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Application of Metabolomics
to Cardiovascular Biomarker and Pathway Discovery
Gregory D. Lewis, MD,*†‡ Aarti Asnani, BS,*† Robert E. Gerszten, MD*†‡

Charlestown, Boston, and Cambridge, Massachusetts

Emerging technologies based on mass spectrometry and nuclear magnetic resonance enable the monitoring of
hundreds of metabolites from tissues or body fluids, that is, “metabolomics.” Because metabolites change rap-
idly in response to physiologic perturbations, they represent proximal reporters of disease phenotypes. The profil-
ing of low molecular weight biochemicals, including lipids, sugars, nucleotides, organic acids, and amino acids,
that serve as substrates and products in metabolic pathways is particularly relevant to cardiovascular diseases.
In addition to serving as disease biomarkers, circulating metabolites may participate in previously unanticipated
roles as regulatory signals with hormone-like functions. Cellular metabolic pathways are highly conserved among
species, facilitating complementary functional studies in model organisms to provide insight into metabolic
changes identified in humans. Although metabolic profiling technologies and methods of pattern recognition and
data reduction remain under development, the coupling of metabolomics with other functional genomic ap-
proaches promises to extend our ability to elucidate biological pathways and discover biomarkers of human
disease. (J Am Coll Cardiol 2008;52:117–23) © 2008 by the American College of Cardiology Foundation

ublished by Elsevier Inc. doi:10.1016/j.jacc.2008.03.043
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etabolism refers to the body’s conversion of food stores into
nergy currencies that can be used to perform work. Although
ecades of research in biochemistry, nutrition, and physiology
ave revealed specific metabolic pathways, systematic surveys
f pathways altered in human disease states, such as diabetes,
besity, and cardiovascular disease, have yet to be performed.
n emerging set of tools, based on mass spectrometry, nuclear
agnetic resonance, and other technologies, enables the mon-

toring of dozens to hundreds of metabolites from biological
amples. Although these technologies are still under develop-
ent, they complement other functional genomic approaches,

uch as high-throughput genome sequencing, ribonucleic acid
xpression analysis, and proteomics, and promise to transform
ur ability to profile samples with the goal of illuminating
iology and discovering valuable clinical biomarkers.

he Birth of Metabolomics

mall biochemicals are the end result of all regulatory
omplexity present in the cell, tissue, or organism, including
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ranscriptional regulation, translational regulation, and
ost-translational modification (Fig. 1). Metabolic changes
re thus the most proximal reporters of alterations in the
ody in response to a disease process or drug therapy. In
971, Arthur Robinson and Linus Pauling conceived the
ore idea that information-rich data reflecting the func-
ional status of a complex biological system resides in the
uantitative and qualitative pattern of metabolites in body
uids (1). In the same year, Horning and Horning (2) first
sed the term metabolic profiling to describe the gas
hromatography (GC) output from a patient sample. This
merging approach to the quantitative metabolic profiling of
arge numbers of small molecules in biofluids was ultimately
ermed “metabonomics” by Nicholson et al. (3), and
metabolomics” by others. Recently, more focused analyses
f specific metabolite families or subsets have even given rise
o new terms such as “lipidomics.” Although the majority of
iomarkers have emerged as extensions of “targeted” phys-
ological studies, it has become evident that a metabolite
rofile derived in an unbiased manner may be informative
ven if the constituents or their relationships to the disease
re initially unknown (Fig. 2).

To date, the majority of metabolomics studies have been
erformed in model organisms. Studies have elucidated the
enetic control of metabolites in plants, such as arabidopsis,
nd have determined “metabolic footprints” of genetically
ltered yeast (S. cerevisiae) (4,5). In the latter report, metabolic
rofiling of conditioned media was used to “diagnose” other-
ise silent mutant phenotypes. Tandem mass spectrometry

MS) has also been used to profile 36 acylcarnitine species

n mice overexpressing hepatic malonyl-coenzyme A
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decarboxylase, yielding novel in-
formation regarding muscle beta-
hydroxybutyrate levels and insulin
sensitivity (6).

