θ-polarized photons to be horizontally (vertically)
polarized with probability cos2θ(sin2θ).

Fig. d – a calcite crystal can be used to separate horizontally and vertically polarized
photons.

prof. Jozef Gruska IV054 13. Quantum cryptography 598/616



QUANTUM KEY GENERATION – PROLOGUE

Very basic setting Alice tries to send a quantum system to Bob and an eavesdropper tries
to learn, or to change, as much as possible, without being detected.

Eavesdroppers have this time especially hard time, because quantum states cannot be
copied and cannot be measured without causing, in general, a disturbance.

Key problem: Alice prepares a quantum system in a specific way, unknown to the
eavesdropper, Eve, and sends it to Bob.

The question is how much information can Eve extract of that quantum system and how
much it costs in terms of the disturbance of the system.

Three special cases

1 Eve has no information about the state |ψ〉 Alice sends.

2 Eve knows that |ψ〉 is one of the states of an orthonormal basis {|φi 〉}ni=1.

3 Eve knows that |ψ〉 is one of the states |φ1〉, . . . , |φn〉 that are not mutually
orthonormal and that pi is the probability that |ψ〉 = |φi 〉.
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TRANSMISSION ERRORS

If Alice sends randomly chosen bit

0 encoded randomly as |0〉 or |0′〉

or

1 encoded as randomly as |1〉 or |1′〉

and Bob measures the encoded bit by choosing randomly the standard or the dual basis,
then the probability of error is 1

4
= 2

8

If Eve measures the encoded bit, sent by Alice, according to the randomly chosen basis,
standard or dual, then she can learn the bit sent with the probability 75% .

If she then sends the state obtained after the measurement to Bob and he measures it
with respect to the standard or dual basis, randomly chosen, then the probability of error
for his measurement is 3

8
– a 50% increase with respect to the case there was no

eavesdropping.

Indeed the error is

1

2
· 1

4
+

1

2

“1

2
· 1

4
+

1

2
· 3

4

”
=

3

8
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BB84 QUANTUM KEY GENERATION PROTOCOL

Quantum key generation protocol BB84 (due to Bennett and Brassard), for generation of
a key of length n, has several phases:

Preparation phase

Alice is assumed to have four transmitters of photons in one of the following four
polarizations 0, 45, 90 and 135 degrees

Figure 8: Polarizations of photons for BB84 and B92 protocols

Expressed in a more general form, Alice uses for encoding states from the set
{|0〉, |1〉, |0′〉, |1′〉}.
Bob has a detector that can be set up to distinguish between rectilinear polarizations (0
and 90 degrees) or can be quickly reset to distinguish between diagonal polarizations (45
and 135 degrees).
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BB84 QUANTUM KEY GENERATION PROTOCOL

(In accordance with the laws of quantum physics, there is no detector that could distinguish
between unorthogonal polarizations.)
(In a more formal setting, Bob can measure the incomming photons either in the standard basis
B = {|0〉, |1〉} or in the dual basis D = {|0′〉, |1′〉}.
To send a bit 0 (1) of her first random sequence through a quantum channel Alice chooses, on
the basis of her second random sequence, one of the encodings |0〉 or |0′〉 (|1〉 or |1′〉), i.e., in the
standard or dual basis,
Bob chooses, each time on the base of his private random sequence, one of the bases B or D to
measure the photon he is to receive and he records the results of his measurements and keeps
them secret.

Alice’s Bob’s Alice’s state The result Correctness
encodings observables relative to Bob and its probability

0→ |0〉 0→ B |0〉 0 (prob. 1) correct
1→ D 1√

2
(|0′〉+ |1′〉) 0/1 (prob. 1

2
) random

0→ |0′〉 0→ B 1√
2

(|0〉+ |1〉) 0/1 (prob. 1
2

) random

1→ D |0′〉 0 (prob. 1) correct

1→ |1〉 0→ B |1〉 1 (prob. 1) correct
1→ D 1√

2
(|0′〉 − |1′〉) 0/1 (prob. 1

2
) random

1→ |1′〉 0→ B 1√
2

(|0〉+ |1〉) 0/1 (prob. 1
2

) random

1→ D |1′〉 1 (prob. 1) correct

Figure 9: Quantum cryptography with BB84 protocol

Figure 9 shows the possible results of the measurements and their probabilities.
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BB84 QUANTUM KEY GENERATION PROTOCOL

An example of an encoding – decoding process is in the Figure 10.

Raw key extraction

Bob makes public the sequence of bases he used to measure the photons he received –
but not the results of the measurements – and Alice tells Bob, through a classical
channel, in which cases he has chosen the same basis for measurement as she did for
encoding. The corresponding bits then form the basic raw key.

