1. Otočte bod [3,1] o úhel π 2 v záporném smyslu kolem počátku. 2. Je dán trojúhelník ABC: A=[1,1], B=[3,2], C=[2,3]. (a) Určete, které strany trojúhelníku ABC jsou viditelné z bodu P=[4,4]. (b) Otočte trojúhelník o 60 stupňů v kladném smyslu kolem počátku. (c) Zrcadlete trojúhelník ABC podle přímky p : x − y = 1 (d) Spočítejte obsah tohoto trojúhelníku. 3. Dvoumetrová tyč je náhodně rozdělena na tři díly. Určete pravděpodobnost, že alespoň jeden díl bude nejvýše 20 cm dlouhý. 4. Dva kamarádi se domluvili, že se setkají na určitém místě. Přitom každý z nich přijde na místo nezávisle na druhém v náhodném okamžiku mezi 19. a 20. hodinou, počká 20 minut a jestliže se druhý během této doby nedostaví, odejde. Jaká je pravděpodobnost, že se setkají. 5. Které strany čtyřúhelníku daného body [1, 4], [2, −1], [3, 3], [4, 1] vidí pozorovatel stojící v bodě [7, 2]? 6. Zrcadlete úsečku danou body A = [1, 3], B = [−1, 3] podle přímky y = −x 1