The vision for metabolic profil-
ing to diagnose human disease,
however, extends from seminal
studies of inborn errors of metab-
olism in infants. Millington and
colleagues pioneered the use of
tandem MS-based methods for

onitoring fatty acid oxidation, as well as organic and selected
mino acids (7). Their work has culminated in universal
eonatal screening for metabolism disorders in the state of
orth Carolina (8). It is anticipated that a global metabolomic

nalysis of more common diseases might identify new biomar-
ers or spotlight pathways for dietary or drug modulation. The
pplication of metabolomics to complex cardiovascular dis-
ases, however, is likely to be more difficult than its application
o inherited inborn errors of metabolism.

echnologies to Define the Human Metabolome

he global collection of metabolites in a cell or organism is
ften called the metabolome; this refers to all small molecules
hat exclude nucleic acids and proteins (Fig. 1, Table 1).
resent estimates suggest that the human metabolome consists
f approximately 3,000 endogenous metabolites (Human
etabolome Project [9,10], Kyoto Encyclopedia of Genes and
enomes [11]). As with the human genome, the exact size of

he human metabolome remains under debate. Estimates of
he metabolome will likely be revised as technologies to detect
etabolites become more sensitive and comprehensive. More-

Genome

DNA RNA Protein 

N~2 x 104 N~10 6      

Transcriptome

E N V I R O

Abbreviations
and Acronyms

GC � gas chromatography

LC � liquid
chromatography

MS � mass spectrometry

NMR � nuclear magnetic
resonance

TCA � tricarboxylic acid
Figure 1 Integration of Metabolomics With Other “Omics” Approach
ver, some argue that nutritional compounds, xenobiotics
odified by human enzymes, as well as microbial metabolites

resent in the gut must also be taken into consideration when
efining the human metabolome.
The metabolome spans a variety of chemical compound

lasses, including those that are anionic versus cationic and
ipophilic versus hydrophilic (Table 1). Metabolites in tissue
r body fluids are present across a broad range of concen-
rations. Therefore, no single analytical method is capable of
nalyzing all metabolites. However, capturing a subset of
sentinel” metabolites in critical pathways may prove to be a
ore tractable problem than proteomics. Estimates suggest

hat post-translational modifications may bring the total
umber of protein species to �106, and perhaps 108 to 109

f immunoglobulins are included. Thus, the metabolome
ay be less complex than the human proteome. Cellular
etabolic pathways are highly conserved across species.
herefore, once metabolic changes are identified in humans,

omplementary functional studies in model organisms may
apidly provide insight into homeostatic and disease pathways.

Metabolites can be measured by several available analyt-
cal methods (for reviews of metabolomics technologies, see
rticles by Dunn et al. [12,13] and Lindon et al. [14]).
hromatographic procedures such as GC, high-performance

iquid chromatography (LC), and capillary electrophoresis have
een used to identify and quantify specific metabolite subsets
e.g., amino acids [15,16] or purine metabolites [16,17]) but
re best used for initial compound separation in combination
ith other detection techniques. Recently, 2 high-throughput

echnologies have garnered the most use for profiling a large
umber of metabolites simultaneously: nuclear magnetic reso-
ance (NMR) spectroscopy and MS. Mass spectrometry dis-
inguishes metabolites on the basis of mass/charge ratio (m/z)
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nd requires a separation of the metabolite components using
ither GC after chemical derivitization or LC, with a new
ethod of ultraperformance LC being increasingly used. Mass

pectrometry also permits absolute quantification of metabolite
evels via the standard addition method, which entails using
piked-in internal standards across a range of concentrations.

hen available, isotope-labeled standards can be easily differ-
ntiated from the endogenous metabolite by the appropriate
umber of mass units.
Nuclear magnetic resonance spectroscopy uses magnetic

roperties of nuclei to determine the number and type of
hemical entities in a molecule. Proton (1H) NMR spec-
roscopy can detect soluble proton-containing molecules
ith a molecular weight of �20 kD or less. The NMR

pectra serve as the raw material for pattern recognition
nalyses, which simplifies the complex multivariate data into

or 3 dimensions that can be readily understood and
valuated. Both NMR and LC-MS systems can be applied
o in vivo tissues or to biological fluids, such as serum,
lasma, urine, and so on, obtained from humans (18). The
dvantages of NMR are that it requires relatively little
ample preparation, is nondestructive, and can provide
nformation about the precise structure of metabolites (4).