1 0 0 0 1 1 0 0 0 1 1 Alice’s random sequence
|1〉 |0′〉 |0〉 |0′〉 |1〉 |1′〉 |0′〉 |0〉 |0〉 |1〉 |1′〉 Alice’s polarizations
0 1 1 1 0 0 1 0 0 1 0 Bob’s random sequence
B D D D B B D B B D B Bob’s observable
1 0 R 0 1 R 0 0 0 R R outcomes

Figure 10: Quantum transmissions in the BB84 protocol – R stands for the case that the result
of the measurement is random.
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BB84 QUANTUM KEY GENERATION PROTOCOL

Test for eavesdropping

Alice and Bob agree on a sequence of indices of the raw key and make the corresponding
bits of their raw keys public.

Case 1. Noiseless channel. If the subsequences chosen by Alice and Bob are not
completely identical eavesdropping is detected. Otherwise, the remaining bits are taken
as creating the final key.

Case 2. Noisy channel. If the subsequences chosen by Alice and Bob contains more
errors than the admitable error of the channel (that has to be determined from channel
characteristics), then eavesdropping is assumed. Otherwise, the remaining bits are taken
as the next result of the raw key generation process.

Error correction phase

In the case of a noisy channel for transmission it may happen that Alice and Bob have
different raw keys after the key generation phase.

A way out is to use a special error correction techniques and at the end of this stage both
Alice and Bob share identical keys.
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BB84 QUANTUM KEY GENERATION PROTOCOL

Privacy amplification phase

One problem remains. Eve can still have quite a bit of information about the key both
Alice and Bob share. Privacy amplification is a tool to deal with such a case.

Privacy amplification is a method how to select a short and very secret binary string s
from a longer but less secret string s’. The main idea is simple. If |s| = n, then one picks
up n random subsets S1, . . . , Sn of bits of s’ and let si , the i-th bit of S, be the parity of
Si . One way to do it is to take a random binary matrix of size |s| × |s ′| and to perform
multiplication Ms ′T , where s ′T is the binary column vector corresponding to s’.

The point is that even in the case where an eavesdropper knows quite a few bits of s’,
she will have almost no information about s.

More exactly, if Eve knows parity bits of k subsets of s’, then if a random subset of bits
of s’ is chosen, then the probability that Eve has any information about its parity bit is

less than
2−(n−k−1)

ln 2
.
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EXPERIMENTAL CRYPTOGRAPHY

Successes

1 Transmissions using optical fibers to the distance of 120 km.

2 Open air transmissions to the distance 144 km at day time (from one pick of Canary
Islands to another).

3 Next goal: earth to satellite transmissions.

All current systems use optical means for quantum state transmissions

Problems and tasks

1 No single photon sources are available. Weak laser pulses currently used contains in
average 0.1 - 0.2 photons.

2 Loss of signals in the fiber. (Current error rates: 0,5 - 4%)

3 To move from the experimental to the developmental stage.
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QUANTUM TELEPORTATION

Quantum teleportation allows to transmit unknown quantum information to a very distant place
in spite of impossibility to measure or to broadcast information to be transmitted.

|ψ〉 = α|0〉+ β|1〉 |EPR − pair〉 =
1
√

2
(|00〉+ |11〉)

Total state

|ψ〉|EPR − pair〉 =
1
√

2
(α|000〉+ α|011〉+ β|100〉+ β|111〉)

Measurement of the first two qubits is done with respect to the “Bell basis”:

|Φ+〉 =
1
√

2
(|00〉+ |11〉) |Φ−〉 =

1
√

2
(|00〉 − |11〉)

|Ψ+〉 =
1
√

2
(|01〉+ |10〉) |Ψ−〉 =

1
√

2
(|01〉 − |10〉)
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QUANTUM TELEPORTATION I

Total state of three particles:

|ψ〉|EPR − pair〉 =
1√
2

(α|000〉+ α|011〉+ β|100〉+ β|111〉)

can be expressed as follows:

|ψ〉|EPR − pair〉 = |Φ+〉 1√
2

(α|0〉+ β|1〉) + |Ψ+〉 1√
2

(β|0〉+ α|1〉) + |Φ−〉 1√
2

(α|0〉 −

β|1〉) + |Ψ−〉 1√
2

(−β|0〉+ α|1〉)

and therefore Bell measurement of the first two particles projects the state of Bob’s
particle into a “small modification” |ψ1〉 of the state |ψ〉 = α|0〉+ β|1〉,

|Ψ1〉 = either |Ψ〉 or σx |Ψ〉 or σz |Ψ〉 or σxσz |ψ〉

The unknown state |ψ〉 can therefore be obtained from |ψ1〉 by applying one of the four
operations

σx , σy , σz , I

and the result of the Bell measurement provides two bits specifying which of the above
four operations should be applied.