owever, NMR sensitivity is related to magnet strength,
nd presently available instrumentation can unambiguously
etect only the most abundant metabolites in plasma.
owever, more sensitive systems are rapidly evolving.
In contrast, the most important advantage of MS coupled

ith up-front chromatography is far greater sensitivity than
MR. Mass spectrometry-based systems have been used to

esolve compounds in the nanomole/liter to picomole/liter
nd even femtomole/liter range, whereas identification of
ompounds by 1H-NMR requires concentrations of 1
mol/l or higher (19). In human plasma, limits of detection
etween 0.1 and 1 �mol/l for a series of compounds
nalyzed by GC-MS have been described. Normal plasma
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Figure 2 Rapid Incorporation of
Metabolomics in Biomedical Research

Criteria for inclusion of publications included use of “metabolome,”
“metabolomics,” or “metabonomics” as a keyword or in the title.
oncentrations for these metabolites are in the micromole/ D
iter range, well above the limits of detection established for
ost MS technologies.

argeted Versus Pattern Recognition Analyses

erturbations of the metabolome that arise either as a cause
r consequence of disease manifest as particular patterns of
ndogenous Compounds Profiledith Current Metabolomics Technologies

Table 1 Endogenous Compounds Profiled
With Current Metabolomics Technologies

Metabolite Class

Acetylcarnitines

Acylglycines

Alcohols

Aldehydes

Alkanes/alkenes

Amides/amines

Amino acids

Aromatics

Bile acids

Branched-chain hydrocarbons

Carbohydrates

Carnitines

Catecholamines

Cholesterols

Coenzyme A derivatives

Esters

Ethers

Fatty acids/alcohols/aldehydes

Glycerols/glycerophospholipids

Glycols/glycolipids

Heterocyclics

Histidine metabolites

Hydroxyacids

Imidazoles

Isoprenoids

Ketones

Lactams

Lactones

Lipids

Minerals

Nitrogenous compounds

Nucleosides/nucleotides

Organic acids

Peptides

Phenols

Phosphates

Porphyrins

Prostaglandins

Pterins

Purines

Pyrimidines

Quinones

Sphingolipids

Steroids/sterols

Sugars

Sulfates

Thiols

Vitamins
ata from Wishart et al. (9).
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etabolites in a tissue or body fluid. This patterning
oncept has been the basis for recent efforts to discover
roteomic or metabolomic “signatures” in tissue or serum.
ass spectrometry and NMR techniques can rapidly gen-

rate well-defined sets of peaks from a sample across a broad
ange of mass/charge. A growing controversy is whether
uch “metabolite signatures” can be used to accurately
istinguish disease states from normal. A significant time
dvantage of direct profile comparisons derives from skip-
ing the far more laborious task of unambiguously identi-
ying the entities that underlie the peaks. Thus, rapid
creening of patient samples is possible.

Using a pattern of peaks to diagnose disease without
nowing the represented metabolites, however, raises some
oncerns. One issue is that of reproducibility. Because most

S or NMR instruments were not designed as clinical
ools, it is hard to generate consistent results from machine
o machine or from operator to operator. Some contend that
he patterns are mostly “noise” and do not discriminate
iologically meaningful information. Without unequivocal
dentifications, one cannot independently confirm findings
ith complementary technologies. Others contend that the
eaks profiled by the methodologies used to date only
epresent the most abundant plasma or tissue constituents.
he most important consequence of not unequivocally

dentifying spectral peaks, however, is that little insight is
ained into the biology, either to understand disease path-
ays through basic cellular mechanisms or as a check on the
iological consistency and reasonableness of the data. Over-
tting of data is also a common problem when algorithms
re generated from hundreds or thousands of peaks. Blinded
rospective studies must ultimately be organized to better
ddress the controversy.

Human metabolomics studies are also complicated by
otentially confounding clinical variables such as diet or
rug effects, particularly if NMR- or MS-based profiling
echniques are used in which metabolite peaks are not
nambiguously identified. Because of the various limitations
nherent to pattern discovery, many have championed

etabolomics applications in targeted approaches. The user
argets a predefined set of metabolites to be quantified by
onitoring specific chromatographic retention times, as
ell as parent and daughter mass-to-charge ratios of ana-

ytes. With the targeted approach being more focused, relying
n a predefined set of entities, researchers have more confi-
ence in the end results, because they know what is giving rise
o the signals. Although this approach has many advantages, it
s blind to changes in metabolites whose retention times and

S characteristics have not been incorporated into the analysis
ethod. As efforts to define the human metabolome grow

20), we anticipate increasingly comprehensive targeted plat-
orms for biomarkers and pathway discovery. Improvements in

S and databases to enable identification of unknown peaks

ill also be critical. l
tatistical Approaches to Metabolomic
ata Reduction and Pathway Analysis

lthough a high-throughput metabolomics approach to
iomarker discovery brings many advantages, it also brings
danger of generating false-positive associations due to
ultiple testing and overfitting of data, as noted in the

receding text. Application of traditional statistical ap-
roaches (e.g., Bonferroni correction) in this setting tends to

evy an insurmountable statistical penalty that can obscure
iologically relevant associations. Even newer statistical
echniques, such as advanced resampling methods or control
f the false discovery rate (21), do not adequately address
he fundamental problem of how to detect subtle but
mportant changes in multiple variables identified in an
omics” approach.

For metabolites participating in known biological path-
ays, a bioinformatics approach using pathways analysis can
arness the vast information gathered in genomics or
etabolomics experiments and turn it into a strength.

pecifically, although measurement error in the marker
iscovery phase often prevents high confidence in any one
articular metabolite’s correlation, the observation that mul-
iple metabolites in a particular biological pathway are
oving in tandem brings confidence that a particular

athway, and therefore any biomarkers in that pathway,
ruly is correlated with the perturbation. By using a more
rincipled selection process for candidate marker triage, this
pproach increases the likelihood that candidate biomarkers
ill be validated in subsequent prospective validation stud-

es. This approach also enhances one’s ability to use the
etabolomic data collected in the biomarker discovery

hase to gain insight into disease biology.
Systematic analysis of functional trends has become

idespread and important in the analysis of deoxyribonu-
leic acid microarray data from model organisms (22). The
alue of this approach in human studies was illustrated in a
ecent analysis of high-throughput differential messenger
ibonucleic acid (mRNA) expression (23). Expression of
RNA was assessed on over 22,000 genes comparing

atients with type 2 diabetes mellitus and unaffected control
ubjects (patients with normal glucose tolerance). A group
f genes with depressed expression in diabetes versus control
ubjects was identified and tested for association with a
ollection of other gene characteristics. It was found that
his gene set was enriched for genes involved in oxidative
hosphorylation. Although individual oxidative phosphor-
lation genes were not dramatically reduced in expression, as
group the trend was highly significant. Furthermore, the

ffect was attributable to a subset of oxidative phosphoryla-
ion genes regulated by peroxisome proliferator-activated
eceptor coactivator 1, a regulator of mitochondrial biogen-
sis. Thus, the analysis of trends among differentially
xpressed genes led directly to insight into altered metabo-

ism in diabetes patients and hinted at therapeutic hypoth-
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ses involving the modulation of oxidative phosphorylation
athways.
There are several statistical issues complicating functional

rends analysis of high-throughput data that have been
igorously addressed in software under development, includ-
ng “FuncAssociate,” recently described by Berriz et al. (24).
lthough the analysis software was developed for use with
igh-throughput mRNA expression data, the general ap-
roach may be used in conjunction with essentially any
igh-throughput experimental approach for identifying or
anking “interesting genes,” FuncAssociate has generally
een used in conjunction with controlled-vocabulary func-
ional annotation (e.g., Gene Ontology annotation), but can
e used in conjunction with many different sources of
ene/protein/metabolite annotation (e.g., expression pattern
n other studies, phenotype, protein complex membership,
isease association, or phylogenetic profile).
Several data reduction strategies using supervised learning
ultivariate analysis can be used to construct multivariate
etabolite biomarker profiles (25). In supervised learning,