These four bits Alice needs to send to Bob using a classical channel (by email, for
example).

prof. Jozef Gruska IV054 13. Quantum cryptography 608/616



QUANTUM TELEPORTATION II

If the first two particles of the state

|ψ〉|EPR − pair〉 = |Φ+〉 1√
2

(α|0〉+ β|1〉) + |Ψ+〉 1√
2

(β|0〉+ α|1〉) + |Φ−〉 1√
2

(α|0〉 −

β|1〉) + |Ψ−〉 1√
2

(−β|0〉+ α|1〉)

are measured with respect to the Bell basis then Bob’s particle gets into the mixed state“1

4
, α|0〉+ β|1〉

”
⊕
“1

4
, α|0〉 − β|1〉

”
⊕
“1

4
, β|0〉+ α|1〉

”
⊕
“1

4
, β|0〉 − α|1〉

”
to which corresponds the density matrix

1

4

`
α∗

β∗

´
(α, β) +

1

4

`
α∗

−β∗
´
(α,−β) +

1

4

`
β∗

α∗

´
(β, α) +

1

4

`
β∗

−α∗
´
(β,−α) =

1

2
I

The resulting density matrix is identical to the density matrix for the mixed state“1

2
, |0〉

”
⊕
“1

2
, |1〉

”
Indeed, the density matrix for the last mixed state has the form

1

2

`
1
0

´
(1, 0) +

1

2

`
0
1

´
(0, 1) =

1

2
I
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QUANTUM TELEPORTATION – COMMENTS

Alice can be seen as dividing information contained in |ψ〉 into
quantum information – transmitted through EPR channel
classical information – transmitted through a classical channel

In a quantum teleportation an unknown quantum state |φ〉 can be disassembled
into, and later reconstructed from, two classical bit-states and an maximally
entangled pure quantum state.

Using quantum teleportation an unknown quantum state can be teleported from one
place to another by a sender who does need to know – for teleportation itself –
neither the state to be teleported nor the location of the intended receiver.

The teleportation procedure can not be used to transmit information faster than light

but

it can be argued that quantum information presented in unknown state is
transmitted instantaneously (except two random bits to be transmitted at the speed
of light at most).

EPR channel is irreversibly destroyed during the teleportation process.
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DARPA Network

In Cambridge connecting Harvard, Boston Uni, and BBN Technology
(10,19 and 29 km).

Currently 6 nodes, in near future 10 nodes.

Continuously operating since March 2004

Three technologies: lasers through optic fibers, entanglement through
fiber and free-space QKD (in future two versions of it).

Implementation of BB84 with authentication, sifting error correction
and privacy amplification.

One 2x2 switch to make sender-receiver connections

Capability to overcome several limitations of stand-alone QKD systems.
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WHY IS QUANTUM INFORMATION PROCESSING SO IMPORTANT

QIPC is believed to lead to new Quantum Information Processing
Technology that could have broad impacts.

Several areas of science and technology are approaching such points in
their development where they badly need expertise with storing,
transmission and processing of particles.

It is increasingly believed that new, quantum information processing
based, understanding of (complex) quantum phenomena and systems
can be developed.

Quantum cryptography seems to offer new level of security and be soon
feasible.

QIPC has been shown to be more efficient in interesting/important
cases.
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UNIVERSAL SETS of QUANTUM GATES

The main task at quantum computation is to express solution of a given
problem P as a unitary matrix U and then to construct a circuit CU with
elementary quantum gates from a universal sets of quantum gates to
realize U.

A simple universal set of quantum gates consists of gates.

CNOT =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 ,H =
1√
2

(
1 1
1 −1

)
, σ

1
4
z =

(
1 0

0 e
π
4 i

)
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FUNDAMENTAL RESULTS

The first really satisfactory results, concerning universality of gates, have
been due to Barenco et al. (1995)

Theorem 0.1 CNOT gate and all one-qubit gates form a universal set of
gates.

The proof is in principle a simple modification of the RQ-decomposition
from linear algebra. Theorem 0.1 can be easily improved:

Theorem 0.2 CNOT gate and elementary rotation gates

Rα(θ) = cos
θ

2
I − i sin

θ

2
σα for α ∈ {x , y , z}

form a universal set of gates.
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QUANTUM ALGORITHMS

Quantum algorithms are methods of using quantum circuits and processors
to solve algorithmic problems.

On a more technical level, a design of a quantum algorithm can be seen as
a process of an efficient decomposition of a complex unitary transformation
into products of elementary unitary operations (or gates), performing
simple local changes.

The four main features of quantum mechanics that are exploited in
quantum computation:

Superposition;

Interference;

Entanglement;

Measurement.
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EXAMPLES of QUANTUM ALGORITHMS

Deutsch problem: Given is a black-box function f: {0, 1} → {0, 1}, how many queries are
needed to find out whether f is constant or balanced:

Classically: 2

Quantumly: 1

Deutsch-Jozsa Problem: Given is a black-box function f : {0, 1}n → {0, 1} and a promise
that f is either constant or balanced, how many queries are needed to find out whether f
is constant or balanced.

Classically: n

Quantumly 1

Factorization of integers: all classical algorithms are exponential.

Peter Shor developed polynomial time quantum algorithm

Search of an element in an unordered database of n elements:

Classically n queries are needed in the worst case

Lov Grover showed that quantumly
√

n queries are enough
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