n algorithm is used to transform the multivariate data from
etabolite profiles into a lower dimensionality with biolog-

cal interest (e.g., health vs. disease). Metabolite data (in-
uts) and disease status (outputs or targets) form pairs that
re used in the calibration of the model, with the goal of the
odel being to correctly associate the inputs with the

argets. Discriminant analysis is a cluster analysis-based
lgorithm for categorical variables (26), partial least squares
s a popular linear regression-based method, and artificial
eural networks offer the advantage of a machine-based
ethod that can learn nonlinear mappings (27).
Principal components analysis applies raw data to a

ormalized matrix, which is then projected onto a specific
coring schema (4,28). This schema is based upon a series of
rthogonal principal components, the first of which de-
cribes the maximum variance in the original dataset. The
rincipal components analysis can be used for dimension-
lity reduction in a data set by retaining those characteristics
f the dataset that contribute most to its variance, by
eeping lower-order principal components and ignoring
igher-order ones. Similarly, Fisher discriminant analysis
reates normalized data matrices that decrease sample vari-
bility within a specific condition (e.g., cells grown aerobi-
ally) while maximizing sample variability between different
onditions (e.g., aerobic vs. anaerobic growth) (29). These
elatively unbiased methods of reducing large datasets have
he potential to define previously unknown relationships
etween metabolites in a given physiologic state.
A limitation of current analytical approaches in metabo-

omics is that they rely on the relative or absolute concen-
rations of a metabolite in a given tissue or plasma sample
nd do not take into account varying enzymatic activities
ontrolling metabolic flux through biological pathways.
tudies examining metabolic flux incorporate isotope-

abeled metabolites to map the fate of enzymatic substrates.

tudies of tricarboxylic acid (TCA)-cycle anaplerosis in b
nergy metabolism (30) and fractional synthetic rate of fatty
cids and cholesterol (31) have generally focused on small,
ell characterized pathways in specific tissues such as
uscle or liver. The integration of current analytical meth-

ds with assessment of enzymatic activities contributing to
etabolic flux will help to elucidate biologically relevant
etabolic changes.

ovel Roles for
etabolites in Human Physiology

ecreted small ligands such as catecholamines play central
oles in cardiovascular physiology. A growing body of
iterature suggests previously unanticipated roles for metab-
lites that have been traditionally thought to function
xclusively as intracellular signals. He et al. (32) recently
iscovered that the “orphan” G-protein–coupled receptors
PR91 and GPR99, which are highly expressed in the

idney, bind the TCA-cycle intermediates succinate and
-ketoglutarate, respectively. The working hypothesis is

hat a local mismatch of energy supply and demand, altered
etabolism of TCA-cycle intermediates, or injury leads to
itochondrial dysfunction and the release of succinate and
-ketoglutarate from tissues. Once released into the circu-

ation, the metabolites function in a hormone-like manner,
inding their receptors in the renal cortex and triggering the
elease of renin and activation of the renin-angiotensin
ystem. In the case of tissue ischemia from volume loss, this
rocess might be adaptive to match metabolic demands. In
ther conditions associated with high succinate production,
uch as congestive heart failure, resultant increases in blood
ressure might prove maladaptive. This recent work high-

ights roles for new types of circulating metabolites func-
ioning as hormones in the body.

pplication of Metabolomics to Unique
uman Cardiovascular Disease Models

ovel metabolomics techniques still suffer from signal-to-
oise issues, however, and applications to humans may be

imited by interindividual variability. Although recent stud-
es have evaluated the diurnal and even seasonal variation of
emostatic and inflammatory proteins (e.g., fibrinogen,
-dimer, and C-reactive protein), systematic studies have

et to be performed for metabolites in humans. Studies to
dentify novel disease-related pathways are also restricted by
he inherent unpredictability of the onset of pathological
tates. As noted previously, human metabolomics studies are
lso at high risk for potential clinical confounders, such as
iet or drug effects, as well as age, gender, and comorbidi-
ies. It has been advocated that the analysis of samples from
arge patient cohorts, stratified by known risk factors or
xposures, may minimize the impact of clinical confounding
ariables (33). However, the throughput of most current
etabolomics technologies, particularly those that are MS
ased, precludes the analysis of large patient cohorts.
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To help circumvent these problems, investigators have
egun to apply these emerging technologies to unique
linical scenarios where serial sampling can be performed in
atients both before and after a controlled perturbation,
hereby allowing each patient to serve as his or her own
iological control. Clinical cardiology is uniquely suited for
uch investigation. As proof of principle, a targeted MS-
ased metabolomics platform was applied to patients un-
ergoing exercise stress testing with myocardial perfusion

maging (34). Eighteen patients had no evidence of isch-
mia (control group), whereas 18 patients had inducible
schemia (case group). Plasma was fractionated by high-
erformance LC and metabolites analyzed using a triple
uadrupole mass spectrometer to monitor hundreds of ion
airs by targeted MS. The majority of metabolites displayed
oncordant changes in cases and controls (i.e., increased in
oth or decreased in both). For example, lactic acid, as well
s hypoxanthine and inosine, end products of adenosine
onophosphate catabolism, increased in both case and

ontrol groups. However, 6 metabolites yielded highly
ignificant discordant changes in case and control groups.
sing a metabolic risk score derived from metabolites with
iscordant changes in the 2 groups, case subjects could be
istinguished from control subjects with a high degree of
ccuracy (p � 0.0001; c-statistic � 0.95).

Strategies emphasizing the in-depth analysis of small,
xtremely well phenotyped patient cohorts are ideal in light
f current technological limitations. However, such an
pproach has potential limitations that should be consid-
red. First, although serial sampling in patients serving as
heir own biological controls helps diminish interindividual
ariability and signal-to-noise issues, populations studied to
ate are nevertheless small. Further testing in larger cohorts
ay be powered to detect more subtle metabolic changes

nd will provide sufficient precision in the estimates of the
tility of each marker to allow for appropriate relative
eighting of each component.
Second, although metabolite profiling of serum or plasma

ffers the advantage of simple sample collection, and may
eflect the sum of metabolic changes occurring throughout
he body, sampling specific tissues that serve as proximal
ources of metabolites (35,36) enables localization of met-
bolic changes and may help to gauge the sensitivity and
pecificity of signature metabolic profiles in plasma. Alter-
atively, for metabolites that are rapidly cleared from the
irculation, it may be more appropriate to perform meta-
olic profiling on urine samples.

ntegration of Metabolomics With
ther “Omics” Technologies in a Systems
iology Approach to Cardiovascular Disease

he identification of new pathways and biomarkers in
ardiovascular disease will depend on the complementary
ower of genetics, transcriptional profiling, proteomics, and

etabolomics. For example, Mayr et al. (36) recently used

1

etabolomics and proteomics to characterize metabolic
rofiles of atrial tissue that predispose patients to the
evelopment of atrial fibrillation. Genome-wide association
tudies that provide an unbiased scan of genomic sequence
ariants will also catalyze integrative “omics” approaches.
or example, 3 groups recently identified several loci,

ncluding chromosome 9p21, associated with early-onset
yocardial infarction (37–39). The chromosomal regions

dentified to date do not contain genes recognizably associ-
ted with established coronary heart disease risk factors such
s plasma lipoproteins. However, the integration of meta-
olic and proteomic data from these same patients may
rovide clues as to how the variants modulate the athero-
clerotic process.

onclusions

n emerging set of analytical and bioinformatics tools have
ade it possible to profile hundreds of metabolites in

omplex mixtures such as plasma. Although these technol-
gies are still under development, when coupled with other
unctional genomic approaches, metabolomics promises to
ransform our ability to profile samples with the goal of
lucidating biological pathways and discovering valuable
linical biomarkers.
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nflammatory Diseases, Massachusetts General Hospital East-
307, 149 13th Street, Charlestown, Massachusetts 02129. Email:
gerszten@partners.org.

EFERENCES

1. Pauling L, Robinson AB, Teranishi R, Cary P. Quantitative analysis
of urine vapor and breath by gas-liquid partition chromatography. Proc
Natl Acad Sci U S A 1971;68:2374–6.

2. Horning EC, Horning MG. Metabolic profiles: gas-phase methods
for analysis of metabolites. Clin Chem 1971;17:802–9.

3. Nicholson JK, Lindon JC, Holmes E. “Metabonomics”: understanding
the metabolic responses of living systems to pathophysiological stimuli
via multivariate statistical analysis of biological NMR spectroscopic
data. Xenobiotica 1999;29:1181–9.

4. Raamsdonk LM, Teusink B, Broadhurst D, et al. A functional
genomics strategy that uses metabolome data to reveal the phenotype
of silent mutations. Nat Biotechnol 2001;19:45–50.

5. Allen J, Davey HM, Broadhurst D, et al. High-throughput classifi-
cation of yeast mutants for functional genomics using metabolic
footprinting. Nat Biotechnol 2003;21:692–6.

6. An J, Muoio DM, Shiota M, et al. Hepatic expression of malonyl-
CoA decarboxylase reverses muscle, liver and whole-animal insulin
resistance. Nat Med 2004;10:268–74.

7. Roe CR, Millington DS, Maltby DA. Identification of 3-
methylglutarylcarnitine. A new diagnostic metabolite of 3-hydroxy-
3-methylglutaryl-coenzyme A lyase deficiency. J Clin Invest 1986;77:
1391–4.

8. Frazier DM, Millington DS, McCandless SE, et al. The tandem mass
spectrometry newborn screening experience in North Carolina: 1997–
2005. J Inherit Metab Dis 2006;29:76–85.

9. Wishart DS, Tzur D, Knox C, et al. HMDB: the Human Metabo-
lome Database. Nucleic Acids Res 2007;35:D521–6.
0. Human Metabolome Project. The Human Metabolome Database.
Available at: http://www.hmdb.ca. Accessed March 2008.

mailto:rgerszten@partners.org


1

1

1

1

1

1

1

1

1

2

2

2

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

3

123JACC Vol. 52, No. 2, 2008 Lewis et al.
July 8, 2008:117–23 Metabolomics in Biomarker Discovery
1. KEGG: Kyoto Encyclopedia of Genes and Genomes. Available at:
http://www.genome.jp/kegg/. Accessed March 2008.

2. Dunn WB, Bailey NJ, Johnson HE. Measuring the metabolome:
current analytical technologies. Analyst 2005;130:606–25.

3. Dunn WB, Ellis D. Metabolomics: current analytical platforms and
methodologies. Trends Anal Chem 2005;4:285–94.

4. Lindon JC, Holmes E, Nicholson JK. Metabonomics techniques and
applications to pharmaceutical research and development. Pharm Res
2006;23:1075–88.

5. Backstrom T, Goiny M, Lockowandt U, Liska J, Franco-Cereceda A.
Cardiac outflow of amino acids and purines during myocardial isch-
emia and reperfusion. J Appl Physiol 2003;94:1122–8.

6. Mei DA, Gross GJ, Nithipatikom K. Simultaneous determination of
adenosine, inosine, hypoxanthine, xanthine, and uric acid in microdi-
alysis samples using microbore column high-performance liquid chro-
matography with a diode array detector. Anal Biochem 1996;238:
34–9.

7. Zemgulis V, Ronquist G, Bjerner T, et al. Energy-related metabolites
during and after induced myocardial infarction with special emphasis
on the reperfusion injury after extracorporeal circulation. Acta Physiol
Scand 2001;171:129–43.

8. Cheng LL, Chang IW, Louis DN, Gonzalez RG. Correlation of
high-resolution magic angle spinning proton magnetic resonance
spectroscopy with histopathology of intact human brain tumor speci-
mens. Cancer Res 1998;58:1825–32.

9. Zhang X, Wei D, Yap Y, Li L, Guo S, Chen F. Mass spectrometry-
based “omics” technologies in cancer diagnostics. Mass Spectrom Rev
2007;26:403–31.

0. Human Metabolome Project. What is metabolomics? Available at:
http://www.metabolomics.ca/About/overview.htm. Accessed March
2008.

1. Storey JD, Tibshirani R. Statistical significance for genomewide
studies. Proc Natl Acad Sci U S A 2003;100:9440–5.

2. Tavazoie S, Hughes JD, Campbell MJ, Cho RJ, Church GM.
Systematic determination of genetic network architecture. Nat Genet
1999;22:281–5.

3. Mootha VK, Lindgren CM, Eriksson KF, et al. PGC-1alpha-
responsive genes involved in oxidative phosphorylation are coordi-
nately downregulated in human diabetes. Nat Genet 2003;34:267–73.

4. Berriz GF, King OD, Bryant B, Sander C, Roth FP. Characterizing
gene sets with FuncAssociate. Bioinformatics 2003;19:2502–4.

5. van der Greef J, Stroobant P, van der Heijden R. The role of analytical
sciences in medical systems biology. Curr Opin Chem Biol 2004;8:

559–65. K
6. Manly B. Multivariable Statistical Methods: A Primer. London:
Chapman & Hall, 1994.

7. Bishop C. Neural Networks for Pattern Recognition. Oxford: Clar-
endon Press, 1995.

8. Baxter IR, Borevitz JO. Mapping a plant’s chemical vocabulary. Nat
Genet 2006;38:737–8.

9. Villas-Boas SG, Moxley JF, Akesson M, Stephanopoulos G, Nielsen
J. High-throughput metabolic state analysis: the missing link in
integrated functional genomics of yeasts. Biochem J 2005;388:669–77.

0. Gibala MJ, Young ME, Taegtmeyer H. Anaplerosis of the citric acid
cycle: role in energy metabolism of heart and skeletal muscle. Acta
Physiol Scand 2000;168:657–65.

1. Bederman IR, Reszko AE, Kasumov T, et al. Zonation of labeling of
lipogenic acetyl-CoA across the liver: implications for studies of
lipogenesis by mass isotopomer analysis. J Biol Chem 2004;279:
43207–16.

2. He W, Miao FJ, Lin DC, et al. Citric acid cycle intermediates as
ligands for orphan G-protein-coupled receptors. Nature 2004;429:
188–93.

3. Kirschenlohr HL, Griffin JL, Clarke SC, et al. Proton NMR analysis
of plasma is a weak predictor of coronary artery disease. Nat Med
2006;12:705–10.

4. Sabatine MS, Liu E, Morrow DA, et al. Metabolomic identifica-
tion of novel biomarkers of myocardial ischemia. Circulation
2005;112:3868 –75.

5. Howarth KR, LeBlanc PJ, Heigenhauser GJ, Gibala MJ. Effect of
endurance training on muscle TCA cycle metabolism during exercise
in humans. J Appl Physiol 2004;97:579–84.

6. Mayr M, Yusuf S, Weir G, et al. Combined metabolomic and
proteomic analysis of human atrial fibrillation. J Am Coll Cardiol
2008;51:585–94.

7. Samani NJ, Erdmann J, Hall AS, et al. Genomewide association
analysis of coronary artery disease. N Engl J Med 2007;357:443–53.

8. McPherson R, Pertsemlidis A, Kavaslar N, et al. A common allele on
chromosome 9 associated with coronary heart disease. Science 2007;
316:1488–91.

9. Helgadottir A, Thorleifsson G, Manolescu A, et al. A common variant
on chromosome 9p21 affects the risk of myocardial infarction. Science
2007;316:1491–3.
ey Words: metabolomics y biomarkers y prognosis.


	Application of Metabolomics to Cardiovascular Biomarker and Pathway Discovery
	The Birth of Metabolomics
	Technologies to Define the Human Metabolome
	Targeted Versus Pattern Recognition Analyses
	Statistical Approaches to Metabolomic Data Reduction and Pathway Analysis
	Novel Roles for Metabolites in Human Physiology
	Application of Metabolomics to Unique Human Cardiovascular Disease Models
	Integration of Metabolomics With Other “Omics” Technologies in a Systems Biology Approach to Cardiovascular Disease
	Conclusions
	REFERENCES


